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Coherent perfect absorption (CPA) is the phenomenon
where a linear system with low intrinsic loss strongly
absorbs two incident beams but only weakly absorbs either
beam when incident separately. We present an analytical
model that captures the relevant physics of CPA in one-
dimensional photonic structures. This model elucidates
an absorption-mediated interference effect that underlies
CPA—an effect that is normally forbidden in Hermitian
systems but is allowed when conservation of energy is
violated due to the inclusion of loss. By studying a planar
cavity model, we identify the optimal mirror reflectivity
to guarantee CPA in the cavity at resonances extending
in principle over any desired bandwidth. As a concrete
example, we design a resonator that produces CPA in a
1-μm-thick layer of silicon over a 200-nm bandwidth in
the near-infrared. © 2015 Optical Society of America

OCIS codes: (230.4040) Mirrors; (260.3160) Interference; (230.4170)
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Absorption plays a crucial role in many optical applications—
sometimes it is desirable to minimize it as in optical fibers, or
to enhance it as in solar cells. New schemes exploiting useful
consequences of controlling the spatial distribution of optical
losses [1–3], or in combination with judiciously placed optical
gain [4,5], are now emerging as part of the burgeoning effort on
non-Hermitian photonics [6]. To increase absorption in an op-
tical system, a material introducing heavy losses may be inserted.
However, there are critical scenarios where this direct approach
cannot be implemented. Cost or design considerations may allow
for only a thin layer of the lossy material to be included, as in
thin-film solar cells. Alternatively, in some arrangements the
overall absorption does not increase even when more loss is in-
corporated, as is the case in certain interferometers.

Coherent perfect absorption (CPA) [7] is a new optical
scheme that produces high absorption in systems that have
low intrinsic losses [8,9]. By interfering two beams in a lossy
material—typically contained in a multipass interferometer
such as a Fabry–Perot (FP) resonator—increased absorption
is observed with respect to that experienced by each beam

separately. The effect appears counterintuitive: while a single
beam is weakly absorbed [Fig. 1(a)], adding a second beam re-
sults in both beams being completely absorbed [Fig. 1(b)]. This
linear phenomenon appears to contradict the accepted dictum
that absorption is anathema to interference.

In this Letter, we present an analytical model for CPA in
one-dimensional (1D) photonic structures [10–12]. From this
perspective, we find that CPA is an absorption-mediated inter-
ferometric effect in systems where conservation of energy is
violated by including loss. Traditionally, it is thought that losses
reduce interferometric visibility. In contrast, absorption in CPA
produces an interferometric effect that is normally forbidden in
lossless structures. Our analytical model, beside its conceptual
clarity, provides the basis for optimizing the structure param-
eters by establishing the general criteria for maximizing CPA.
We apply our analysis to a FP resonator consisting of a thin
absorbing layer between two symmetric mirrors. We find that
the optimal mirror reflectivity depends on the intrinsic single-
pass absorption in the layer, which implies that mirrors with
wavelength-dependent reflectivity are required for any real
material over an appreciable bandwidth. Bragg mirrors, or other
mirrors with a flat spectral reflection band, are thus not useful
candidates to help achieve CPA over large bandwidths. We
apply this model to a 1-μm-thick silicon film sandwiched
between appropriately designed aperiodic multilayer dielectric
mirrors to achieve CPA in the near-infrared where silicon’s
single-pass absorption is only a few percent.

We first present a simple example to illustrate how adding a
beam to a linear passive optical system may increase the overall
absorption. In Fig. 1(c) we depict a balanced Mach–Zehnder
interferometer in which a dielectric layer with attenuation
factor γ is placed in one arm. For symmetric 50/50 beam
splitters, the sum of the two interferometer outputs is
Pt�P1�P2� 1

2
f1�γg, in which case Pt →

1
2
when γ → 0.

That is, total absorption cannot be achieved no matter how
high the inserted loss is. Nevertheless, interference may be ex-
ploited here to overcome this limitation. If instead of directing
the beam to a single port at the interferometer entrance, we
divide the input beam between the two entrance ports with
an appropriate relative phase [Fig. 1(d)], then both beams
can be directed together to one arm, leading either to complete
extinction [Pt → 0, Fig. 1(d)-ii] or complete transparency [zero
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absorption, Pt � 1, Fig. 1(d)-iii]. This example highlights that
interference outside the lossy medium may indeed help increase
absorption in a linear structure by directing the incident energy
solely to the lossy channel. We show below that CPA is related
to this effect when a low-loss material is placed in a multipass
configuration.

To determine the general criteria for a lossy system to
achieve CPA, we consider a generic 1D optical configuration
[Fig. 1(e)] described by a 2 × 2 scattering matrix S � �tLrL

rR
tR
�.

Here tL, rL, tR , and rR are the field transmission and reflection
coefficients for left (L) or right (R) incidence. We assume the
left and right ambient media are the same for simplicity. As a
starting point, we consider a lossless or Hermitian system,
where the conservation of energy implies that

T L�RL � 1;T R �RR � 1;Rf�t�LrR � r�LtR�eiϕg� 0; (1)

where T L � jtLj2, RL � jrLj2, T R � jtRj2, RR � jrR j 2,Rf·g
denotes taking the real part, and ϕ is an arbitrary relative phase
between the left- and right-incident fields. The last condition in
Eq. (1) implies that RL � RR , T L � T R , and θL � θR � π,
where θL and θR are the phase differences between the reflec-
tion and transmission coefficients for left- and right-incidence,
respectively. If fields are incident from the left and right with
relative complex amplitude δ � jδjeiϕ, a configuration we term
hereon two-sided incidence [Fig. 1(b)], then the normalized
outgoing fields to the right and left are t1 � tL�δrRffiffiffiffiffiffiffiffiffiffi

1�jδj2
p and

t2 � rL�δtRffiffiffiffiffiffiffiffiffiffi
1�jδj2

p , respectively, with T 1 � jt1j2 and T 2 � jt2j2.
Finally, if the system is symmetric, i.e., the left and right
may be seamlessly interchanged, then S � eiβ� tir irt � and
r2 � t2 � 1, where r and t are real and β is an overall phase.
That is, in a lossless symmetric system the reflection and trans-
mission coefficients are in quadrature, Rft�LrLg � 0.

We now proceed to a consideration of lossy systems, where
the conditions in Eq. (1) are no longer satisfied. First, since
T L � RL ≤ 1 and T R � RR ≤ 1, we define left and right ab-
sorptivities AL � 1 − fT L � RLg and AR � 1 − fT R � RRg,
respectively (in general, AL ≠ AR). That is, AL and AR are
the fractions of light absorbed upon left or right incidence, re-
spectively, which we term one-sided absorption. Furthermore,
we no longer haveRf�t�LrR � r�LtR�eiϕg � 0, and in the case of
a symmetric system Rft�LrLg ≠ 0. This feature deserves special
attention since it is essential for CPA. In a lossless symmetric
system, the relative phase between the reflection and transmis-
sion coefficients is not arbitrary: it is constrained to � π

2
. As

such, the reflected and transmitted beams cannot interfere.
This phase constraint is lifted once loss is included, and the
reflected and transmitted beams can now interfere.

For two-sided incidence on a lossy system, due to interfer-
ence, the total absorption At � 1 − fT 1 � T 2g may not be
equal to the weighted sum of AL and AR . For a symmetric
system (AL � AR), it is straightforward to show that

At � AL −
4jδj

1� jδj2 Rft�LrLg cos ϕ: (2)

This equation indicates that two-sided absorption At may be
larger or smaller than that expected from one-sided absorp-
tion AL—according to the relative phase ϕ of the two beams
and the phase θ of the interference term Rft�LrLg. This term is
normally equal to zero in lossless systems, but may become
nonzero when loss is introduced. This absorption-mediated
interference effect, the second term in Eq. (2), is what enables
CPA. It is important to note that the interference occurs
between the fields outside the system, just as in the Mach–
Zehnder example in Fig. 1(c), with external destructive
interference associated with enhanced absorption within it.
The normally uncoupled fields in the Hermitian case
Rft�LrLg � 0 are now coupled through the mediation of the
introduced loss, whereupon Rft�LrLg ≠ 0.

We can now determine the general criteria for achieving
maximal CPA, At � 1. From Eq. (2), such a goal requires
simultaneously satisfying the following conditions:

�I�jδj � 1; �II� cos θ cos ϕ � −1; �III�jrLj � jtLj; (3)

jδj and ϕ are set by the incident fields, while θ, jrLj, and jtLj are
determined by the system characteristics. These conditions
correspond in fact to one of the eigenvalues of S being zero,
signifying a “dark” eigenstate that is completely absorbed by
the system [7]. Condition (II) requires that �θ;ϕ� � �0; π�
or �θ;ϕ� � �π; 0�. Condition (III) indicates that a strongly re-
flecting or transmitting system is not optimal. Instead, we need
to arrange for equal reflection and transmission coefficients.

It is crucial to appreciate that the above analysis is indepen-
dent of any details of the 1D optical system. The conditions
in Eq. (3) provide a general recipe for constructing a device
demonstrating CPA. The typical scenario envisioned is to start
from a material or structure that exhibits low intrinsic loss and
to then construct around it a lossless system that enables CPA.
Equation (3) may then be used to optimize the CPA effect and
reach At � 1. Furthermore, maintaining jrLj � jtLj over a
large bandwidth is challenging since the absorption of all
materials is wavelength-dependent. We thus anticipate that
the characteristics of the lossless systems sandwiching the lossy
layer must also be wavelength-dependent.

Fig. 1. (a) One-sided and (b) two-sided incidence schemes. (c) A
balanced Mach–Zehnder interferometer (formed of two symmetric
beam splitters BS1 and BS2) containing an absorber having an attenu-
ation factor γ. (d) Three configurations for the beams at the interfer-
ometer input beam splitter BS1 that enable control over the path to
which the beam is directed to. (e) A generic two-port optical system
described by a scattering matrix S. The red solid arrows are the inputs
(aL and bR) and the dashed blue arrows the outputs (bL and aR).
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We now analyze a specific model system. Figure 2(a) depicts
a FP resonator consisting of two mirrorsM 1 andM 2 that sand-
wich a lossy dielectric layer of thickness d and nondispersive
complex refractive index n� in 0. The mirrors are identical,
lossless, but not necessarily symmetric; each has the scattering
matrix SM � �teiβreiα

−rei�2β−α�
teiβ �, assuming the mirror is flanked on

one side with vacuum and the other by the absorptive medium,
r2 � t2 � 1, α and β are the left transmission and reflection
phases, respectively. The resonator transmission and reflection
coefficients are

tL � �1 − R�ei�2β−α� ei�kd�α�

ek 0d − Re−k 0d ei�2kd�2α� ;

rL � −
ffiffiffi
R

p
ei�2β−α�

ek 0d − e−k 0d ei�2kd�2α�

ek 0d − Re−k 0d ei�2kd�2α� ; (4)

and the one-sided absorption AL is

AL � T L

�
cosh 2 k 0d � 1� R

1 − R
sinh 2 k 0d − 1

�
; (5)

where R � jrj2, k � n ω
c , k 0 � n 0 ω

c , ω is the angular fre-
quency, c is the speed of light in vacuum, and the resonance
order m corresponds to the round-trip phase 2kd � 2α being
equal to 2πm. We plot T L and RL against normalized fre-
quency for such a cavity in Fig. 2(b), and plot AL in Fig. 2(d),
which shows that absorption occurs on resonance where T L is
high, per Eq. (5). For future reference, we introduce the quan-
tity A � 1 − e−2 k 0d, which is the single-pass absorption in the
thin layer when not contained within the FP resonator—or the
intrinsic absorption in the film.

Increasing the intrinsic losses k 0d does not necessarily
increase AL. Surprisingly, increasing n 0 indefinitely decreases
absorption. The reason is that light transmitted through M 1

in this case fails to reach M 2, thereby disrupting the FP inter-
ference. Consequently, the reflected fraction RL ≈ R of light
fromM 1 remains undiminished and AL → 1 − R ≈ 0 for large
R. This result suggests the following question: for a layer of a
lossy material having a given value of k 0d (especially k 0d ≪ 1),
what is the maximum one-sided absorption A�m�

L that can be
achieved by surrounding this layer with symmetric mirrors?
It can be shown that A�m�

L � 1
2 cosh

2 k 0d on resonance when

mirrors having dispersive reflectivity R�1� � 3−e2 k 0d

3−e−2 k 0d are used—a

condition that applies only when e2 k 0d < 3 [Fig. 3(a)] and
which optimizes the interplay between absorption and FP
interference. Therefore, even in the limit k 0d ≪ 1, one may
still achieve at least 50% absorption on resonance. As k 0d
increases, the mirror reflectivity required to optimize one-
sided absorption decreases. When k 0d increases to reach
e2 k 0d � 3, the amplitude of the sum of all FP round-trip am-
plitudes 1

1−Re−2 k 0d � 1, such that RL � 0, T L � e−2 k 0d , and

A�m�
L � A; the FP resonator no longer offers any enhancement.

When e2 k 0d > 3, the optimal one-sided absorption remains
A�m�

L � 1 − e−2 k 0d , which is achieved with R�1� � 0; that is,
adding the mirrors does not improve the absorption above that
of a single pass. In other words, it is impossible to improve the
absorption in a thin layer by placing it in a cavity formed of
symmetric reflectors if the intrinsic absorption in the layer is
equal to or exceeds 66.7%.

Consider now two-sided incidence [Fig. 2(a)-ii; jδj � 1]
where the total absorption At [Eq. (2)] is the sum of AL

[Eq. (5)] and an absorption-mediated interference term,

−2Rft�LrLg �
4

ffiffiffi
R

p

1 − R
�−1�mT L sinh k 0d ; (6)

where m � 1; 2;… is the resonance order, resulting in either
even-m or odd-m resonances having enhanced absorption
[Fig. 2(e)]. It is straightforward to show that maximal CPA
[Eq. (3)] is achieved on resonance when R�2� � e−2 k 0d .
However, this choice for R�2� does not maximize AL �
1 − 1

2 sech
2 k 0d ≤ A�m�

L for a given k 0d , as shown in Fig. 3(b),
but it does ensure that At � 1. Indeed, AL may even be less
than the single-pass absorption A. Note that it is always possible

Fig. 2. (a) Schematic of a symmetric FP cavity formed of mirrors
M 1 andM 2 sandwiching a lossy dielectric. (b) One-sided transmission
T L and reflection RL coefficients against normalized frequency show-
ing the first four resonances; ωo � πc

nd , m is the resonance order,
n 0 � 0.003, and R � 0.9. (c) Two-sided transmission T 1, with
jδj � 1. Top and bottom panels show T 1 for ϕ � π (achieving
CPA for odd-m resonances) and ϕ � 0 (for even-m resonances),
respectively. (d) One-sided absorption. (e) Two-sided absorption.

Fig. 3. (a) The maximal one-sided absorptionA�m�
L and correspond-

ing optimal mirror reflectivity R�1� for a given value of k 0d . The dashed
red curveA corresponds to the single-pass absorptionA � 1 − e−2 k 0d ,
and the dashed-dotted curve is the two-sided absorptionAt achieved if
these mirrors having reflectivity R�1� are used. The shaded region cor-
responds to e2 k 0d > 3, a regime in which it is optimal to set R�1� � 0,
resulting in A�m�

L � At � A. (b) The maximal two-sided absorption
At � 1 (CPA), the optimal mirror reflectivity R�2� for a given value of
k 0d , and the corresponding AL.
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to enhance absorption in the two-sided incidence configuration
regardless of k 0d . Finally, for k 0d ≪ 1, R�1� ≈ R�2� ≈ 1–2 k 0d ,
so that the same mirror simultaneously optimizes AL and At .

We now proceed to a specific realistic example of a dis-
persive medium and elucidate the impact of wavelength-
dependent absorption. We examine a detailed model consisting
of two symmetric multilayer mirrors sandwiching a layer of sil-
icon (Si) and take into account the dispersion in both R and n 0.
Si has high optical absorption in the visible, which drops rap-
idly in the infrared. We consider here whether we can achieve
CPA in a 1-μm-thick layer of Si in the vicinity of λ � 1 μm
where Si is only weakly absorbing and the single-pass absorp-
tion is A � 0.0064 (using the parameters for Si in [13]).

We first sandwich the thin Si layer between two Bragg mir-
rors [Fig. 4(b), inset] each formed of seven bilayers of SiO2 and
TiO2 with refractive indices of 1.45 and 2.46 and thicknesses
172.4 and 101.6 nm, respectively [Fig. 4(a)], chosen such that
the center of the bandgap is at λ � 1 μm [Fig. 4(b)] and the
total device thickness is <5 μm. In Fig. 4(c) we plot the spec-
tral dependence of four relevant quantities for the full structure:
the transmission T L, reflection RL, and absorption AL for
incidence from the left, and the two-sided absorption At for
two beams with δ � 1. Since R is approximately equal at all
resonances but k 0d drops rapidly in Si at longer wavelengths,
AL < 0.5 and At < 1.

The strategy to remedy this situation is clear: replace the
Bragg mirrors with others whose reflection is low at the shorter
wavelengths (where absorption in Si is higher) and high at

longer wavelengths (where absorption in Si drops). To optimize
CPA in Si, a mirror with dispersive reflection R � e−2 k 0d is
required to replace the Bragg mirror. A design for such a mirror
(obtained using the package FilmStar, FTG Software) is shown
in Fig. 4(d) consisting of 22 alternating layers of SiO2 and
TiO2. This mirror’s reflection R, assuming left-incidence from
air and a Si substrate on the right, is shown in Fig. 4(e),
compared to the ideal target R � e−2 k 0d . By sandwiching a
1-μm-thick Si film between two such mirrors symmetrically
(total device thickness is <7.9 μm), we now obtain a structure
in which complete CPA is achieved within the spectral range
where the designed R approaches the ideal target. We plot
in Fig. 4(f ) T L, RL, AL, and At for this structure, and we con-
firm that CPA is indeed achieved within the spectral range
750–1000 nm. The number and locations of the resonances
are determined by the thickness and refractive index of the
Si layer and the mirror spectral phase, which is markedly differ-
ent from that of a Bragg mirror.

In conclusion, we have presented a general model for 1D
photonic structures that establishes the criteria for achieving
maximal CPA. On this understanding, CPA is the enhancement
in absorption driven by an absorption-mediated interference
effect. Using this recipe, we have demonstrated that one may
optimize near-infrared CPA in a thin Si film placed in a planar
cavity. CPA is achieved in this lossy Fabry–Perot cavity model
only at its resonance frequencies. Broadband CPA, which would
have important applications in solar energy for example, cannot
be accomplished with these means, and further research is nec-
essary to identify suitable mechanisms and structures for its
demonstration. One potential avenue is the use of so-called
white-light cavities that are designed to broaden the resonance
linewidths [14]. Combining such an approach with our model
promises to deliver CPA over a continuous spectrum.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA-9550-12-1-0148, FA9550-14-1-0037).
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