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We demonstrate a simple method for measuring the twist elastic constant (K22) of a nematic liquid crystal (LC).
By adding some chiral dopant to an LC host, the LC directors rotate 180° in a homogeneous cell, which is known
as 180° super-twisted nematic (STN) cell. By preparing two such STN cells with different chiral concentrations
and measuring their Fréedericksz threshold voltages, we can obtain the K22 and helical twisting power simulta-
neously. In the whole process, there is no need to measure the pitch length. Our obtained K22 values agree well
with those reported by using other methods.
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1. Introduction

Fringe-filed switching and in-plane switching (IPS)
liquid crystal displays (LCDs) have been widely used
in mobile displays, like smart phones and tablets.[1–
9] In these LCDs, the electric field-induced LC reor-
ientation takes place primarily in the horizontal
direction. Therefore, their electro-optical character-
istics, such as operation voltage and response time,
are mainly governed by the twist elastic constant
(K22) instead of splay (K11) or bend (K33) elastic
constants. However, it is not easy to measure K22

precisely. For K11 and K33, a common measurement
technique has been established.[10,11] But for K22,
even though several methods have been proposed,
[12–21] each approach has its own merits and
demerits.

An effective method for measuring K22 is to use
magnetic field.[12] The accuracy is reasonably high
with careful alignment of the device relative to the
magnetic field. However, a big electromagnet is
required in order to generate high magnetic field (~1
Tesla). Meanwhile, the magnetic susceptibility aniso-
tropy (Δχm) [22] should be determined beforehand.
Another approach is to use IPS cell, in which twist
deformation can be induced by an electric field.[13,14]
However, specific designs, like wall-shaped electrode
or aluminium electrodes, are required to ensure pure
twist rotation, otherwise the non-uniform LC reorien-
tation would cause a large uncertainty in K22 mea-
surement. Raynes et al. proposed another technique
using a wedge LC cell filled with a chiral dopant.
[15,16] Because of the thickness gradient, the LC
directors experience from an untwisted state to a
180° twisted state. Through fitting the threshold vol-
tage at the disclination line, K22 can be obtained. This

method is quick to perform, but the accuracy is not
good. Other methods, like guiding mode technique or
conoscopic observation technique,[17–20] may have
good accuracy but the complexity from both experi-
mental set-up and elaborate fitting routine inhibits
their wide acceptance.

In this paper, we propose a simple method for
measuring K22. The basic idea is to add some chiral
dopants into an LC host, leading to a 180° twist in a
homogeneous cell, which is known as 180° super-
twisted nematic (STN) cell. Next, we assume the
helical twisting power (HTP) of chiral dopant is also
unknown, same as K22. To solve two unknowns, we
need two independent equations. To do so, we pre-
pare two samples with different chiral concentrations.
By measuring the Fréedericksz threshold voltages of
these two 180° STN cells, both K22 and HTP can be
obtained simultaneously. In the whole process, there
is no need to measure the pitch length. This method
exhibits several advantages: (1) no sophisticated
instrument is required, except two 180° STN LC
cells; (2) simple experimental set-up: we only need to
measure the voltage-dependent transmittance of the
STN cells; (3) simple algorithm: we need two linear
equations to solve two unknowns.

2. Working mechanism

The electro-optical properties of LC cells with a gen-
eral planar alignment geometry have been investi-
gated.[23–25] Once the applied voltage exceeds the
Fréedericksz transition threshold (also known as cri-
tical voltage), the LC directors are reoriented by the
electric field. Under strong surface anchoring, this
critical voltage (Vc) can be expressed as [24,25]
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Vc ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11 þ ϕ2

π2 K33 � 2K22 1� 2πd
Pϕ

� �h i
ε0�ε

vuut
(1)

where ϕ is the total twist angle of LC directors, ε0 is
the vacuum permittivity, Δε (ε‖ − ε⊥) is the dielectric
anisotropy, d is the cell gap and P is the pitch length
of the LC. For a homogeneous cell, ϕ = 0 as shown in
Figure 1(a), Equation (1) is simplified to

Vc ¼ π

ffiffiffiffiffiffiffiffiffiffi
K11

ε0�ε

r
(2)

Based on Equation (2), K11 can be determined once
Vc and Δε are known. These two parameters can be
obtained relatively easily from the measured voltage-
dependent transmittance (VT) or capacitance curves.
[26,27]

To extract the K22 value from Equation (1), here we
propose to dope some chiral compound to the LC host
and form a 180° STN cell (ϕ = π) with 0.25 < d/P < 0.75,
as depicted in Figure 1(b). In Equation (1), if we sub-
stitute ϕ = π and pitch length P = 1/(HTP · c) (where c is
chiral concentration), then the critical voltage can be
rewritten as

Vc ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11 þ ½K33 � 2K22ð1� 2d=PÞ�

ε0�ε

s

¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11 þ ½K33 � 2K22ð1� 2d � c � HTPÞ�

ε0�ε

s
(3)

From Equation (3), in principle it is possible to deter-
mine K22 by measuring the critical voltage. However,
the accurate determination of d/P is not easy. This is
because for a given chiral dopant (e.g. R811), its HTP
could vary noticeably depending on the LC host and
measurement conditions.[28–30] Thus, the measured
d/P result may not be consistent.

The novelty of our approach is to treat the HTP
of chiral dopant as a second unknown. In experiment,
we prepared two LC samples with different chiral

concentrations. By measuring the threshold voltages
of these two cells, K22 and HTP could be extracted
simultaneously. In the whole process, there is no need
to measure the pitch length. Moreover, we do not
need to control the chiral concentration precisely. As
long as the d/P ratio is in the range of 0.25–0.75, our
method works well. It offers a great flexibility for
conducting the measurement.

3. Experiment

In experiment, we employed commercial homoge-
neous cells. The inner surface of the indium tin
oxide (ITO) glass substrates were over-coated with a
thin polyimide alignment layer and rubbed in antipar-
allel direction. The pretilt angle was about 2°. Two
homogeneous cells with gaps d = 5.21 μm and
5.22 μm were prepared.

Next, we prepared two LC mixtures with different
chiral concentrations. E7 has been well-studied pre-
viously. For comparison purpose, we also chose E7 as
LC host and R811 as chiral dopant. The chiral con-
centrations were 0.52 wt% and 1.04 wt%.

After filling the LC mixture into a homogeneous
cell, we placed the LC cell between two crossed
polarisers. A Soleil–Babinet compensator was
employed as the phase compensator to get a good
dark state. The employed light source is He–Ne
laser with λ = 633 nm. And the photodetector is
Model 2031 (New Focus, USA). First, we recorded
the VT curves for both samples,[31] and then
obtained the individual threshold voltage by linear
fitting, as Figure 2 depicts. The fitted results are
Vc1 = 1.32 Vrms for sample 1 and Vc2 = 1.52 Vrms

(a) (b)

Figure 1. (LC director configuration for (a) homogeneous
cell and (b) 180° STN cell with 0.25 < d/P < 0.75.
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Figure 2. Measured voltage–transmittance (VT) curves for
two 180° STN samples. Red lines are fitting curves.
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for sample 2. Strictly speaking, the threshold voltage
no longer exists if the pretilt angle is larger than zero,
although a threshold-like behaviour still exists,[32] as
Figure 2 shows. Since our cells have 2° pretilt angle, it
may introduce a small error while determining Vc.
Based on a previous analysis,[20] this uncertainty is
within ±0.02 Vrms, which is still acceptable.

Meanwhile, we measured the dielectric anisotropy
(Δε), K11 and K33 of E7 using the methods described
in Ref. [33] and Ref. [10], respectively. Our results are:
Δε = 14.0, K11 = 10.8 pN and K33 = 17.5 pN. Then all
the auxiliary parameters except two unknowns in
Equation (3) have been obtained. By substituting
these values into Equation (3), we obtained two sim-
ple equations:

28:3� 2K22ð1� 0:0542 � HTPÞ ¼ 21:88 (4)

28:3� 2K22ð1� 0:1086 � HTPÞ ¼ 29:02 (5)

By solving Equations (4) and (5), we can obtain
the K22 of E7 and HTP of R811 simultaneously.
Results are: K22 = 6.8 pN and HTP = 9.7 μm−1.
The experimental error will be discussed later.
Table 1 lists the K22 values of E7 measured using
different methods.[15,17,20,34] By comparison, our
K22 result agrees quite well with the literature values.
Besides, our measured HTP of R811 in E7 is
9.7 μm−1, which is also in good agreement with that
(HTP = 10 μm−1) reported in Ref. [35].

4. Discussion

In our approach, we have successfully eliminated the
uncertainty of measuring the pitch length. As a result,
the overall error margin is quite similar to that of π-cell
technique.[20] The major errors of both methods come
from the uncertainty of K11, K33, Δε and Vc measure-
ments. Based on the previous analyses in Ref. [20], we
summarised the uncertainties of each parameter in
Table 2. Similar to the π-cell technique, the estimated
error bar of our approach is ±8%, which is still pretty
good as compared to other methods.[14] To minimise

experimental errors, more accuratemeasurements for the
input parameters are required, especially for the bend
elastic constant K33. Besides, using a thicker cell gap or
preparing a larger amount of sample would also reduce
the total error. Considering the simplicity of our
approach, widespread application of this approach is
foreseeable.

Using the proposed method, we measured the
elastic constants of other commonly studied LC mate-
rials. And the results are listed in Table 3. The values
in the brackets are the literature results or offered by
the material suppliers (e.g. DIC and HCCH). From
Table 3, good agreement is achieved.

5. Conclusion

We have proposed a simple method to measure the
twist elastic constant of nematic LCs. Compared to
other measurement techniques, our method shows
three advantages: (1) no sophisticated instrument is
required; (2) the experimental set-up is fairly straight-
forward; and (3) easy algorithm: we need two linear
equations to solve for two unknowns. Our measured
K22 values agree well with those using other

Table 1. Comparison on the measured K22 of E7 from
different techniques, T = 23°C.

Magnetic
field

Wedge
cell

Dynamic
light

scattering

Optical
guided
modes

Pi-
cell

Our
method

K22 (pN) 6.5 7.6 6.8 6.2 6.5 6.4 6.8

Table 2. Sources of error for the measurement of K22 of E7.

Source Error in measured K22 (%)

Pretilt angle ±0.5° ±3.0
Pretwist angle ±0.5° –3.5
Cell gap ±0.05 µm ±1.0
Chiral concentration ±0.01 mg ±1.5
Vc ±0.02 Vrms ±3.5
K11 ±2.2% ±2.6
K33 ±4.6% ±4.5
Δε ±0.9% ±1.2
Total ±8.1

Table 3. Measured dielectric constants and elastic con-
stants of five LC mixtures and the HTP values of R811
at T = 23°C.

ε‖ ε⊥ Δε
K11

(pN) K22 (pN)
K33

(pN)

HTP of
R811
(µm−1)

E7 19.2 5.2 14.0 10.8 6.8 (6.5)a 17.5 9.7
BL038 20.7 5.3 15.4 13.3 8.6 27.1 11.2
ZLI-1132 16.5 4.5 12.0 9.5 6.5 (6.3)a 18.2 12.4
DIC-LC2 4.5 2.8 1.7 12.5 6.3 (6.5)b 13.5 9.4
HAI-653265 5.0 2.6 2.4 13.0 7.4 (7.8)c 14.2 9.8

Note: aSee Ref. [18], bdata from DIC (Japan), cdata from HCCH
(China).
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approaches. This simple method will enable us to
characterise the K22 of more LC materials for display
applications.
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