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Integrable nonlinear parity-time-symmetric optical oscillator

Absar U. Hassan,* Hossein Hodaei, Mohammad-Ali Miri, Mercedeh Khajavikhan, and Demetrios N. Christodoulides
CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA

(Received 23 March 2016; published 29 April 2016)

The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically
investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly
obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two
regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in
linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before,
the model studied in this work first operates in the symmetric regime and then enters the broken parity-time
phase.
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I. INTRODUCTION

The concept of parity-time (PT ) symmetry emerged within
the framework of quantum field theories where it was found
that Hamiltonians respecting this attribute could possess a
real eigenvalue spectrum, despite being non-Hermitian [1].
A direct outcome of this possibility is the emergence of states
that neither decay nor grow even in the presence of dissipation
or gain [2,3]. In recent years, PT -symmetric notions have
attracted considerable attention and naturally led to research
activity in many and diverse areas of physics that is still
ongoing [4–8]. Along these lines, optics provided a fertile
ground where a series of intriguing phenomena related to
PT symmetry can be directly observed by exploiting the
mathematical isomorphism between the optical wave equation
and the Schrödinger equation [9–14]. In the physical domain,
this prospect was aided by the fact that amplification and
attenuation of light can be effectively controlled in photonic
structures.

For an optical potential to be PT symmetric, the complex
refractive index distribution must obey the relationship n(r) =
n∗(−r) where r represents the position vector. This necessary
(albeit not sufficient) condition implies that the real part of the
index profile must be an even function in space, while its imag-
inary counterpart, which is responsible for amplification and
attenuation, should be odd [3]. These conditions demand that a
PT -symmetric structure must involve identical elements, e.g.,
two coupled cavities or waveguide elements, where gain and
loss are antisymmetrically distributed [15–20].

In general, optical configurations respecting PT symmetry
exhibit two distinct phases. In the first one, the eigenvalue
spectrum is purely real and thus no net amplification or decay
of the field is expected to occur (exact PT phase). Instead,
in the second one, some of the modes start to experience
net growth or decay (in space or time) by entering the
symmetry-broken phase. The transition between these two
regimes crucially depends upon the degree of non-Hermiticity
(gain-loss contrast) and the coupling between adjacent sites
[4]. In addition, it is marked by the presence of an exceptional
point where some of the eigenvalues and their respective
eigenvectors tend to converge [21–24]. At this point it is
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important to note that these results are direct by-products of
linear theories. Yet, in many optical realizations, nonlinearity
is not only unavoidable but also often prevalent. This is partic-
ularly true in semiconductor-based systems where saturation
effects strongly influence both gain and loss, to the point that
a reversal in PT -symmetry breaking can occur [25]. Clearly,
it will be of importance to understand at a fundamental level,
the role such nonlinear processes play in the dynamics of
PT -symmetric arrangements [26–28].

II. DYNAMICAL MODEL OF THE PT -SYMMETRIC
OSCILLATOR

In many optical settings, nonlinearity typically manifests
itself at high intensities by influencing the real as well as
the imaginary part of the refractive index. In general, the
imaginary component of the refractive index is nonlinearly
modified through the presence of saturation effects in the
effective gain or loss. In addition, the real part of the index also
varies with intensity depending on whether the nonlinearity is
of the focusing or defocusing type, as dictated by pumping
conditions [29]. In semiconductor systems, gain saturation is
responsible for clamping the light intensity within a resonator
as well as the output power.

Here, we study the case where light density within a
semiconductor structure remains below its saturation limit.
This can be achieved by restricting the small-signal gain to
relatively low values above the system loss. Moreover, in a
traveling waveguide amplifier arrangement, the length of the
device provides another degree of freedom in controlling the
output optical intensity. Under these considerations, balancing
field amplification and decay in an evanescently coupled
structure composed of two identical elements, renders the
system PT symmetric. In this respect, the optical or electrical
pumping level in typical designs based on semiconductor
quantum wells allows control over the values of both the gain
and loss [15,25], whereas the spatial separation between the
components of the dimer determines the respective coupling
strength.

In such a configuration the solution regimes are dictated by
the gain (or loss) to coupling ratio which we here represent by
g ∈ R+. By assuming that the linear losses due to scattering
and absorption are small in comparison with the coupling
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strength, the field dynamics in the two components are found
to obey the following dimensionless differential equations:

d

dτ
u = g(1 − |u|2)u + iv, (1a)

d

dτ
v = −g(1 − |v|2)v + iu. (1b)

In the equations above, u represents the field amplitude
in the amplifying element, while v represents that in the lossy
counterpart. Both u and v have been normalized with respect to
a common gain-loss saturation value. The independent variable
τ represents a spatial propagation coordinate (in the case of
waveguide geometries) or time (in cavities), and is also scaled
with respect to the coupling coefficient, κ . In a temporal
representation involving a coupled microring configuration,
κ is of the order 1011 s−1. Gain and loss in the presence and
absence of pump light, respectively, are also of the same order
[25]. In what follows we determine the critical points of this
nonlinear system and through the use of Stokes parameters,
identify conservation laws and regimes of oscillatory and
stationary responses.

III. CRITICAL POINTS AND THEIR STABILITY

Before we establish the integrability of Eqs. (1), it may be
beneficial to first study the critical points involved and their
associated stability properties. It is important to note that if
(u0,v0) represents a critical point, then so does (u0,v0)eiφ0 ,
where the phase φ0 is arbitrary. This leads to the conclusion
that only the relative phase between the two complex quantities
(u0,v0) should be considered in the analysis. If we take for
convenience u0 to be real, it then follows from Eq. (1a)
that v0 = iρu0 where ρ ∈ R. In this case, under steady-state
conditions, one finds that

(ρ2 − 1)(ρ2 − gρ + 1) = 0, (2a)

u2
0 = 1 − ρ

g
. (2b)

The algebraic roots of Eq. (2a), signifying the critical
points, are given by ρ = ±1,(g ±

√
g2 − 4)/2. As we will

show, among these four possible values of the modal ratio ρ,
only one of them happens to be stable. To this end, linear
stability analysis is carried out assuming small perturbations,
i.e., (u,v) → (u0 + ε1,iρu0 + ε2) where in general ε1,2 are
complex. Upon substitution in Eqs. (1), we obtain the follow-
ing differential equations concerning these perturbations:

ε̇1 + gu2
0(ε1 + ε∗

1) − g
(
1 − u2

0

)
ε1 − iε2 = 0, (3a)

ε̇2 + gρ2u2
0(ε∗

2 − ε2) + g
(
1 − ρ2u2

0

)
ε2 − iε1 = 0. (3b)

These equations can be further simplified by using Eqs. (2).
Breaking down ε1,2 in terms of their real (ε1R,2R) and imagi-
nary (ε1I,2I ) parts, one obtains an eigenvalue equation, MX =
λX, by assuming a temporal dependence of the form eλτ . Here
X represents the eigenvector, X = (ε1R0 ,ε1I0 ,ε2R0 ,ε2I0 )T of the

matrix M ,

M =

⎛
⎜⎝

3ρ − 2g 0 0 −1
0 ρ 1 0
0 −1 −1/ρ 0
1 0 0 −(3/ρ − 2g)

⎞
⎟⎠.

The characteristic equation for this system is given by the
following expression:

λ

{
λ2 − 3

(
ρ − 1

ρ

)
λ + 1 − (2g − 3ρ)

(
2g − 3

ρ

)}

×
{
λ −

(
ρ − 1

ρ

)}
= 0. (4)

We next separately analyze the stability properties of the four
stationary points ρ. In this case we find

(i) ρ = −1.

λ1,2 = 0,

λ3,4 = ±2
√

(g + 1)(g + 2).

Since g > 0, there always exists a positive real λ which renders
this point unstable.

(ii) ρ = +1.

λ1,2 = 0,

λ3,4 = ±2
√

(g − 1)(g − 2).

For g < 1 or g > 2, it is clear that one eigenvalue is a positive
real number so that this point becomes unstable. Moreover,
the double eigenvalue (λ1,2 = 0) is not semi simple [30] (also
true for 1 < g < 2) and leads to terms proportional to τ in the
general solution, thus introducing instability.

(iii) ρ = (g +
√

g2 − 4)/2.

λ1 = 0, λ2 =
√

g2 − 4,

λ3,4 = 0.5(3 ± 1)
√

g2 − 4.

If g > 2, then all eigenvalues are positive and hence this
stationary point is unstable. On the other hand, for g < 2,
ρ is complex, hence violating Eq. (2b) for u2

0.
(iv) ρ = (g −

√
g2 − 4)/2.

λ1 = 0, λ2 = −
√

g2 − 4,

λ3,4 = −0.5(3 ± 1)
√

g2 − 4.

Stability is here ensured for g > 2 since all the eigenvalues
are negative (λ � 0). On the other hand, if g < 2, this point
does not exist for the same reason as mentioned in the previous
case. Note that the critical point corresponding to the value of
g = 2 makes the cases (ii)–(iv) equivalent and is found to be
stable.

A bifurcation diagram describing the behavior of the critical
points as a function of the gain-loss constant (g) is shown in
Fig. 1(a), where the stable branch of ρ is depicted as a solid
line. As the value of gain increases beyond g = 2, the ratio
between the fields starts decreasing, starting from ρ = 1 and
asymptotically reaching ρ = 0. This behavior is reminiscent of
linear PT -symmetric systems where in the broken symmetry
domain (after a bifurcation in the eigenvalues beyond an

042219-2



INTEGRABLE NONLINEAR PARITY-TIME-SYMMETRIC . . . PHYSICAL REVIEW E 93, 042219 (2016)

0 2 4
−2

−1

0

1

2

3

4

5

g

ρ

2 2.2 2.4
0

0.5

1

g

In
te
ns
ity

 

 

|u
0
|2

|v
0
|2

(a) (b)

FIG. 1. The various branches of the ratio ρ associated with the
critical points as a function of g are displayed in (a) where the solid
line indicates stable behavior, while the dashed line indicates unstable
behavior. (b) Intensities in the two optical elements corresponding to
the stable critical point are plotted as the value of g increases.

exceptional point) the field strengths in the gain and loss
components become unequal. This is shown in Fig. 1(b)
for g > 2. However, in contrast with a linear PT -symmetric
dimer where an exponential increase in intensities is expected
with time, the saturation in Eq. (1) will enforce a bounded
steady state for g > 2. Furthermore, once this PT symmetry
is broken, light tends to predominantly reside in the cavity
that offers amplification, as the gain-loss contrast is increased.
Moreover, the stability of the trivial critical point at the
origin (u0 = v0 = 0) needs also to be considered. Here,
the differential equations for the perturbations assume the
following form:

ε̇1 − gε1 − iε2 = 0, (5a)

ε̇2 + gε2 − iε1 = 0. (5b)

Again using the representation, (ε1,ε2) = (ε01,ε02)eλτ , the
eigenvalues of this system are found to be λ1,2 = ±

√
g2 − 1.

In the range g < 1, these values are purely imaginary and
conjugate to each other, thus implying an unstable saddle
point. On the other hand, for g > 1, there exists a positive
real λ indicating an unstable exponential growth. However, it
is instructive to notice that when fields in both cavities start
from noise where |u(0)|,|v(0)| ∼ 0, the dynamics reduce to
that of a linear PT -symmetric coupler, governed by Eqs. (5),
with ε1 and ε2 being replaced with u and v, respectively. In this
linear scenario, it is well known that the PT -symmetric phase
transition occurs at the point where the gain-loss to coupling
ratio is unity. The role of this spontaneous symmetry breaking
point at g = 1 is apparent in Fig. 2 where the initial values were
chosen to be small, |u(0)|,|v(0)| = 10−2. Below this breaking
point, the intensities evolve sinusoidally—characteristic of
unbroken symmetry eigenmodes [4]; for g > 1, the linear
symmetry breaks and an initial exponential growth occurs up
to the point where the intensities get larger and saturation starts
to limit this growth.

IV. STOKES PARAMETERS

In this section we analyze the properties and behavior of
this non-Hermitian nonlinear dynamical system, Eq. (1), using
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FIG. 2. The effect of the linear PT -symmetry breaking around
g = 1 is depicted. (a) For g = 0.9, sinusoidal oscillations occur while
(b) for g = 1.1, an exponential growth takes place until saturation
comes into play.

Stokes parameters. To do so, we first obtain the conservation
laws that are needed to establish integrability. The Stokes
parameters are defined as follows:

S0 = |u|2 + |v|2, (6a)

S1 = |u|2 − |v|2, (6b)

S2 = u∗v + uv∗, (6c)

S3 = i(u∗v − uv∗). (6d)

These four real quantities are interrelated by the expression,

S2
0 = S2

1 + S2
2 + S2

3 . (7)

The dynamical equations for each of these four parameters can
be directly obtained using Eq. (1), i.e.,

Ṡ0 = −2gS0S1 + 2gS1, (8a)

Ṡ1 = −g
(
S2

0 + S2
1

) + 2gS0 + 2S3, (8b)

Ṡ2 = −gS1S2, (8c)

Ṡ3 = −(2 + gS3)S1. (8d)

From Eqs. (8a), (8c), and (8d), one can establish that −S1 =
Ṡ2/(gS2) = Ṡ3/(2 + gS3) = Ṡ0/(2gS0 − 2g), which immedi-
ately leads to the following two conservation laws:

A = S2

2 + gS3
, (9)

B = S2
2

S0 − 1
. (10)

Clearly, the existence of these two constants of motion implies
integrability. These two constants are determined by the initial
values of the Stokes parameters and the gain-loss contrast. To
find the evolution trajectory of u(τ ) and v(τ ), it suffices to
know the dynamics of only one Stokes parameter. In this case,
by first expressing S3 and S0 in terms of S2 [using Eqs. (9) and
(10)], in Eq. (7) and finally using Eq. (8c) that relates S1 to S2
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FIG. 3. Intersections between two surfaces in the (S1,S3S0) space are plotted that describe the solution trajectories. These are shown for
two values of g both below, (a) g = 0.8 and (b) g = 1.9, and above, (c) g = 2.1 and (d) g = 2.5, the nonlinear phase transition point at g = 2.
Corresponding plots in the lower panel depict the intersections in the (S1,S0) plane. The stable critical point appears for g > 2 and is shown as
a yellow dot. In all cases, initial values of the fields are u(0) = 0.7(1 + 0.1i) and v(0) = 0.

and Ṡ2, we obtain a differential equation solely involving S2,

(Ṡ2)2 = g2S2
2

{(
1 + S2

2

B

)2

− S2
2 − 1

g2

(
S2

A
− 2

)2
}

. (11)

In principle, Eq. (11) can be solved by quadrature. Hence
from S2(τ ), S3(τ ) and S0(τ ) can then be recovered through
the conservation laws and finally S1(τ ) can be found using
Eq. (8c) or Eq. (7). This enables the dynamics of all four
Stokes parameters to be determined. From here one can obtain
the original field amplitudes and phases via Eqs. (6), e.g.,
|u(τ )|2 = [S0(τ ) + S1(τ )]/2.

The trajectories followed by the solutions can be con-
veniently described through plots in the Stokes space of
(S1,S3,S0). These are governed by intersections between a
hyperboloid and a parabola, as dictated by Eqs. (7), (9), and
(10),

(
B − B2

4

)
= S2

1 + S2
3 −

(
S0 − B

2

)2

, (12)

S0 = 1 + A2

B
(2 + gS3)2. (13)

Following this approach, it is possible to determine the
domains pertaining to instability, i.e., the conditions leading to
open-ended intersections or trajectories. But when this system
is initiated within the linear regime [|u(0)|2,|v(0)|2 � 1] no
such domains of instability were identified as g was varied. To
explore the behavior of the system we chose to map the Stokes
dynamics on the hyperboloid of Eq. (12) since it is independent
of g. The two surfaces are plotted for four different values of
g in Fig. 3. For g < 2, the Stokes parameters follow periodic
trajectories. On the other hand, when g > 2, the intersection
of the parabola and hyperboloid passes through the critical
point which is stable under these conditions [(iv), Sec. III].
Here, instead of a periodic evolution, the field values attain a
steady state of unequal values analogous to that occurring in
a PT -symmetry-broken scenario. This case is shown in parts
(c) and (d) of Fig. 3.

Note that the solution profiles depicted in Figs. 3(a) and
3(b) indicate the presence of oscillations akin to stable limit
cycles. On the other hand, by changing the initial conditions

(keeping g fixed), these orbits become modified. This implies
that these are not exactly limit cycles but instead neutrally
stable cycles. To demonstrate this, in Fig. 4 we set the field in
the cavity with gain to be u(0) = 0.7 and we then increase the
initial value of the field in the cavity with loss. In this case, the
cycles in the (S1,S0) space are found to change accordingly.

Considering the results presented, one can infer the ex-
istence of two distinct responses associated with Eq. (1).
The first corresponds to solutions expected in a system like
the well-known van der Pol oscillator [31]. This domain is
defined by g < 2, and here the intensities in both cavities
behave in a very similar manner (reflected versions of each
other) having the same period and lying within an identical
bounded interval. Whereas, in the second regime, the fields
are pulled into the stable critical point given in part (iv) of
Sec. III. The former relates to the PT -symmetric phase since
|u|2 and |v|2 oscillate symmetrically over time, while the latter
is analogous to the symmetry-broken phase where the two
intensities are unequal. Numerical results from a Runge-Kutta
simulation for these two phases (corresponding to values of g

−1 −0.5 0 0.5 1
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1

|v(0)| = 0.10.3

S
1

 0.5

 0.7S
0

FIG. 4. Different solution trajectories in the (S1,S0) space are
shown as the initial conditions are changed. For these plots, u(0)
is fixed at u(0) = 0.7, while v(0) is varied in the imaginary space
from v(0) = 0.1i to v(0) = 0.7i. The gain-loss value used is g = 1.8.
Arrows indicate the evolution over time.
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FIG. 5. The behavior of the intensities over time in the two
cavities is shown. The four graphs correspond to the four values
of g used in Fig. 3. Parts (a) g = 0.8, and (b) g = 1.9, depict a van
der Pol–like oscillatory regime and (c) g = 2.1, and (d) g = 2.5,
the PT -broken phase. Solid (red) lines correspond to intensity in the
component with gain and dashed (black) lines to that in the component
with loss.

in Fig. 3) are depicted in Fig. 5 where Figs. 5(a) and 5(b) show
intensities in the symmetric domain and Figs. 5(c) and 5(d)
display the broken phase. In this latter scenario, we also found
that the fields in both components of the dimer are locked
at the common resonant frequency (or propagation constant)
of the cavities (or waveguides)—a feature of spontaneously
broken PT symmetry. Another characteristic of this PT
phase can be deduced from the fact that as g increases, the
ratio |v0/u0|2 becomes gradually smaller. In addition, once
the system starts to oscillate within the symmetric regime, the

transition between the two domains occurs at the nonlinear
boundary g = 2 as the gain-loss value is increased. This is in
contrast to a linearPT -symmetric coupler where the transition
occurs instead at g = 1. Although nonlinear saturation effects
tend to modify the location of this transition in the parameter
space, the order in which it takes place is not affected—unlike
in other nonlinear PT -symmetric settings [25].

Finally, an interesting feature associated with this oscillator
is the fact that within the exact PT -symmetry domain, as the
system gets close to the nonlinear phase transition point, the
period of oscillations tends to approach infinity. Now consider
operation close to g = 2, for instance, in a coupled microring
resonator configuration when the gain-loss contrast between
the rings is twice the coupling between them. This could lead
to periodic flashes of light observable at much longer time
scales compared to coupling times which are typically on the
order of picoseconds.

V. CONCLUSIONS

In conclusion, we have investigated the behavior of a
fully integrable non-Hermitian oscillator with a balanced
gain-loss distribution. Our analysis indicates the existence of
two regimes of oscillatory dynamics and frequency locking,
both of which are analogous to those expected in linear
PT -symmetric systems. The oscillator was found to first
operate in the symmetric regime before entering the broken
PT phase at higher gain-loss values. Our study can shed light
on the interplay of PT symmetry and nonlinearity.
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Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S.
Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394
(2014).
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