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Abstract:  Dependence of phase velocity on propagation direction is shown to be decoupled from 
birefringence. The latter is propagation difference for two polarizations; it depends on anisotropy of 
impedance tensor: square root of mu / epsilon. 
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Propagation of waves in anisotropic media is favorite topic of research in Optics since A. Fresnel.  If the medium 

is spatially homogeneous, temporally stationary and dielectric response is generally anisotropic, but linear, then plane 
wave solutions are well-studied, see e.g. [1, 2].  Modern day research in metamaterials, [3-5], puts forward the problem 
of propagation of EM waves in a homogeneous, stationary, linear medium, where dielectric susceptibility tensor and 
magnetic permeability tensor are both different from their vacuum values and generally anisotropic. The talk is 
devoted to the solution of this problem. 

Maxwell equations and material relationships are taken as  
 

                                       𝜕𝜕𝐁𝐁 𝜕𝜕𝜕𝜕⁄ = −curl 𝐄𝐄,     𝜕𝜕𝐃𝐃 𝜕𝜕𝜕𝜕⁄ = curl 𝐇𝐇 ,    𝐵𝐵𝑗𝑗 = 𝜇𝜇𝑗𝑗𝑗𝑗𝐻𝐻𝑘𝑘 ,     𝐷𝐷𝑗𝑗 = 𝜖𝜖𝑗𝑗𝑗𝑗𝐸𝐸𝑘𝑘.                                (1) 
 

Monochromatic plane wave solution is assumed to have the dependence  exp(−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝐤𝐤 ∙ 𝐫𝐫)  for each Cartesian field 
component. Then complex amplitudes of 𝐄𝐄 and 𝐇𝐇 satisfy the equations 
 

                                                  −𝐤𝐤 × 𝐄𝐄 + 𝜔𝜔𝜇̂𝜇𝐇𝐇 = 𝟎𝟎,          𝜔𝜔𝜀𝜀̂𝐄𝐄 + 𝐤𝐤 × 𝐇𝐇 = 0.                                                           (2) 
 

Consider symmetric tensor 𝜀𝜀̂ which, after division by 𝜀𝜀vac, has real dimensionless components, 𝜖𝜖𝑥𝑥𝑥𝑥 = 𝐴𝐴, 𝜖𝜖𝑦𝑦𝑦𝑦 =
𝐵𝐵, 𝜖𝜖𝑧𝑧𝑧𝑧 = 𝐶𝐶,  𝜖𝜖𝑥𝑥𝑥𝑥 = 𝜖𝜖𝑦𝑦𝑦𝑦 = 𝑃𝑃, 𝜖𝜖𝑥𝑥𝑥𝑥 = 𝜖𝜖𝑧𝑧𝑧𝑧 = 𝑆𝑆, 𝜖𝜖𝑧𝑧𝑧𝑧 = 𝜖𝜖𝑦𝑦𝑦𝑦 = 𝑅𝑅,   and similar notations for tensor 𝜇𝜇𝑖𝑖𝑖𝑖 divided by 𝜇𝜇vac, 
but with small letters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑝𝑝, 𝑠𝑠, 𝑟𝑟 instead of capital ones.  The equations (2) may be considered as a system of 6 linear 
equations for 6 Cartesian components,  𝐸𝐸𝑥𝑥 ,𝐸𝐸𝑦𝑦 ,𝐸𝐸𝑧𝑧  and  𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦 ,𝐻𝐻𝑧𝑧, with zero right-hand-side.  Non-zero solution of 
that system exists if and only if the determinant of matrix of the coefficients for that system is zero.  Formally this 
determinant yields polynomial of 6-th power in Cartesian components 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 , 𝑘𝑘𝑧𝑧.  However, time-reversibility of the 
systems (1, 2) leads to this statement: if some vector 𝐤𝐤 is a solution of that equation (root of the polynomial), then 
vector (−𝐤𝐤) is a solution as well. Hence this polynomial must contain only the terms with even number of 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 , 𝑘𝑘𝑧𝑧-
components. Moreover, for the given direction 𝐦𝐦 = 𝐤𝐤 |𝐤𝐤|⁄  the length |𝐤𝐤| turns out to be a root of bi-quadratic 
equation, in agreement with the existence of only two linearly-independent types of polarization.  We managed to 
right down that bi-quadratic equation, and hence its solution for general case. The corresponding formulae are very 
heavy, and in the talk we will present particular cases. 

Below we establish surprising properties of those solutions.  The formula 
 

                                                          T�[(T𝐀𝐀) × (T𝐁𝐁)] = [𝐀𝐀 × 𝐁𝐁] ∙ Det(T)                                                                 (3) 
 

is valid for an arbitrary pair of vectors 𝐀𝐀 and 𝐁𝐁 in 3D-space and arbitrary non-degenerate 3x3 matrix T, where T� 
denotes transpose matrix.  Change of vectors and tensors by the following transformation, 
 

                      𝐤𝐤 = T𝐤𝐤new,   𝐄𝐄 = T𝐄𝐄new ,    𝐇𝐇 = T𝐇𝐇new, 𝜀𝜀n̂ew = T�ε�T Det(T)⁄ ,   ,    𝜇̂𝜇new = T�µ�T Det(T)⁄ ,                   (4) 
 

leaves the system (2) the same in new variables.  Then the choice of matrix  T in the form  
 

                                                                             T� = (µ�)−1 2⁄ [Det(µ�)]1 2⁄                                                                   (5) 
 

allows to get (in Gaussian units) 
 

                                                                        𝜇̂𝜇new = 1� ,     𝜀𝜀n̂ew = (𝜇̂𝜇)−1 2⁄ 𝜀𝜀̂(𝜇̂𝜇)−1 2⁄ .                                                (6) 
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It means that by a linear transformation of the coordinates in the k-space (but generally non-orthogonal, i.e. generally 
changing the angles) we were able to get rid of the magnetic anisotropy, and to reduce the problem to that with a 
purely dielectric anisotropy.  Alternatively, similar trick allows to get rid of dielectric anisotropy, and to reduce the 
problem to that with a purely magnetic anisotropy.  There are several interesting consequences of the above statements 
about the reduction possibilities.  

First of all, the resulting new anisotropic tensor, e.g. of 𝜀𝜀n̂ew from eq. (6) is a symmetric tensor, and the 
corresponding surface, satisfying the equation for the length |𝐤𝐤|, has topological properties of pure dielectric case; it 
allows for not more than two axes of conical refraction, just as in the standard optical (dielectric-anisotropic) case.  
Second consequence is for an example of a rather artificial medium, where 𝜀𝜀𝑖𝑖𝑖𝑖 = const ∙ 𝜇𝜇𝑖𝑖𝑖𝑖,  i.e. where some kind of 
an “impedance tensor” is proportional to unit tensor: Z� = (µ� ε�⁄ )1 2⁄ = 1�/√const.  If the dielectric (and hence the 
magnetic) susceptibilities are anisotropic, then the medium is evidently anisotropic. We were able to check that the 
equation for the length |𝐤𝐤| describes in this case an ellipsoid: in coordinate system, where both 𝜀𝜀̂ and 𝜇̂𝜇 are diagonal, 
that is where  𝑃𝑃 = 𝑆𝑆 = 𝑅𝑅 = 0,  𝑝𝑝 = 𝑠𝑠 = 𝑟𝑟 = 0,  surface in 𝐤𝐤-space becomes 
 

                                                              𝑘𝑘𝑥𝑥2

(𝐵𝐵∙𝑐𝑐=𝑏𝑏∙𝐶𝐶)
+ 𝑘𝑘𝑦𝑦2

(𝐴𝐴∙𝑐𝑐=𝑎𝑎∙𝐶𝐶)
+ 𝑘𝑘𝑧𝑧2

(𝐴𝐴∙𝑏𝑏=𝑎𝑎∙𝐵𝐵)
= 𝜔𝜔2

𝑐𝑐vac2  .                                                           (7) 
 

What is truly remarkable, the two possible polarizations turn out to be degenerate, i.e. have identical lengths |𝐤𝐤| for 
the given direction of 𝐤𝐤. As a consequence, the propagation of a wave in such an anisotropic medium is not 
accompanied by any change of polarization – either by the birefringence, or by its rotation (by circular birefringence.) 

Absence of birefringence for that case may be explained by following two symmetries of Maxwell equations.   
1) Suppose, certain set of functions 𝐄𝐄(𝐫𝐫, 𝑡𝑡) and 𝐃𝐃(𝐫𝐫, 𝑡𝑡) = 𝜀𝜀̂𝐄𝐄(𝐫𝐫, 𝑡𝑡), 𝐇𝐇(𝐫𝐫, 𝑡𝑡) and 𝐁𝐁(𝐫𝐫, 𝑡𝑡) = 𝜇̂𝜇𝐇𝐇(𝐫𝐫, 𝑡𝑡) satisfies the system 
(1) of Maxwell equations  and material relationships. Then another set, with substitution  
 

               𝐄𝐄(𝐫𝐫, 𝑡𝑡) → 𝐇𝐇(𝐫𝐫, 𝑡𝑡),     𝐇𝐇(𝐫𝐫, 𝑡𝑡) → −𝐄𝐄(𝐫𝐫, 𝑡𝑡);     𝐃𝐃(𝐫𝐫, 𝑡𝑡) → 𝐁𝐁(𝐫𝐫, 𝑡𝑡),      𝐁𝐁(𝐫𝐫, 𝑡𝑡) → −𝐃𝐃(𝐫𝐫, 𝑡𝑡) ,     𝜀𝜀̂ ⇆ 𝜇̂𝜇,                       (8) 
 

satisfies the same system of equations (1), but with interchange  𝜀𝜀̂ → 𝜇̂𝜇, 𝜇̂𝜇 → 𝜀𝜀̂.   
2) Besides that, Maxwell equations, together with material relationships, eqs. (1), are not just linear.  They are also 
covariant to separate re-scaling of intensive variables 𝐄𝐄 and 𝐁𝐁, connected by first vectored set of Maxwell equations. 
They are also invariant to separate re-scaling of extensive variables 𝐃𝐃 and 𝐇𝐇, connected by the second vectored set of 
Maxwell equations. However, one has to perform simultaneous re-scaling of tensors of 𝜀𝜀̂ and 𝜇̂𝜇: 
 

             𝐄𝐄 = 𝑝𝑝𝐄𝐄new ,    𝐁𝐁 = 𝑝𝑝𝐁𝐁new ,      𝐃𝐃 = 𝑔𝑔𝐃𝐃new,    𝐇𝐇 = 𝑔𝑔𝐇𝐇new ,    𝜀𝜀̂ = (𝑔𝑔 𝑝𝑝⁄ )𝜀𝜀n̂ew,    𝜇̂𝜇 = (𝑝𝑝 𝑔𝑔⁄ )𝜇̂𝜇new .                   (9) 
 

Here 𝑝𝑝 and 𝑔𝑔 are some real constants.  So, if all the components of tensor 𝜀𝜀̂ are proportional to corresponding 
components of tensor 𝜇̂𝜇, then interchange 𝜀𝜀̂ ⇆ 𝜇̂𝜇 in (8) may be considered just as re-scaling transformation from (9). 
It means that "𝐄𝐄"- polarization has the same phase velocity as  "𝐇𝐇"- polarization, i.e. no birefringence. Q.E.D. 

In this sense one may say, that the birefringence is not a “kinematic” effect of phase velocity of propagation, 
which is anisotropic here, since wave-vector surface is ellipsoid, eq. (7). On the contrary, birefringence is governed 
by the impedance, which (rather artificially) was made isotropic in this particular example.  Special connection of 
impedance with polarization effects was also elucidated in [6-9]. 

 
To conclude, we have derived the analog of Fresnel equation for the case of the medium, where dielectric susceptibility 
and magnetic permeability tensors are both different from vacuum ones and are generally anisotropic.  We have shown, 
that anisotropy of propagation is not a sufficient source of birefringence, while anisotropy of impedance tensor is. 
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