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Abstract An analytic solution is obtained for three-dimensional quasi-steady state
temperature distribution during laser heating of moving thin wires. The wire moves
at a constant speed through a vacuum chamber, which is back-filled with an inert gas
such as argon, and a laser beam of rectangular cross-section is incident on the wire. The
ambient gas provides a convection heat transfer mechanism, which yields a Biot
number, Bi, for the heating process to determine whether the temperature distribution
would be uniform or nonuniform in the cross-section of the wire. Generally, the
criterion of Bi less than 0.1 is applied to assume spatially uniform temperature
distribution in a solid. The temperature distribution is determined for different Bi
numbers and the variation of the temperature in the azimuthal direction is analyzed.
The method of solution involves the Fourier transform in the azimuthal direction and
the Hankel transform in the radial direction for a three-dimensional quasi-steady state
heat conduction equation containing an advection term that accounts for the motion of
the wire. The thermal and optical properties of the material is assumed to be constant in
the temperature range of this study. The heat loss due to radiation heat transfer between
the wire surface and the surrounding environment is neglected due to the small laser-
heated surface area. Using this model, the temperature profile is studied for different
process parameters such as the incident laser power, laser beam profile, Biot number,
and wire speed.
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Introduction

The capability of lasers for localized heating with high precision has been widely used
in numerous applications such as laser cutting, welding, drilling and cladding, among
others. It is, however, evident from the available literature that very little work has been
done on the laser surface modification of thin wires, such as the deposition of thin or
nanoscale films by laser chemical vapor deposition, laser diffusion of trace elements
into the wire from organometallic precursors, or interfacial composition modification
by laser heat treatment of coated thin wires. Surface modified thin wires have potential
as medical implants, such as pacemaker leads, neurostimulators and dentals braces, for
which the wires must be biocompatible and not heat up due to the radio-frequency
magnetic field during magnetic resonance imaging. Chen, Vaidyanathan and Kar [1–3]
incorporated a trace of Pt into thin sheets of Ti and Ta by a laser diffusion process and
demonstrated heating reduction in a time-varying magnetic field. A fundamental
understanding of the laser heating of thin wires is necessary to analyze the effect of
different process parameters on the azimuthal variation of the temperature distribution
for modifying the wire surface uniformly over the entire circumference.

To estimate the laser process parameters for experimental studies or manufacturing
applications, it is essential to have a theoretical model of the process [4–7], because the
model can reduce the time required to optimize and scale up the process, and for
developing efficient process control and monitoring systems. Laser heating of a sub-
strate involves several phenomena, such as heat conduction, melting, convection,
vaporization and plasma formation, depending on the applications [8–10]. Yilbas and
Al-Dweik [11] presented an analytic solution for short-pulse laser heating of semi
infinitely long, microsize, e.g., 2 μm diameter, stationary wires for the case of laser
irradiance over the entire cross section of the wire. They used a modified heat conduc-
tion equation to account for the thermal separation of electron and lattice subsystems that
occur during short-pulse laser heating. The laser irradiation is usually considered to be
perpendicular to the substrate surface [12–14], which would be a reasonable approxi-
mation evenwhen the laser beam is incident on the curved surface of a cylinder provided
the diameter of the cylinder is much larger than the laser beam diameter. In the present
study, the laser beam is incident on the cylindrical surface of a moving thin wire of
diameter comparable to the size of the laser beam and, therefore, the incident angle
between the laser beam and the wire surface is a function of position. The laser beam is
incident on the upper half of the wire surface and the corresponding heat flux is limited
only to the top portion of the wire. Under this laser heating condition, the wire
temperature profile is obtained by using the Fourier heat conduction equation.

Laser-Wire Interaction and Heating Model

AGaussian laser beam is incident on a thin wire in the negative y′ direction as shown in
Fig. 1 and the beam is normal to the surface only at the top most points along the z′
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axis. The angle of incidence is oblique elsewhere as shown in Fig. 2. The heat flux to
the wire surface is determined using the perpendicular component of the laser irradi-
ation at all points of the surface. Hence the reflectivity can be considered to be constant
equal to the reflectivity at normal incidence. The radius of the wire, which is made of a
biocompatible material, MP35N, is r '0 = 50 μm in this study and its thermal conductiv-
ity varies from 11.5 to 23.4 W/m K at the temperature range of 21 to 649 °C,
respectively [15]. This wire moves through a vacuum chamber that is filled with an
inert gas argon and the wire is irradiated with a rectangular laser beam of length and
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Fig. 1 Laser heating of a moving wire and relevant coordinate system (color only in online version – Created
using MS Word)
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Fig. 2 Laser irradiation on wire cross-section of wire (color only in online version - Created using MSWord)
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width 500 and 50 μm, respectively, on a plane tangential to the upper most point of the
wire. The thermal conductivity is taken as 11.5 W/m K in this study.

The laser-heated spot on the moving wire creates localized convection in the argon
gas, and the convection heat transfer coefficient is taken as h = 250 W/m2 K that
corresponds to the upper limit of the forced convection heat transfer coefficient in
gases [16]. Two other convection heat transfer coefficients of 621 and 1242 W/m2 K
are also considered in this study to simulate laser heating of wires under liquid cooling
conditions. Higher cooling rates can be achieved by fully or partially submerging the wire
in a liquid because the forced convection heat transfer coefficient in liquids generally
varies from 20 to 20 kW/m2 K [16]. Laser heating of partially submerged wires can
produce dissimilar properties in the liquid-cooled and gas-cooled regions due to differ-
ential cooling rates. This type of heating can be utilized to synthesize new materials with
dissimilar properties across the cross section. Other applications of liquid cooling involve
underwater laser materials processing such as underwater laser-assisted welding,
cleaning, shock processing, cutting, surface hardening and residual stress relief in metal
surfaces [17–20]. The convection around the wire generates a heat loss mechanism based
on the Biot number, i.e., Bi = hr'0/k, which is 0.0011 for the typical thermal conductivity
of k = 11.5 and h = 250 W/m2 K. Bi is an important metric for determining whether the
temperature distribution would be spatially uniform in a solid. If Bi < 0.1, the error
associated with assuming uniform temperature distribution is small [16].

The results of this study, however, show that the temperature distribution is signifi-
cantly non-uniform in the cross-section of the thin wire even though the Bi is much lower
than the limit of the Biot number criterion. Understanding the temperature profile across
the thin section is important in microscale laser processing of materials, such as biomed-
ical implants and microelectronic devises, and manufacturing of microscale and nano-
scale structures. Establishing a uniform temperature profile is, particularly, critical when
the effect around thin wires subsequent to laser heating depends on the temperature. For
example, non-uniform temperature profiles can affect the uniformity of laser diffusion of
a trace of elements or the thickness of nanoscale films deposited by the laser chemical
vapor deposition process. Also the temperature gradients due to non-uniform temperature
profiles would generate thermal stresses that can cause peeling of thin films, thermal
distortion, cracks and breakage. These deleterious effects can be avoided by analyzing the
temperature distribution in thin sections with an appropriate mathematical model.

A mathematical model is developed by considering a very long wire moving at a
constant speed from a feeder spool to a take-up spool through an argon-filled chamber
during laser heating of the wire as shown in Fig. 1. This is a time-dependent heat
conduction problem due to the motion of the wire in the longitudinal direction. A short
time after the initiation of the laser irradiation, however, the temperature distribution
attains a steady state in a moving frame of reference fixed at the laser beam. In this
frame of reference, the wire is considered to be infinitely long along the z′ coordinate
axis and the wire moves in the z′ direction at a constant velocity U. The laser heating of
the wire can be modelled as a quasi-steady state problem with an advection term in the
conduction equation to account for the effect of U.

When the laser beam is incident on the wire, a part of the incident energy is reflected
from the surface and the rest of the energy is absorbed within the laser-matter interaction
volume inside the wire. However, the optical absorption depth of typical metals is 10–
20 nm for the Nd:YAG laser of wavelength 1.06 μm [21, 22]. Therefore, the volumetric
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heating effect of the laser can be neglected when the diameter of the metallic wire is
much larger than the optical absorption depth. Typical metals reflect more than 90 %
of the incident lasers of near infrared wavelengths such as a Nd:YAG laser of
wavelength 1064 nm. The absorbed energy is transformed into heat due to the
interaction between the photons and the electrons of the surface atoms of the wire,
resulting in the generation of phonons. The heat is transferred from the surface to the
rest of the wire by a three-dimensional heat conduction process. As the laser-heated
spot moves away from the laser beam, the wire cools down due to convection heat
transfer to the argon gas and radiative losses to the surrounding. Since the surface
area of the laser-heated spot is very small, the radiation heat loss is considered to be
small compared to the convection loss and the conduction through the wire and,
therefore, the effect of radiation heat transfer is neglected in this study. Under these
conditions, the laser heating of the wire is analyzed by considering three-
dimensional quasi-steady state heat conduction in a moving frame of reference with
a set of boundary conditions as given below:

∂2T ′

∂r′2
þ 1

r′
∂T ′

∂r′
þ 1

r′2
∂2T ′

∂θ2
−
U

α
∂T ′

∂z′
þ ∂2T ′

∂z′2
¼ 0 ð1Þ

where T′ is the temperature of the wire at any radial (r′), azimuthal (θ) and axial (z′)
location, and α is the thermal diffusivity of the wire. During the laser processing, the
wire is fed to the laser beam from a feeding spool and wound onto a take up spool.
Since these two spools are far away from the laser beam and the length of the laser
spot is small, the wire is considered as an infinitely long moving cylinder.

The boundary conditions are:

T ′jz′¼�∞ ¼ T∞ ð2Þ

−k
∂T ′

∂r′

�����
r′¼r′0

¼
−I x′; z′
� �

sinθþ h T ′ r′0; θ; z
′

� �
−T∞

� �
0≤θ≤π

h T ′ r′0; θ; z
′

� �
−T∞

� �
π≤θ≤2π

8<
: ð3Þ

At the cross section of the wire, where θ varies from 0 to 2π, the continuity of
temperature and heat flux at any point yields the following two conditions in the θ
direction.

T ′jθ¼0 ¼ T ′jθ¼2π ð4Þ

∂T ′

∂θ

�����
θ¼0

¼ ∂T ′

∂θ

�����
θ¼2π

ð5Þ

where k is the thermal conductivity of the wire, h is the convection heat transfer
coefficient and T∞ is the temperature of the ambient argon gas far away from the
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laser-heated spot. The absorbed energy flux supplied by the incident Gaussian laser
intensity profile of rectangular cross-section is denoted by I(x′, z′) in boundary condition
(3) where I(x′, z′)sinθ represents the heat flux normal to the wire surface, and I(x′, z′) is
given by

I x′; z′
� � ¼ I0e

− 2x′
2

w2
x′

þ2z′
2

w2
z′

� �
ð6Þ

where I0 is a constant, and wx′ and wz′ are the half-length and half-width of the focused
laser spot in the x′ and z′ directions, respectively, as shown in Fig. 2. I0 is determined by
conserving the absorbed laser energy, i.e.,

1−Rð ÞPi ¼ I0

Z∞
−∞

e
− 2x′

2

w2
x′

� �Z∞
−∞

e
− 2z′

2

w2
z′

� �
dx′dz′ ð7Þ

where R is the reflectivity of the wire surface and Pi is the incident laser power, which
yields

I0 ¼ 2 1−Rð ÞPi

πwx′wz′
ð8Þ

The above equations are non-dimensionalized by defining the following dimension-
less variables:

z ¼ z′

wz′
; r ¼ r′

r′0
; T ¼ T ′−T∞

Tm
ð9Þ

where Tm is the melting temperature of the wire. So Eq. (1) can be written as

∂2T
∂r2

þ 1

r

∂T
∂r

þ 1

r2
∂2T
∂θ2

− Peaz
∂T
∂z

þ a2z
∂2T
∂z2

¼ 0 ð10Þ

where az ¼ r0
0=wz 0 and the Peclet number Pe =Ur'0/α. The boundary conditions (2)–(5)

can be written as follows in terms of the dimensionless variables:

T jz¼ �∞ ¼ 0 ð11Þ

∂T
∂r

����
r ¼ 1

þ BiT jr ¼ 1 ¼ δθPae
−2z2e−2a

2
xcos

2θsinθ ð12Þ

where δθ ¼
1 0≤θ≤π

0 π≤θ≤2π

8<
:

T jθ¼0 ¼ T jθ¼2π ð13Þ
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∂T
∂θ

����
θ¼0

¼ ∂T
∂θ

����
θ¼2π

ð14Þ

where ax ¼ r0
0=wx 0 and Pa ¼ 2Pir′0 1−Rð Þ

πkTmwx′wz′

Method of Solution

Equation (10) is solved by defining a new variable ψ(r,θ,z) for the temperature
distribution T(r,θ,z) to eliminate the advection term ∂T/∂z. Representing the tempera-
ture variation in the azimuthal direction as a Fourier series and applying the Hankel
transform in the radial direction, a second order ordinary differential equation is
obtained which is solved by the method of variation of parameters. Expressing T in
terms of ψ as follows

T ¼ e
Pe
2az

zψ r; θ; zð Þ ð15Þ

Equation (10) can be written as

∂2ψ
∂r2

þ 1

r

∂ψ
∂r

þ 1

r2
∂2ψ
∂θ2

−
Pe2

4
ψþ a2z

∂2ψ
∂z2

¼ 0 ð16Þ

and the boundary conditions (11–14) can be expressed as

ψjz¼ �∞ ¼ 0 ð17Þ

∂ψ
∂r

����
r¼1

þ Biψjr¼1 ¼ δθPae
− Pe

2az
ze−2z

2
e−2a

2
x cos

2θsinθ ð18Þ

ψjθ¼0 ¼ ψjθ¼2π ð19Þ

∂ψ
∂θ

����
θ¼0

¼ ∂ψ
∂θ

����
θ¼2π

ð20Þ

To solve Eq. (17), the Fourier series expansion of ψ yields

ψ ¼
X
m¼0

∞
Tcmcos mθð Þ þ

X
m¼1

∞
Tsmsin mθð Þ ð21Þ

where Tcm(r,m, z) and Tsm(r,m, z) are coefficients of the series expansion, and ψ
satisfies the boundary conditions (17–20). Substituting Eqs. (22) into (17) and equating

Lasers Manuf. Mater. Process. (2016) 3:111–130 117

Author's personal copy



the coefficients of cos(mθ) ans sin(mθ) to zero, the equations Tcm and Tsm can be
written as

∂2Tcm

∂r2
þ 1

r

∂Tcm

∂r
−
m2

r2
Tcm−

Pe2

4
Tcm þ a2z

∂2Tcm

∂z2
¼ 0 ð22Þ

∂2Tsm

∂r2
þ 1

r

∂Tsm

∂r
−
m2

r2
Tsm−

Pe2

4
Tsm þ a2z

∂2Tsm

∂z2
¼ 0 ð23Þ

which satisfy the following boundary conditions:

Tcmj z¼�∞ ¼ 0 ð24Þ

Tsmjz¼�∞ ¼ 0 ð25Þ

X∞
m¼0

∂Tcm

∂r j
r¼1

cos mθð Þ þ Bi
X∞
m¼0

Tcmj
r¼1

cos mθð Þ þ
X∞
m¼1

∂Tsm

∂r j
r¼1

sin mθð Þ

þ Bi
X∞
m¼1

Tsmj
r¼1

sin mθð Þ ¼ δθPae
− Pe
2az

ze−2z
2
e−2a

2
x cos

2θsinθ

ð26Þ

The boundary conditions for Tcm and Tsm are separated by multiplying both
sides of boundary condition (27) by cos(nθ) and sin(nθ), respectively, integrating
with respect to θ from 0 to 2π and applying the orthogonality condition, which
yield

∂Tcm

∂r

����
r¼1

þ BiTcmjr¼1 ¼
Pa

N θ
e−

Pe
2az

ze−2z
2

Zπ
0

e−2a
2
x cos

2θsinθ cos mθð Þdθ ð27Þ

∂Tsm

∂r

����
r¼1

þ BiTsmjr¼1 ¼
Pa

N θ
e−

Pe
2az

ze−2z
2

Zπ
0

e−2a
2
x cos

2θsinθ sin mθð Þdθ ð28Þ

where, N θ ¼
2π m ¼ 0

π m≠0

8<
:

The integrals in boundary conditions (28) and (29) can be evaluated by noting that
2cos2θ = 1+cos(2θ) and using the following identity [23] in terms of the modified
Bessel function of order k, k = 0, 1,2, ....

ezcosθ ¼ I0 zð Þ þ 2
X∞
k¼1

Ik zð Þcosθ ð29Þ
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So the integrals can be written as

Zπ
0

e−2a
2
x cos

2θsinθ cos mθð Þdθ ¼ Scm ¼ e−a
2
x I0 −a2x

� � 2

1−m2

	 

þ e−a

2
x

X∞
k¼1

I k −a2x
� � 2 m−1ð Þ

4k2− m−1ð Þ2 −
2 mþ 1ð Þ

4k2− mþ 1ð Þ2
" #

m even

0 else

8><
>:

ð30Þ

Zπ
0

e−2a
2
x cos

2θsinθ sin mθð Þdθ ¼ Ssm ¼
π

2
e−a

2
x I m−1

2
−a2x
� �

−I mþ1
2

−a2x
� �h i

m odd

0 else

8<
:

ð31Þ

To transform boundary condition (28) into a homogeneous boundary condition,
Tcm(r,m,z) is written as a combination of three functions as given below.

Tcm r;m; zð Þ ¼ Fcm r;m; zð Þ þ f cm r;mð Þgcm z;mð Þ ð32Þ

Equation (34) is substituted into Eq. (23) and the resulting expression yields the
following two equations for Fcm and fcm.

∂2Fcm

∂r2
þ 1

r

∂Fcm

∂r
−

m2

r2
þ Pe2

4

	 

Fcm þ a2z

∂2Fcm

∂z2
þ a2z f cm

∂2gcm
∂z2

¼ 0 ð33Þ

and

∂2 f cm
∂r2

þ 1

r

∂ f cm
∂r

−
m2

r2
þ Pe2

4

	 

f cm ¼ 0 ð34Þ

Equation (34) is also substituted into Eq. (28) to obtain the following boundary
conditions at r = 1.

∂Fcm

∂r
þ BiFcm ¼ 0 ð35Þ

gcm
∂ f cm
∂r

þ Bif cm

	 
����
r¼1

¼ PaScm
N θ

e−
Pe
2az

ze−2z
2 ð36Þ

Equation (36) is Bessel’s modified differential equation, which has a solution
involving the modified Bessel functions of the first and second kinds Im(Pe r/2) and
Km(Pe r/2), respectively, of order m. Since the temperature must be finite at r = 0 and
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Km is infinite at r = 0, Km does not represent a physical solution to Eq. (36). Therefore,
the solution is represented by

f cm ¼ C1Im
Pe

2
r

� �
ð37Þ

where C1 is an unknown constant. Substituting Eqs. (39) into (38), gcm as determined as

gcm ¼ PaScm

N θC1 mþ Bið ÞIm Pe

2

� �
þ Pe

2
Im

Pe

2

� �	 
 e− Pe
2az

ze−2z
2 ð38Þ

Since the products fcmgcm and f cm
∂2gcm
∂z2 in Eqs. (34) and (35), respectively, eliminates

C1 as can be seen from Eqs. (39) and (40), there is no need to determine C1.
Applying the following Hankel transform [24] to Eq. (35),

Fcm λn;m; zð Þ ¼
Z1
0

rJm λnrð ÞFcm r;m; zð Þdr ð39Þ

the following equation is obtained for the transformed variable Fcm λn;m; zð Þ,

λ2
n Fcm−

Pe2

4
Fcm þ az

2 ∂
2Fcm

∂z2
þ az

2 ∂
2gcm
∂z2

C1

Z1
0

rJm λnrð ÞIm Pe

2
r

� �
dr ¼ 0 ð40Þ

and the associated boundary conditions are

Fcm

���
z¼ �∞

¼ 0 ð41Þ

The eigenfunction Jn(λnr) satisfies boundary condition (34) and yields the following
equation [24] for the eigenvalues λn, n = 0,1,2,3,.....

λn Jm−1 λnð Þ−Jmþ1 λnð Þ½ � þ BiJm λnð Þ ¼ 0 ð42Þ

The term ∂2gcm
∂z2 , which can be determined from Eq. (37), and the integral in Eq. (39)

are given by

∂2gcm
∂z2

¼ PaScm

N θ mþ Bið ÞIm Pe

2

� �
þ Pe

2
Im

Pe

2

� �	 
 Pe

2az
þ 4z

� �2

−4

" #
e−

Pe
2az

ze−2z
2 ð43Þ

and

Z1
0

r Jm λnrð ÞIm Pe

2
r

� �
dr ¼

λn Jmþ1 λnð ÞIm Pe

2

� �
−
Pe

2
Jm λnð ÞImþ1

Pe

2

� �

λn
2−

Pe2

4

ð44Þ
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The result for the integration in Eq. (46) was obtained using Maple 7 software
instead of applying the general formula provided by Gradshteyn and Ryzhik [25]
for an indefinite integral involving the product of any two Bessel functions. It
was found that the results from these two sources do not agree for all the cases
involving a Bessel function and a modified Bessel function. In Eq. (41) is solved
for Fcm by the method of the variation of parameters, yielding the following
result.

Fcm ¼ ϕcm

2β fD1e
βz

ffiffiffiffiffiffi
2π

p
1−er f

ffiffiffi
2

p
u1

� � 
þ 4u1−2βð Þe−2u21 þ β2−4

� � ffiffiffiffi
π
8

r
1−er f

ffiffiffi
2

p
u1

� � 	 


þ D2e
−βz

ffiffiffiffiffiffi
2π

p
1þ er f

ffiffiffi
2

p
u2

� � 
þ 4u1 þ 2βð Þe−2u22 þ β2−4

� � ffiffiffiffi
π
8

r
1þ er f

ffiffiffi
2

p
u2

� � 	 
g
ð45Þ

where

β ¼ � 1

az
λ2
n −

Pe2

4

� �1
2

;

ϕcm ¼ ∂2gcm
∂z2

Z1
0

r Jm λnrð ÞIm Pe

2
r

� �
dr ;

D1 ¼ e2
Pe
8az

þ β
4ð Þ2 ; D2 ¼ e2

Pe
8az

− β
4ð Þ2 ;

u1 ¼ zþ Pe

8az
þ β
4

; u2 ¼ zþ Pe

8az
−
β
4

;

Fcm(r,m,z) is determined from Fcm λn;m; zð Þ by substituting Eq. (44) into the
following inverse Hankel transform [24].

Fcm r;m; zð Þ ¼
X∞
n¼1

Jm λnrð Þ
Nr λnð Þ�Fcm λn;m; zð Þ ð46Þ

where

Nr λnð Þ ¼ J 2m λnð Þ Bi2 þ λ2
n

� �
−m2

� �
2λ2

n

The procedure for determining Fcm(r,m,z) can be applied to obtain an expression for
Fsm(r,m,z), and then Eqs. (39), (40), (34), (22), (17) and (9) are used to determine the
temperature distribution as given below:

T ′ r; θ; zð Þ ¼ T∞ þ Tme
bz

X∞
m¼0

(
cos mθð Þ

X∞
n¼1

Jm λnrð Þ�Fcm λn;m; zð Þ
Nr λnð Þ þ f cm r;mð Þgcm z;mð Þ

" #

þ
X∞
m¼1

sin mθð Þ
X∞
n¼1

Jm λnrð Þ�Fsm λn;m; zð Þ
Nr λnð Þ þ f sm r;mð Þgsm z;mð Þ

" #
ð47Þ
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where

f sm ¼ C1Im
Pe

2
r

� �

gsm ¼ PaSsm

N θC1 mþ Bið ÞIm Pe

2

� �
þ Pe

2
Im

Pe

2

� �	 
 e−
Pe
2az

ze−2z
2

Results and Discussion

Three-dimensional temperature profiles are determined using Eq. (47) due to laser
heating of thin wires. A biocompatible material, MP35N, is chosen in this study because
thin wires of this material are currently used to construct pacemaker leads, and the lead
tip heats due to the radiofrequency magnetic field during magnetic resonance imaging.
Currently, the leads are designed in a special way as resonant circuits to reduce heating.
Each strand of the lead assembly, however, can be modified by a laser diffusion process
to reduce heating. Typical thermophysical properties of MP35N used for calculating the
temperature distribution are [15], density ρ = 8430 kg/m3, thermal conductivity k =
11.5 W/m K, specific heat capacity at constant pressure cp = 502 J/kg K and melting
temperature Tm = 1315 °C. The laser processing parameters are: laser power Pi = 6 W
and the waist dimensions of the laser beam are wx′ = 50 and wz′ = 500 μm in the x′ and z′
directions, respectively, wire speed U = 4 mm/s and room temperature T∞ = 20 °C.

Figure 3a–e are polar contour plots showing the temperature profiles at different
cross sections starting from z′= −0.5 to z′= 0.5 mm that correspond to the axial
locations beneath the laser beam. z′= −0.5 mm represents the cross section of the wire
at an axial location 0.5 mm behind the laser beam center before entering into the laser
spot, and z′= 0.5 mm represents the cross section of the wire at an axial location
0.5 mm in front of the laser beam center after passing through the laser spot. Each polar
contour plot shows the temperature variation within the wire cross section. The upper
half of the wire at a given cross section is heated since the laser beam is irradiated on
the upper semicircle of the wire, while the lower half of the wire is heated due to the
conduction of heat from the upper half and also cooled down due to convection.
Starting at Fig. 3(a), one can see the effect of this laser direct heating and the
conduction heating with simultaneous convection cooling on the temperature profiles.
While the temperature is symmetric about θ = π/2 and θ = 3π/2 directions, it is
asymmetric about θ = 0 and θ = π directions due to the asymmetric heating
mechanisms.

Figure 3(a–e) also show that the temperature distribution in the axial direction is
asymmetric about z′= 0 axis (Fig. 1). Figure 3(b) and (e) are each 0.5 mm away from
the laser beam center, i.e., the z′= 0 axis, but show two different temperature profiles in
the azimuthal planes, and similarly Fig. 3(c) and (d), each of which is 0.25 mm away
from the laser beam center, exhibit asymmetric temperature profiles. The temperatures
are much higher in the positive axial direction than in the negative direction, which can
be explained by the fact that the wire moves in the positive z′ direction and the laser
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heating begins in negative z′. This heating process continues as the wire approaches
toward the z′= 0 line where the laser irradiation is maximum. After the z′= 0 line, the
laser heating mechanism is reduced because the laser irradiation decreases. There is,
however, another heating mechanism, advection heating, due to the motion of the wire.
Since the wire moves in the positive z′ direction, its temperature continues to rise to a
maximum value a little after the z′= 0 line, which is discussed later, and then begins to
decrease because of the reduction in both heating mechanisms. It is clear from Fig. 3
that the temperature distribution is neither axi-symmetirc nor uniform at a cross-section
of the wire for Bi = 0.0011. The temperature across a solid is, generally, considered
uniform if Bi < 0.1. Although Bi = 0.0011 satisfies the Biot number criterion of uniform
temperature, the cross-sectional temperature of the wire is non-uniform in this study. It
is, therefore, evident that the thermal response of the wire to rapid heating and cooling
inherent in laser processing is different from the conventional heat conduction process,
and this deviation can be attributed to the motion of the wire.

The effect of Bi is studied in Figs. 4 and 5 for Bi = 0.0027 and 0.0054 corresponding
to the convection heat transfer coefficients 621 and 1242 W/m2 K, respectively. The
results in Figs. 3, 4 and 5 are obtained for the same parameters except the convection
heat transfer coefficient. It can be seen from the isotherms at a given cross-section of
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Fig. 3 Temperature distribution of wire cross section at different positions along the axis for Bi = 0.0011 and
h = 250 W/m2 K (Created using MS Word)
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fixed axial position z′ in these figures that the temperature decreases as Bi increases,
and also the difference between the maximum and minimum temperatures decreases as
Bi increases. The temperature profiles are distorted more at high Bi than at low Bi.
Figure 5(b) and (e) exhibit highly distorted temperature profiles due to high Bi of
0.0054. The lower value of Bi in Fig. 4, however, shows relatively less distortion in the
temperature profile with fairly uniform temperature at a cross-section, which suggests
that the limiting value of the Biot number to achieve uniform cross-sectional heating is
much lower than the conventional limit of Bi as 0.1.

The minimum temperature at a particular cross-section of the wire does not occur at
the center of the wire, instead it occurs at a point below the center of the cross-section.
The effect of Bi on this trend is not evident at a low value of Bi as in Fig. 2, but can be
clearly seen for a higher value of Bi as in Fig. 5. This effect is important particularly in
laser-assisted diffusion process for determining whether the distribution of diffused
atoms would be uniform along the entire circumference of the wire, because the
diffusion coefficient and the generation of diffusant atoms by thermal decomposition
of metallorganic compounds depend on temperature. Since the top half-surface of the
wire is heated by the laser beam and the bottom half-surface is exposed to convection
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cooling by the ambient gas, the temperature inside the bottom section rises due to heat
conduction from the top to the bottom half of the wire. Therefore, depending on the Bi

number, laser irradiance and thermal diffusivity, the laser-wire interaction time τ ¼ 2wz 0
U

should be large to allow sufficient time for heat conduction to obtain uniform temper-
ature distribution at least over a certain depth up to which the atoms have to be diffused.
This mechanism will enable achieving uniform concentration of the diffused atoms in
the azimuthal direction.

The radial variation of the temperature is plotted is Fig. 6 for various azimuthal
angles, θ, on the cross-sectional plane z′= 0 to understand heat conduction inside the
wire. The results in this figure show that Fig. 6 gives an idea of how much variation
occurs in the surface temperature gradient. The direction of the laser beam has a higher
temperature gradient between the centre of the wire and the surface while the opposite
direction shows a lower temperature gradient. At θ = π/2, which represents the positive
y direction in the top half of the wire, the temperature increases radially from the center
to the wire surface, while the temperature along the θ = 3π/2 direction, which repre-
sents the negative y direction in the bottom half of the wire, the temperature decreases
radially from the center and then begins to increase toward the wire surface. So the
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minimum temperature occurs off-center in the lower section of the wire, indicating that
the heat flows from the wire surface toward an off-center point inside the wire. At the
bottom half of the wire, the surface temperature is higher than the interior temperature
even though the bottom surface is cooled by convection, which suggests that heat
conduction from the top to the bottom section occurs dominantly in the azimuthal
direction compared to the radial direction near the subsurface region of the wire.

The axial variation of the wire surface temperature due to localized heating by the
laser beam is examined in Fig. 7, which shows that the rise in the temperature is limited
to a very short length of the wire. Although the length of the heated region is about
2 mm, the temperature increases significantly over a shorter distance that approximately
corresponds to the length of the laser beam on the surface of the wire. While moving

Fig. 6 Temperature distribution along radial direction at different angles for Bi = 0.0011 and h = 250 W/m2 K
(color only in online version - Created using Origin 9.1)

Fig. 7 Temperature distribution on the wire surface (r = 1) along axial direction at different angles for
Bi = 0.0011 and h = 250 W/m2 K (color only in online version - Created using Origin 9.1)
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under the laser beam, the temperature increases as the wire approaches the laser beam
center (z′= 0 mm) and then the temperature decreases as the wire travels away from the
location of maximum temperature, indicating that the wire experiences heating and
cooling cycles. Since the variation of temperature at different angles cannot be seen
clearly in Fig. 7, spatially-resolved temperatures of the region around z′= 0 are plotted
in Fig. 8 for different angles. As discussed earlier, the maximum temperature occurs
slightly after z′= 0 due to the motion of the wire in the z′ direction. For a given velocity
of the wire, however, Fig. 8 shows that the location of maximum temperature does not
shift significantly from z′= 0 toward the z′ direction for small values of Bi such as Bi =
0.0011. Small values of Bi, therefore, reduce the effect of wire speed on shifting the
maximum temperature away from the laser beam center. However, higher speed of the
wire with a higher Peclet number, which is defined as the ratio of the advective heat
transfer rate to the conductive heat transfer rate, shifts the position of the maximum
temperature further down the z′ direction from the laser beam center. This effect of
shifting the maximum temperature is particularly important for modifying the property
of the wire surface at micro- and nano-scales. Figure 8 also shows that the maximum
temperatures occur at the same value of z′, i.e., z′= 0.0176 mm, for all values of θ,
indicating that the maximum temperatures lie on the same cross-sectional plane.
Although the temperature varies in the axial direction for each angle, the trend of this
variation is similar for all the angles.

At a particular angle θ = π/2, the axial temperature distribution is presented in Fig. 9
for different radii to analyze the heating process inside the wire. These results, which
are similar to those in Fig. 7, show that the laser heating is localized over a short length
inside the wire and the interior points also experience rapid heating and cooling cycles.
Since Fig. 9 does not clearly show the different values of temperature at different radial
points, the temperatures of the region around z′= 0 are plotted in Fig. 10 for various
radii. Figure 10 exhibits the same trend in the temperature distribution as in Fig. 8, i.e.,
the maximum temperatures at various radial points occur slightly after the laser beam

Fig. 8 Maximum temperature on the wire surface (r = 1) at different angles for Bi = 0.0011 and h = 250W/m2

K (color only in online version - Created using Origin 9.1)
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center (z′= 0). Also the maximum temperatures lie on the same cross-sectional plane
because they occur at the same value of z′, i.e., z′= 17.6 μm, for all values of r′.

Conclusions

An analytic solution is obtained for the three-dimensional quasi-steady state tempera-
ture distribution during laser heating of long moving cylinders. This analysis is applied
to wires of small (100 μm) diameter and the temperature distribution is found to depend
on the axial as well as radial positions and the azimuthal angle. The temperature across
the cross-section is found to be non-uniform for Bi numbers much lower than the
conventional Bi number criterion for uniform temperature (Bi < 0.1). On a given cross-
sectional plane, the minimum temperature occurs below the center of the wire and the

Fig. 9 Temperature distribution at laser direction θ = π/2 along axial direction at different radius for
Bi = 0.0011 and h = 250 W/m2 K (color only in online version - Created using Origin 9.1)

Fig. 10 Maximum temperature at laser direction θ =π/2 at different radius for Bi = 0.0011 and h = 250W/m2

K (color only in online version - Created using Origin 9.1)
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temperature profiles of the upper and lower halves of the wire are asymmetric,
indicating that the temperature distribution is not axisymmetric. The temperature over
a certain depth in the circumferential region is higher than the interior temperature on a
cross-sectional plane, which suggests that the azimuthal heat conduction is dominant
near the surface compared to the radial conduction. The laser heating region in the axial
direction is limited to a very narrow length, which is approximately equal to the length
of the laser beam on the wire surface, and the wire experiences rapid heating and
cooling as it approaches the beam center and moves away from the location of
maximum temperature, respectively. The maximum temperature is shifted from the
laser beam center toward the z direction depending on the Bi number, and the velocity
of the wire or the Pe number. Small values of Bi and Pe reduce the shift, yielding the
maximum temperature very close to the beam center. The shift in the maximum
temperature occurs at the wire surface as well as inside the wire for all azimuthal
angles and radial points, and these maximum temperatures lie on the same cross-
sectional plane.
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