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When we think of infrared glass….

Ref: D. Hewak, ACerS Bulletin, Umicore Corp., and IRradiance Glass
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Compositionally tunable optical nanocomposites:
MWIR/LWIR  glass and glass ceramic

Compositional tuning of multicomponent chalcogenides increases the 
number of glasses available for optical designers

Large 400g melts have uniform optical properties
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ChG GRIN Physical Properties: 
GAP-Se 

Engineered chemistry and morphology enables novel 
optical materials with manufacturability comparable to 

existing deployed materials

*from:  SCHOTT IR Materials data sheets – IRG 26 (May 2013)

Property As2Se3* GRIN GRIN + thermal
Transmission Window (µm) 1.0-12 1.1-16 2.0-16
Refractive Index (at 4 µm) 2.7946 2.9565 3.2968
dn/dT (x 10-6 °C-1) (at λ, µm) 36.1-32.7 47 (3.39) --
Glass transition temperature, Tg (°C) 185 189 189
Softening point, (°C) -- 213 --
Crystallization Temp, Tx, (°C) -- 250 250
Upper Use temperature (°C) -- 162 163
Dispersion value (3-5 µm) 69 41
Thermal expansion (ppm/°C) 20.8 18.82 19.31
Density (g/cm3) 4.63 5.5677 5.5394
Micro-hardness (GPa) 1.04 1.657 1.785



ChG-GRIN: Motivation

• Need for new materials to support advances in MWIR/LWIR 
optical system applications
 Crystalline materials available (Si and Ge); chalcogenide 

glasses – ChG and heavy metal oxides (HMOs) 
 Well–characterized chemistry/structure/property know-how 

needed
- input for optical designers (absorption, refractive index, 
dispersion,  thermo-optic properties, nonlinear optical 
behavior)

 Component/device manufacturing compatibility or flexibility
- bulk, thin film and fiber-based materials 
- focus on SWaP: size, weight and power

 MGRIN - Low loss, manufacturable mid-infrared glass and 
glass ceramic materials with tailored and graded refractive 
indices

• Need for new materials to support advances in SWIR/MWIR/LWIR 
optical system applications



 Develop compositionally agile, highly transmissive ChG-based material system with 
extraordinary ∆n ≥ 0.25 throughout the infrared spectral range.

 Controlled nucleation and growth of monosized nanocrystals within a ChG glass matrix to 
form tailorable GRIN profiles in both the radial and axial directions.

Transmission Electron 
Microscope Image

Our M-GRIN solution uses a multicomponent 
chalcogenide nanocrystal composite material
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Multicomponent ChG
Nanocomposite GRIN System

Key attributes for MWIR glass ceramic (GC) nanocomposite GRIN 
elements:

 All phases (glass and crystal) have low MWIR absorption loss

Nanocrystals (ncrystal) have high refractive index relative to 
base glass (nglass) 

 Low scatter loss with sub-100 nm diameter crystals 

Nanocrystal-to-glass filling fraction (Vcrystal :Vglass) is tailorable 
knowing nucleation (I) and growth (U) rates of desired crystal 
phase(s)

TARGET: (neff:GC) - (nglass) = ∆nmax > 0.1
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Chalcogenide Glass GRIN System

MWIR transparent glass with tailorable refractive index

Large 400g melts have 
uniform optical properties
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Process to Create Spatially-Controlled 
GRIN Profile

Controlled crystallization (nucleation and growth) is required to 
precipitate high index crystal phase with mono-size distribution 

within a low index glass matrix
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Tg = 217 °C

Tx = 313 °C

Tp = 326 °C

Tm = 426 °C

Glass’ unique thermal analysis signature yields distinct, 
composition-specific nucleation (I) and growth (U) rate curves
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Thermally Driven High-Index 
Nanocrystal Formation

Nucleation:
phase separation number
density of crystals defined

Growth: 
nanocrystals formed
volume fraction defined

Melt: GAP-Se 
base ChG glass

Anneal:
stress relieved

stress nucleation growth

Thermal processing results in controlled phase separation and 
growth of high-index nanocrystals within multicomponent ChG glass



Using I-U curve for thermal GRIN
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Position 1 
Growth 225.6°C – 229.4°C

Position 10 
Growth 261.4°C – 263.2°C

1D GRIN profile with ∆n ~ 0.17 introduced by enforcing a 1D thermal gradient across a 
5 cm long GAP-Se rod; infrared index and dispersion quantified with morphology

Sample λ = 3 µm λ = 4 µm λ = 5 µm Abbe number
2-3 2.83 2.81 2.81 103.7
2-6 2.90 2.89 2.88 99.8
2-8 2.95 2.94 2.93 115.6

2-10 2.99 2.98 2.98 129.4

1D Thermal-Thermal Gradient
A 5-cm long GAP-Se rod was thermally
treated (nucleated) and then placed in a
gradient furnace with a linear (growth)
temperature profile that varied from 225°C
to 260°C (nglass =2.7946 @ 4µm)
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Process to Create Spatially-Controlled 
GRIN Profile

2. Thermal treatment –
growth

low neff high neff

GRIN glass ceramic

1. Spatially varying laser exposure -
nucleation

Homogeneous glass

mask

Laser exposure is used to locally engineer neff by controlling the 
spatially defined concentration of nuclei and high-index nanocrystals

neff ~ (nglass x Vglass) + (ncrystal x Vcrystal )

Controlled crystallization (nucleation and growth) is required to 
precipitate high index crystal phase with mono-size distribution 

within a low index glass matrix



TEM on base glass and laser irradiated 
bulk samples - bright field microscopy

• Initial base glass has nanoscale phase separation  low stability phase
• 1064 nm laser exposure on bulk glass imparts optical absorption, leading to 

laser-thermal crystal nucleation; post processed with furnace growth

5 nm5 nm 2 1/nm2 1/nm20 nm20 nm

Higher magnificationLaser Exposed

Diffuse ring: 
amorphous

Control

100 nm100 nm

BASE GLASS
Phase separation 

represented by dark 
(Pb-rich) matrix

and bright (Pb-deficient) 
droplet regions (100 nm)

Phase Separation 
represented by dark and 
bright regions (100 nm)

Size of each
phase-separated region

~ 50 nm (20 nm)

The fringed dark Pb-rich 
crystalline phase; Bright 

region: Pb-deficient glass 
matrix (5 nm)

Spotty patterns
(crystalline) + a diffuse 

ring (amorphous)



XEDS can chemically assess phase separation 
and species segregation- dark field

As-quenched BASE GLASS control sample

 Pb atoms are segregated by melt/quench protocol into Pb-deficient droplets.
 Pb distribution matches well with the dark region in the BASE TEM image.
 Laser-induced Pb segregation is maintained during laser irradiation.
 Pb-rich matrix regions subsequently (preferentially) crystallize with further 

thermal treatment

Laser-irradiated BASE GLASS sample



15

Layered GRIN films on homogeneous 
bulk MWIR Glass

MWIR Glass

GRIN Layer

4 8 12 16 20
2.6

2.8

3.0

3.2

3.4

3.6

 

 

 230oC, 10 min
 As deposited

Re
fra

ct
ive

 in
de

x

Wavelength (µm)

Homogeneous post-deposition thermal processing introduces 
uniform distribution of high-index nanocrystals giving a 

maximum index change of ∆neff ~ 0.2

Cross-section of GRIN layer 
on CTE-matched MWIR glass 

component (Class 4 – IRG)

untreated

Glass ceramic Layer
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Index Change versus laser 
irradiance and fluence

Identified laser exposure and thermal treatment conditions that 
give controlled and reproducible index change 

Treatment Details:
 1.4 μm GAP-Se films with 

SiOx AR layer on fused silica 
substrate

 Constant 190°C for 30 min 
thermal treatment

 Higher index changes are 
expected with higher 
fluence exposures
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Index change versus thermal 

treatment time

Time (min)

Index change increases with thermal treatment time below 45 mins, 
and then saturates  defines process window

Fluence 1
Fluence 1
Fluence 1
Fluence 2
Fluence 3

Treatment Details:
 1.4 μm GAP-Se films 

with SiOx AR layer on 
fused silica substrate

 Sequential thermal 
treatment at constant 
190°C for 30 min
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Layered GRIN films on homogeneous 
bulk MWIR Glass

Laser Exposed Thermal Treatment

Phase Separation 
Amorphous

 Laser exposure induces controlled phase separation in amorphous film
 Thermal treatment creates sub-60 nm high-index nanocrystals
 Nanocrystal concentration varies with laser exposure and post- exposure 

thermal treatment conditions  spatial control of dose yields spatial GRIN
 Knowing laser + HT process window, what is the spatial resolution of the GRIN?

100 nm 100 nm 100 nm

Nanocrystal GrowthHomogeneous 
Amorphous

As-deposited



Laser Exposure through Grating Mask

i beam-deposited C

e beam-deposited C

metal pattern

layer

SiOx AR layer

fused silica substrate

Cross-sectional view

Layer surface

Width: 2.45 µm

Metal pattern

Width: 1.02 µm
Thickness: 185 nm

5 µm

500 nm

1 µm

Top view
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20 nm

2

20 nm

4

20 nm

3

20 nm

500 nm

1 432

Following laser exposure only:
 1.4 μm layers with SiOx AR layer on fused silica substrate
 Benchmark fluence prior to thermal treatment
 Microstructure in exposed areas are consistent with broad 

area experiments, while unexposed areas remain unchanged
 High spatial resolution of < 100 nm

High spatial resolution indicates a photonic driven laser-induced phase 
separation process with superb spatial control of nucleated microstructure

Laser Exposure through Grating Mask



Heat treatment yields uniform nanocrystal formation throughout 
the thickness of the deposited layer – fill fraction variation yields 

∆nz in glass below transparent regions of the mask

1 µm

Top

100 nm

Middle

100 nm

Bottom

100 nm

1 µm

Top

50 nm

Middle

50 nm

Bottom

50 nm

Following laser exposure – in non-masked region (100 nm scale bar)

Following laser exposure and thermal treatment (50 nm scale bar)

Laser Exposure + thermal treatment



Conclusions

 Current and next-generation infrared optical systems require robust materials 
based with tunable and/or tailorable optical and physical properties that extend 
component functionality

 Chalcogenide-based glass ceramic materials have been developed with tunable 
optical properties that can be optimized for desired refractive index and GRIN 
applications to support novel optical system designs

 Physical properties required for optical design optimization have been quantified 
to enable optical design and system optimization using graded index optical 
components

 Spatially varying (tunable) index profiles (2D or 3D) based on optical design 
requirements exceeding Δn of 0.25 have been realized in multi-component ChG
glass ceramics which possess low infrared loss enhanced thermal-mechanical 
robustness;

 Material scale-up is ongoing
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