

Engineering Novel Infrared Glass Ceramics for Advanced Optical Solutions

<u>K. Richardson*</u>^a, A. Buff^a, C. Smith^a, L. Sisken^a, J. David Musgraves^b, P. Wachtel^b, T. Mayer^{c, e}, A. Swisher^c, A. Pogrebnyakov^c, M. Kang^c, C. Pantano^c, D. Werner^c, A. Kirk^d, S. Aiken^d, C. Rivero-Baleine^d

^aCollege of Optics and Photonics, CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, USA 29650;

^bIRradiance Glass, Inc., 3267 Progress Drive, Orlando, FL, USA 32826;

^cDept. of Electrical Engineering, The Pennsylvania State University, University Park, PA, USA 16802;

^dLockheed Martin Corporation, Orlando, FL, USA 32819;

^enow at Virginia Polytechnic Institute and State University, Blacksburg VA 24061

This work was supported by the Defense Advanced Research Projects Agency under Air Force Research Laboratory contract FA8650-12-C-7225 through the M-GRIN Tech Area 2 program.

SPIE 2016

When we think of *infrared* glass....

CREOL The College of Optics and Photonics

Compositionally tunable optical nanocomposites:

MWIR/LWIR glass and glass ceramic

3

Compositional tuning of multicomponent chalcogenides increases the number of glasses available for optical designers

M-GRIN: Innovative Design and Manufacturing of Gradient-Index-Based Transformation Optics Components <u>T. Mayer</u>, D. Werner, C. Rivero-Baleine, K. Richardson, Research grant # 4970-UCF-AFRL-7225

ChG GRIN Physical Properties: GAP-Se

4

Property	As ₂ Se ₃ *	GRIN	GRIN + thermal
Transmission Window (µm)	1.0-12	1.1-16	2.0-16
Refractive Index (at 4 μm)	2.7946	2.9565	3.2968
dn/dT (x 10 ⁻⁶ °C ⁻¹) (at λ, μm)	36.1-32.7	47 (3.39)	
Glass transition temperature, Tg (°C)	185	189	189
Softening point, (°C)		213	
Crystallization Temp, T _x , (°C)		250	250
Upper Use temperature (°C)		162	163
Dispersion value (3-5 µm)		69	41
Thermal expansion (ppm/°C)	20.8	18.82	19.31
Density (g/cm ³)	4.63	5.5677	5.5394
Micro-hardness (GPa)	1.04	1.657	1.785

*from: SCHOTT IR Materials data sheets - IRG 26 (May 2013)

Engineered *chemistry and morphology* enables novel optical materials with manufacturability comparable to existing deployed materials

- <u>Need for new materials</u> to support advances in SWIR/MWIR/LWIR optical system applications
 - Crystalline materials available (Si and Ge); chalcogenide glasses – ChG and heavy metal oxides (HMOs)
 - ✓ Well–characterized chemistry/structure/property know-how needed
 - input for optical designers (absorption, refractive index, dispersion, thermo-optic properties, nonlinear optical behavior)
 - ✓ Component/device manufacturing compatibility or flexibility
 - bulk, thin film and fiber-based materials
 - focus on SWaP: size, weight and power
 - MGRIN Low loss, manufacturable mid-infrared glass and glass ceramic materials with tailored and graded refractive indices

Our M-GRIN solution uses a multicomponent CREOL The College of Optics and Photonics chalcogenide nanocrystal composite material

- Develop compositionally agile, highly transmissive ChG-based material system with extraordinary $\Delta n \ge 0.25$ throughout the infrared spectral range.
- Controlled nucleation and growth of monosized nanocrystals within a ChG glass matrix to form tailorable GRIN profiles in both the radial and axial directions.

Key attributes for MWIR glass ceramic (GC) nanocomposite GRIN elements:

- ✓ All phases (glass and crystal) have low MWIR *absorption* loss
- ✓ Nanocrystals (n_{crystal}) have high refractive index relative to base glass (n_{glass})
- ✓ Low *scatter* loss with sub-100 nm diameter crystals
- Nanocrystal-to-glass filling fraction (V_{crystal} :V_{glass}) is tailorable knowing nucleation (I) and growth (U) rates of desired crystal phase(s)

TARGET: $(n_{eff:GC}) - (n_{glass}) = \Delta n_{max} > 0.1$

MWIR transparent glass with tailorable refractive index

Controlled crystallization (nucleation and growth) is required to precipitate high index crystal phase with mono-size distribution within a low index glass matrix

Glass' unique thermal analysis signature yields distinct, composition-specific nucleation (I) and growth (U) rate curves

Thermally Driven High-Index Nanocrystal Formation

Thermal processing results in controlled phase separation and growth of high-index nanocrystals within multicomponent ChG glass

1D GRIN profile with $\Delta n \approx 0.17$ introduced by enforcing a 1D thermal gradient across a 5 cm long GAP-Se rod; infrared index and dispersion quantified with morphology

Controlled crystallization (nucleation and growth) is required to precipitate high index crystal phase with mono-size distribution within a low index glass matrix

1. Spatially varying laser exposure - nucleation

2. Thermal treatment – growth

Laser exposure is used to locally engineer n_{eff} by controlling the spatially defined concentration of nuclei and high-index nanocrystals

TEM on base glass and *laser irradiated* bulk samples - bright field microscopy

- Initial base glass has nanoscale phase separation \rightarrow low stability phase
- 1064 nm laser exposure on bulk glass imparts optical absorption, leading to laser-thermal crystal nucleation; post processed with furnace growth

Control

BASE GLASS Phase separation represented by dark (Pb-rich) matrix and bright (Pb-deficient) droplet regions (100 nm)

Diffuse ring: amorphous

Laser Exposed

Higher magnification

Phase Separation represented by dark and bright regions (100 nm)

Size of each phase-separated region ~ 50 nm (20 nm)

The fringed dark Pb-rich crystalline phase; Bright region: Pb-deficient glass matrix (5 nm)

Spotty patterns (crystalline) + a diffuse ring (amorphous)

XEDS can chemically assess phase separation and species segregation- dark field

- Pb atoms are segregated by melt/quench protocol into Pb-deficient droplets.
- Pb distribution matches well with the dark region in the <u>BASE</u> TEM image.
- Laser-induced Pb segregation is maintained during laser irradiation.
- Pb-rich matrix regions subsequently (preferentially) crystallize with further thermal treatment

Layered GRIN films on homogeneous bulk MWIR Glass

Homogeneous post-deposition thermal processing introduces uniform distribution of high-index nanocrystals giving a maximum index change of $\Delta n_{eff} \sim 0.2$

Index Change versus laser irradiance and fluence

Treatment Details:

- 1.4 µm GAP-Se films with SiO_x AR layer on fused silica substrate
- Constant 190°C for 30 min thermal treatment
- Higher index changes are expected with higher fluence exposures

Identified laser exposure and thermal treatment conditions that give controlled and reproducible index change

Index change versus thermal treatment time

Treatment Details:

- 1.4 µm GAP-Se films with SiO_x AR layer on fused silica substrate
- Sequential thermal treatment at constant 190°C for 30 min

Index change increases with thermal treatment time below 45 mins, and then saturates \rightarrow defines process window

Homogeneous Amorphous

Phase Separation Amorphous Nanocrystal Growth

- Laser exposure induces controlled phase separation in amorphous film
- Thermal treatment creates sub-60 nm high-index nanocrystals
- Nanocrystal concentration varies with laser exposure and post- exposure thermal treatment conditions → spatial control of dose yields <u>spatial GRIN</u>
- Knowing laser + HT process window, what is the <u>spatial resolution of the GRIN</u>?

Laser Exposure through Grating Mask

Laser Exposure through Grating Mask

Following *laser exposure only*:

- 1.4 μm layers with SiO_x AR layer on fused silica substrate
- Benchmark fluence prior to thermal treatment
- Microstructure in exposed areas are consistent with broad area experiments, while unexposed areas remain unchanged
- High spatial resolution of < 100 nm

High spatial resolution indicates a photonic driven laser-induced phase separation process with superb spatial control of nucleated microstructure

Laser Exposure + thermal treatment

Following laser exposure – in non-masked region (100 nm scale bar)

Following laser exposure and thermal treatment (50 nm scale bar)

Heat treatment yields uniform nanocrystal formation throughout the *thickness* of the deposited layer – fill fraction variation yields Δn_z in glass below transparent regions of the mask

- Current and next-generation infrared optical systems require robust materials based with tunable and/or tailorable optical and physical properties that extend component functionality
- Chalcogenide-based glass ceramic materials have been developed with *tunable* optical properties that can be optimized for desired refractive index and GRIN applications to support novel optical system designs
- Physical properties required for optical design optimization have been quantified to enable optical design and system optimization using graded index optical components
- Spatially varying (tunable) index profiles (2D or 3D) based on optical design requirements exceeding △n of 0.25 have been realized in multi-component ChG glass ceramics which possess low infrared loss enhanced thermal-mechanical robustness;
- Material scale-up is ongoing