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Optical power flow along an active cavity having net gain can differ dramatically from that in a passive cavity.
We report the first observation of Poynting’s vector reversal in an active cavity under scattering boundary conditions.
At a sub-lasing gain, which we call Poynting’s threshold, a null develops in Poynting’s vector, which divides the cavity
into sections with oppositely directed energy flows. Furthermore, we demonstrate that the direction of Poynting’s
vector at a fixed point in an active cavity can be controllably reversed without changing its magnitude via an
intra-cavity passive element, thereby suggesting a potential methodology for optical switching. © 2016 Optical

Society of America
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1. INTRODUCTION

Optical gain is the key enabler for the operation of lasers and laser
amplifiers [1,2] and thus underlies many modern amenities of
everyday life [3]. The investigation of optical gain has a long his-
tory, dating back to Einstein’s introduction of this concept in the
context of stimulated emission [4]. Since then, the propagation of
light in media featuring resonant gain, in particular, has been the
focus of many fundamental studies, ultimately leading to the con-
cept of “fast light,” which is a consequence of pulse reshaping on
resonance [5–10]. These dispersive effects have been observed in a
variety of optical platforms, including coherent population
oscillations in crystals [11] and quantum wells [12], in quantum
dot semiconductor optical amplifiers via population oscillation
[13–15], stimulated Brilluoin gain in non-linear fibers [16],
and erbium-doped fibers [17].

More recently, non-Hermitian optical systems with a spatially
engineered distribution of optical gain and loss are now being
actively explored to exploit the rich physics of exceptional points
[18] and spectral singularities [19], among other phenomena
associatedwith non-Hermitian structures [20]. In particular, parity
and time-reversal (PT)-symmetric systems [21–23]may yield non-
magnetic isolators [24] and offer useful control over lasing action
[25,26]. Moreover, the role of gain in compensating for inevitable
losses in plasmonic systems has prompted investigations of the in-
terplay between the amplification and field concentration [27,28].
It is therefore imperative to appreciate the subtleties involved in
these non-Hermitian configurations where optical gain, which
is usually far from resonance, interacts with confined fields in con-
junction with coherent feedback provided by reflections at inter-
faces, coupling across barriers, or circulation in ring resonators.
Indeed, the interplay between gain and feedback in a cavity can

lead to a host of phenomena that are still not fully appreciated
[29–32] and raises fundamental questions regarding causality
[33–36]. A large number of theoretical studies have focused on this
question, but experimental investigations are lacking.

In this paper, we examine the distribution of Poynting’s vector
[37] within an active optical cavity at sub-lasing gain values under
scattering boundary conditions; that is, with an optical probe exter-
nally incident on the cavity from one port. Scattering boundary
conditions enforce a constraint: Poynting’s vector P⃗ at the cavity
exit is necessarily directed forward in the same direction of the
probe, a condition that applies whether the cavity is passive (lossy)
or active (has net single-pass gain), and whether the probe is
on- or off-resonance. As a consequence of this constraint, when the
net gain in a planar cavity reaches a critical value that we
term “Poynting’s threshold,” P⃗ is extinguished at the cavity en-
trance. The location of this null in P⃗, and hence a null in the
net power flow, migrates into the cavity upon further increase
of the gain. The null plane of P⃗ divides the cavity into two sections:
in the vicinity of the exit, P⃗ points forward, while P⃗ reverses di-
rection and points backward, opposing the probe, in the vicinity of
the cavity entrance. At Poynting’s threshold, the linear response of
the system produces a backward-propagating signal with equal in-
tensity to the probe as well as an amplified forward-propagating
signal. Thus, this threshold corresponds to unity reflectivity of
the total system, where there is no net flux through the boundary
of the cavity at any wavelength within the gain bandwidth, both
on- and off-resonance. Despite a large number of theoretical stud-
ies that have tackled this active-cavity configuration from the per-
spective of causality (see Refs. 30,35 for a review of the literature),
there have been, to the best of our knowledge, no experimental
investigation of these predictions.
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In contrast to fast-light effects, the phenomena we examine
here are not a consequence of a resonance in the gain spectrum,
as we confirm by exploiting broadband (40 nm) semiconductor
optical amplifiers (SOAs) and a continuous wave probe. To un-
ambiguously determine the direction of P⃗ within the cavity, we
construct a single-mode fiber-based polarization-maintaining cav-
ity in which the forward and backward paths are isolated via in-
line polarization components. This configuration, furthermore,
helps avoid any effects of spatial-hole burning. By increasing
the net gain in the cavity, we identify the transition from an
all-forward regime for P⃗ to a regime where the energy flow is
segmented into forward- and backward-pointing P⃗ sections sep-
arated by a null in P⃗ once Poynting’s threshold is exceeded. Since
the cavity net gain determines Poynting’s threshold, a tunable pas-
sive intra-cavity element in addition to a fixed gain element can be
exploited to controllably reverse the direction of P⃗ in the cavity.
This concept suggests a potential methodology for optical switch-
ing in non-Hermitian photonic systems.

2. ACTIVE-CAVITY MODEL

We first introduce a simple one-dimensional active-cavity model
that captures the relevant physics. Consider the planar cavity
shown in Fig. 1 consisting of two lossless mirrors M1 and M2

(reflectivities R1 and R2, respectively) sandwiching a layer of
thickness L and complex refractive index n � nr � ini; here,
the positive (negative) sign of ni corresponds to loss (gain).
We assume scattering boundary conditions, whereupon a scalar
probe is incident normally on the cavity from the left and there
is no incoming wave from the right.

Solving Maxwell’s equation in the active cavity subject to these
boundary conditions yields forward E f �z� and backward Eb�z�
field distributions for monochromatic waves along the cavity axis
z, and corresponding intensities I f �z� and Ib�z�, respectively,
with I f �z� given by

I f �z� �
�1 − R1�G�z�

1� R1R2G2 − 2
ffiffiffiffiffiffiffiffiffiffi
R1R2

p
G cos φ

; (1)

here, φ is the cavity round-trip phase; G ≥ 1 is the single-pass
cavity gain; G�z� � egz is the gain after traversing a distance z
from M1, where g � 2jnijk and k is the wave number, such that

G�0� � 1 and G�L� � G; and I f �z� is normalized such that
the incident intensity is unity (see Supplement 1 for a detailed
transfer-matrix formulation of this cavity model). In contrast to
studies of fast light in resonant gain media, we consider here a broad
gain bandwidth with constant G. If gain is replaced by loss, then
the cavity single-pass gain G > 1 in Eq. (1) is simply replaced by
the cavity single-pass loss L < 1. The intensity of the forward and
backward propagating waves are related (Supplement 1) via

I f �z�
I b�z�

� 1

R2

�
G�z�
G

�
2

: (2)

Critically, this relationship is independent of φ and thus ap-
plies on and off the cavity resonances. Poynting’s vector P⃗�z� �
1
2
RfE⃗ × H⃗�g � Pz ẑ has a single axial component,

Pz�z� �
nr
2ηo

fjE f �z�j2 − jEb�z�j2g �
ni
ηo

IfE f �z�E�
b�z�g (3)

≈ I f �z� − I b�z�; (4)

whereRf·g and If·g indicate the real and imaginary parts, respec-
tively, and ηo is the free-space electromagnetic impedance. The sec-
ond term on the right-hand side of Eq. (3) is usually neglected,
although it can have significant impact in some cases; see
Ref. [38]. In our experiment, this interference term is negligible
with respect to the first term in Eq. (3), as we confirm below [30].
Therefore, P⃗ points forward (Pz > 0) in the direction of the in-
cident wave whenever I f �z� > I b�z�, and points backward towards
the source otherwise, I f �z� < I b�z� → Pz < 0.

Scattering boundary conditions enforce a constraint on
the forward and backward waves at the cavity exit: I f �L�∕I b�L� �
1∕R2 ≥ 1. In addition to applying on- and off-resonance, this con-
dition applies to active and passive cavities; in all cases,
I f �L� ≥ I b�L�, and P⃗ consequently always points forward at the
cavity exit. This constraint serves to anchor the problem and dictates
the direction of P⃗ within the cavity by back propagating the fields
from z � L. At the cavity entrance z � 0, on the other hand, we
have I f �0�∕I b�0� � 1∕�R2G2�, a ratio that may be larger or
smaller than unity. If I f �0� > I b�0�, P⃗ points forward, which
applies to passive and low-gain cavities, when I f �0� < I b�0�, P⃗
reverses direction and points backward towards the source. Of

Fig. 1. Concept of Poynting’s vector reversal in an active planar photonic cavity defined by mirrors M1 and M2 having reflectivities R1 and R2,
respectively. The cavity forward I f �z� and backward I b�z� waves are depicted in red and blue, respectively, and the large arrows below the cavity cor-
respond to Poynting’s vector P⃗�z�. The size of the arrow corresponds to the amplitude of P⃗�z�. (a) In a lossy cavity, I f �z� and Ib�z� decay, and P⃗ points in
the forward direction everywhere. At the cavity exit z � L, Ib�L�∕I f �L� � R2 < 1, where R2 is the reflectivity of M2. (b) In a passive cavity (no gain or
loss), I f �z� and I b�z� are constant along z, with I b�z� < I f �z�, and P⃗ points in the forward direction everywhere. (c) In an active cavity, I f and I b grow in
reversed directions with respect to the lossy cavity in (a); P⃗ still points in the forward direction everywhere. (d) By increasing gain to Poynting’s threshold
G � GP � 1∕

ffiffiffiffiffi
R2

p
, a null develops in the power flow at the entrance P⃗�0� � 0. (e) Increasing G > GP, the null in GP moves within the cavity, which is

now split into two sections, with P⃗ reversing its direction such that it points toward the source in the section closer to the cavity entrance.
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particular interest is the transition threshold I f �0� � I b�0� between
these two regimes, whereupon P⃗ is extinguished at z � 0. This
critical gain value, which we call “Poynting’s threshold,” corresponds
to a cavity single-pass gain of GP � 1∕

ffiffiffiffiffi
R2

p
. Note that Poynting’s

threshold always precedes the lasing threshold GL �
1∕

ffiffiffiffiffiffiffiffiffiffi
R1R2

p
> GP; that is, GP is always a sub-lasing gain value.

We are now in a position to examine the dynamics of P⃗ along a
cavity, starting from a lossy condition and gradually compensating
for the loss until the cavity has net gain; five instances are depicted
in Figs. 1(a)–1(e). Starting from I f �L� > I b�L� at the exit of a lossy
cavity (ni > 0), we back propagate the forward and backward
waves to the entrance [see Fig. 1(a)]. Here, I f �z� > I b�z�, and
P⃗ points forward everywhere, but its amplitude decays with z.
In a lossless cavity (ni � 0), P⃗ again points forward everywhere,
but its amplitude is independent of z [see Fig. 1(b)].

The situation changes once the cavity becomes active (ni < 0)
[Figs. 1(c)–1(e)]. Here, the growth directions for I f �z� and I b�z�
are in opposition to those in the passive case. For values ofG < GP,
P⃗ still points forward everywhere, but its amplitude now grows with
z [see Fig. 1(c)]. When Poynting’s threshold is reached, G � GP,
we have I f �0� � I b�0�, and a null develops in P⃗ at the entrance,
P⃗�0� � 0 [see Fig. 1(d)]; P⃗�z� points forward otherwise. When
G > GP, a new situation arises. For the first time, I f �0� <
I b�0� [Fig. 1(e)], and the null in P⃗ moves to z � zP �
Lf1 − ln GP∕ ln Gg and the cavity divides into two segments: in
the region 0 < z < zP, P⃗ points backwards towards the source
in opposition to the probe; in the region zP < z < L, P⃗ points
forwards, in the same direction as the probe. Finally, whenG reaches
the lasing threshold G � GL, lasing is initiated and the null in P⃗
reaches the cavity midpoint z � zP � L∕2 in a symmetric cavity
(R1 � R2). Once lasing commences, the cavity becomes a non-
linear system and a different analysis is required, which we do
not pursue here. We proceed to describe the experimental arrange-
ment we have constructed to confirm these predictions.

3. EXPERIMENT

One of the critical desiderata to facilitate the observation of the
reversal of P⃗ when G > GP is that the cavity allows for probing

the forward and backward waves independently. We make use of a
single-mode fiber-based cavity in which we separate the forward
and backward paths by means of optical isolators, in-line polar-
izers, and polarization controllers, while the gain is provided by
broadband SOAs [see Fig. 2(a)]. This arrangement provides a
one-dimensional implementation that eliminates spurious spa-
tial-mode or polarization effects; it allows tuning all the cavity
degrees of freedom independently, and fiber couplers are inserted
at any location in the cavity to probe the power (see Supplement 1
for further details). We emphasize that the forward and backward
paths are spatially separated here as a matter of convenience to
unambiguously determine the direction of P⃗ (the blue and red
paths in Fig. 2), but they may of course be combined (the black
paths in Fig. 2).

The cavity is defined by symmetric fiber mirrors R1 � R2 �
R � 0.5 [see Fig. 2(b)]. The SOAs provide broadband optical gain
over a 40 nm bandwidth [see Fig. 2(c)], and the probe is a tunable
continuous wave laser centered at a wavelength ≈1551.5 nm with
a linewidth full width at half-maximum of ≈50 pm [see Fig. 2(d)].
The cavity length is ∼6 m. We calibrate the net gain G of a single
pass through the forward and backward cavity paths independently,
which takes into account all the losses but does not include the
mirror reflectivity. Therefore,G � 0 dB corresponds to the lossless
configuration, and lower values indicate a net loss. The lasing
threshold is GL � 1∕R � 3 dB, and Poynting’s threshold is
GP � 1∕

ffiffiffi
R

p � 1.5 dB. We use a low probe power ≈10 μW
to avoid any saturation effects, and we confirm the SOA linearity
by injecting a probe directly into each while operating in the cavity.

We now assess the contribution of the interference term in
Eq. (3). The SOA is InP-based with nr ≈ 3.5, while
ni � λ

2πd ln G, where d � 1.5 mm is the SOA active length that
provides a maximum gain of 30 dB, thus yielding
ni∕nr ≈ 10−4 ≪ 1. Hence, the contribution of the interference
term in Pz�z� is indeed negligible.

4. RESULTS

We first present measurements of the power of the forward and
backward waves at the cavity exits, I f �L� and I b�L�, respectively,

Fig. 2. (a) Schematic of the fiber-based optical setup used to observe the reversal of Poynting’s vector. Lines correspond to single-mode fibers. Red and blue
fibers contain solely forward or backward waves, respectively, while black fibers contain both forward and backward waves. Symmetric 3 dB fiber couplers
probe the forward and backward waves at the cavity entrances I f �0� and I b�0� and exits I f �L� and I b�L�, respectively. (b) Measured spectral reflectivity R of
the mirrors. (c) Amplified spontaneous emission from an SOA, which serves as a measure of its spectral gain. (d) Spectrum of the probe laser.
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obtained at the positions identified in Fig. 2(a) while varying G
over a range extending from a passive configuration up to
GL � 3 dB. As predicted theoretically, at the cavity exit,
I f �L�∕I b�L� is a constant when G < GL, as is clear from the fixed
3 dB difference (since R � 0.5) on the logarithmic scale in
Fig. 3(b). Consequently, P⃗�L� always points forward in the direc-
tion of the probe. We contrast these measurements with those
obtained at the cavity entrance, probed at the points shown in
Fig. 2(a). Here, the ratio of forward to backward propagating

waves is I f �0�∕I b�0� � 1∕�RG2�, which decreases with G until
G � GP � 1.5 dB, whereupon I f �0� � Ib�0� and thus P⃗ � 0
[see Fig. 3(a)]. The measurements reveal unambiguously that
I f �0� < Ib�0� in the range GP < G < GL, whereupon the direc-
tion of P⃗ is reversed. The measurements are in excellent agree-
ment with our theoretical model (Supplement 1).

These results are further elucidated by measuring I f �z� and
I b�z� along the cavity. The principle of the measurement is illus-
trated in Figs. 4(a) and 4(b). Any position z along the cavity

Fig. 3. Measured forward and backward power, I f �z� and I b�z�, respectively. (a) Measured I f �0� and Ib�0� at the cavity entrance z � 0 with the cavity
net gain G. Schematics of the intensity distributions in the vicinity of the entrance are provided on top for the four identified values of G, (i) through (iv).
(b) Measured I f �L� and I b�L� at the cavity exit z � L with G. Schematics of the intensity distributions in the vicinity of the exit are shown on top for the
values of G identified in (a). Here, (i) corresponds to a lossy case, (ii) to lossless, (iii) to Poynting’s threshold, and (iv) to the lasing threshold.

Fig. 4. Measuring P⃗ along a planar cavity. (a) Schematic of the intensity distribution along a cavity above Poynting’s threshold. (b) The cavity is
conceptually sectioned into two segments at position z and probes obtain the values of I f �z� and I b�z�. (c) Schematic of the optical setup to probe I f �z�
and Ib�z�. We show the arm of the setup in Fig. 2(a) carrying the backward wave after replacing the SOAwith two SOAs separated by a coupler to probe
the signal. A similar modification is applied to the arm carrying the forward wave. (d) Measured values of I f �z� and Ib�z� for selected values of net gain:
G1 � −2 dB (lossy cavity), G2 � 0 dB (lossless cavity), G3 � 1 dB (active cavity <GP), G4 � GP � 1.5 dB, and G5 ≈ 3 dB < GL (pre-lasing). The
bottom horizontal axis in each panel is the normalized cavity length z∕L, while the top axis is the gain of SOAa or G�z�. The dashed lines are theoretical
plots that makes use of the experimental values of single-pass gain.
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divides it into two segments of length z, and L − z has net gains
G�z� and G�L − z�, where G�z�G�L − z� � G, or G�z� �
G�L − z� � G in logarithmic scale. This configuration is cap-
tured by replacing each SOA having gain G by a cascade of
two SOAs, say SOAa and SOAb with gains Ga and Gb, respec-
tively, such that GaGb � G. Therefore, setting Ga � G�z� and
Gb � G�L − z� in both the forward and backward paths maps the
point between SOAa and SOAb to the axial position z, and prob-
ing the forward and backward waves at this point yields I f �z� and
I b�z�, respectively, and thus P⃗�z� [see Fig. 4(c)]. By holding G
fixed and increasing Ga from 1 to G while concomitantly decreas-
ing Gb from G to 1 (maintaining a fixed overall gain), measure-
ments at the point between SOAa and SOAb thus map the full
range between I f �0� to I f �L� and I b�0� to I b�L�.

We have measured I f �z� and Ib�z� at five values of G [see
Fig. 4(d)]. At a net loss of G1 � −2 dB see [Fig. 4(d-i)], I f �z� >
I b�z� at all z, and P⃗ points forward everywhere and decays from
the entrance to the exit. In the lossless configuration G2 ≈ 0 dB,
I f �z� � I b�z� for all z and P⃗�z� is a constant [Fig. 4(d-ii)].
Transitioning into the active regime at G3 � 1 dB <GP, the
slopes of I f �z� and Ib�z� are reversed with respect to the lossy
case G1 [see Fig. 4(d-iii)]. Nevertheless, we still have
I f �z� > Ib�z�, and P⃗ points forward everywhere. At G4 ≈
GP � 1.5 dB, a null in P⃗ appears at the cavity entrance [see
Fig. 4(d-iv)], and at G5 ≈ 3 dB >GP, this null migrates inside
the cavity [see Fig. 4(d-v)] to the position zP. In all these cases,
at the exit, I f �L� and I b�L� differ by 3 dB, a value that is anchored
by the scattering boundary conditions, as seen on the right side of
each panel in Fig. 4(d). The only exception is when G approaches
GL and saturation effects lead to an increase in this difference
to ≈4 dB.

5. CONTROLLABLE REVERSAL OF POYNTING’S
VECTOR VIA A PASSIVE INTRA-CAVITY ELEMENT

It can be more convenient, nevertheless, to reverse P⃗ by tuning a
passive rather than an active element. In this section, we demon-
strate that the direction of P⃗ at a fixed point in a structured active
cavity may be reversed without changing its amplitude via a passive
intra-cavity element [see Fig. 5]. Here, the cavity contains an ac-
tive element providing a fixed gain G f > GP and a tunable lossy
element L, such that the net gain is G � G f � L (in logarithmic
scale). When L � 0 dB and G > GP, P⃗ points backwards at the
cavity entrance [see Fig. 5(a)]. Increasing L reduces G, and when
G < GP, P⃗ reverses direction and points forward [Fig. 5(b)].

To observe this loss-induced reversal of P⃗, we make use of an
experimental configuration similar to that in Fig. 2(a) except for
adding a lossy element. The cavity thus consists of concatenated
loss (fiber variable optical attenuator) and gain (SOA) sections, we
add a 99∶1 fiber coupler to probe P⃗ at the cavity entrance as
depicted in Fig. 5(c), and care is taken to eliminate any extra re-
flections, so that coherent feedback is provided solely by the end
mirrors M1 and M2 (Supplement 1). To increase the range of
values of P⃗ that may be switched without changing the ampli-
tude, we must maximize the difference between GP and GL,
the range over which P⃗ points backward. In an asymmetric cavity
where R1 ≠ R2, GL∕GP � 1∕

ffiffiffiffiffi
R1

p
; therefore, reducing R1 will

help increase this tuning range. In our experiment, R1 � 0.04
and R2 � 0.5, which yields a span ΔG � GL − GP ≈ 7 dB.
The gain is fixed throughout the experiment, and only L is varied.
We plot in Fig. 5(d) the measured power of the forward and

backward waves I f and I b. Two regimes are observed: jLj >
jGPj and 0 < jLj < jGPj (in dB), in which P⃗ points in the
forward and backward directions, respectively. At jLj � jGPj,
P⃗ is extinguished, and its magnitude increases (while pointing
in different directions) when L is decreased or increased. We plot
the magnitude jP⃗j � jI f − I bj in Fig. 5(e) while varying L. We
observe that pairs of values of L around Poynting’s threshold,
L− and L�, produce corresponding pairs of values of P⃗, P⃗−

and P⃗�, respectively, such that jP⃗−j � jP⃗�j while having differ-
ent signs. Therefore, by changing the added loss from L− to L�,
we switch the direction of P⃗ without changing its amplitude.

Unlike traditional approaches to optical switching that rely on
electro-optic effects, our approach is based on changing a lossy
element without capacitive loading. In an on-chip realization,
changing the loss can be achieved via current injection, which
may provide certain advantages. Finally, although one may switch
the direction of beam propagation by exploiting two remote
sources, the process described here switches the propagation di-
rection locally without needing access to the source itself.

6. DISCUSSION

We have reported, for the first time to the best of our knowledge,
the observation of a predicted reversal of Poynting’s vector in an
active photonic cavity under scattering boundary conditions once

Fig. 5. Controllable reversal of Poynting’s vector at a point in a struc-
tured active cavity via a passive intra-cavity element. (a) Conceptual
structure of the active cavity. The forward and backward fields are probed
between the mirror M1 and the lossy section. At low loss and high gain
values, P⃗ is reversed. (b) When loss in increased, P⃗ points forward.
(c) Schematic of the optical setup; R1 � 0.04 and R2 � 0.5, such that
GP � 1.5 dB and GL � 8.5 dB. (d) Measured forward I f and backward
Ib waves at the cavity entrance while varying the loss. (e) Absolute value
of P⃗�z� while varying the loss. At the values of loss L− and L� on differ-
ent sides of Poynting’s threshold, P⃗ switches values from −P to �P. In
(d) and (e), the domains of forward and reversed P⃗ are delineated by red
and blue backgrounds, respectively.
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a critical gain value is exceeded, a value we term Poynting’s thresh-
old. We have also confirmed that the direction of power flow at a
point in a cavity can be switched without changing the amplitude
of Poynting’s vector by modulating a lossy intra-cavity element.
These results provide a new approach for molding the flow of light
in non-Hermitian structures where optical gain and loss are
arranged spatially in novel geometries.

The measurements were carried out in a fiber-cavity arrange-
ment where this fundamental phenomenon can be observed un-
ambiguously. The results are, however, of relevance to other
optical realizations where the structure of the cavity or the source
of optical gain are chosen differently. We note that the phenome-
non we described here relies on providing coherent gain in a cav-
ity, and thus they may also be observed in other non-Hermitian
platforms for propagating waves, including acoustics [39,40] and
phononics [41], and potentially even electronics [42] and mag-
nonics [43]. Furthermore, we have considered only deterministic
systems here, and it remains an open question what the impact of
Poynting’s threshold is in disordered active structures, especially
when the disorder leads to Anderson localization [44].
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