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Hanbury Brown and Twiss anticorrelation in disordered photonic lattices
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We report measurements of Hanbury Brown and Twiss correlation of coherent light transmitted through disor-
dered one-dimensional photonic lattices. Although such a lattice exhibits transverse Anderson localization when a
single input site is excited, uniform excitation precludes its observation. By examining the Hanbury Brown–Twiss
correlation for a uniformly excited disordered lattice, we observe intensity anticorrelations associated with photon
antibunching—a signature of non-Gaussian statistics. Although the measured average intensity distribution is
uniform, transverse Anderson localization nevertheless underlies the observed anticorrelation.
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Incoherent light gains coherence upon free-space propa-
gation, as dictated by the van Cittert–Zernike theorem [1].
The Hanbury Brown and Twiss (HBT) interferometer [2,3]
can reveal this acquired coherence by correlating intensity
fluctuations at two different points. The HBT effect is a
universal wave phenomenon that has been observed with free
electrons [4], electrons in solid-state devices [5–7], atoms
in cold Fermi gases [8,9], as well as interacting photons
in nonlinear media [10]. In typical optical HBT scenarios,
such as the original determination of the angular size of the
star Sirius A [2], the radiation source is random, while the
medium transmitting the incoherent wave is deterministic. One
might consider an alternative scenario in which a deterministic
coherent input probes a scattering medium, which becomes
itself the source of randomness. HBT measurements carried
out on the emerging partially coherent light can provide
insights into the nature of the disorder in the medium.

A particularly useful system for testing the impact of
disorder on optical statistics is that of evanescently coupled
waveguide arrays (or photonic lattices) with randomness
introduced in the transverse direction [11]. This setting
emulates time evolution of quantum-mechanical waves in
time-independent disordered potentials. Indeed, by coupling
a coherent input to a single lattice site, Anderson localization
[12] has been observed in the transverse direction upon ensem-
ble averaging [13–16]. Beyond the mean intensity observed in
such experiments, unique features of the higher-order field
correlations involved in the HBT effect have only recently
been explored [17–23]. Indeed, HBT measurements can dis-
tinguish between the so-called “diagonal” and “off-diagonal”
classes of lattice disorder, whereas such a delineation is not
possible by observing the mean field alone [18]. Furthermore,
path-entangled photon pairs propagating along such lattices
can emulate the quantum-mechanical waves associated with
fermions and bosons [17], and can exhibit colocalization and
antilocalization when the illumination is extended [19,21].

In this Rapid Communication, we report measurements
of HBT interference in disordered photonic lattices excited

*esat@creol.ucf.edu

uniformly with an extended coherent optical field. Light
emerging from such a system is no longer coherent after
ensemble averaging. The intensity fluctuations at any site
indicate a thermalization of optical statistics [24,25]. Here we
measure the correlations between fluctuations at pairs of lattice
sites. It is revealed–surprisingly—that at certain separations
anticorrelations emerge. This result implies that the optical
field exiting the lattice is characterized by non-Gaussian
statistics that correspond to photon antibunching. We argue
that the mechanism underlying this behavior stems from the
transverse localization of light, although localization itself is
not observed in the averaged intensity because the excitation
is extended [24]. Numerical simulations for both diagonal
and off-diagonal disorder when the input is uniform show
no significant distinctions between the correlation functions in
contrast to the single-site excitation case in [18]. This is a clear
indication that the excitation configuration plays an important
role in shaping the correlation function. While off-diagonal
disorder is associated with chiral symmetry, diagonal disorder
is not. Nevertheless, the input excitation can help break chiral
symmetry. Single-site excitation maintains chiral symmetry,
while uniform excitation does not [25,26].

The dynamics of optical propagation along disordered
photonic lattices consisting of an array of evanescently coupled
parallel waveguides is captured by a generic tight-binding
model [11]. The optical field is described by a set of coupled
discrete Schrödinger equations,

−i
dEx

dz
= βxEx + Cx,x−1Ex−1 + Cx,x+1Ex+1, (1)

where Ex is the complex field amplitude and βx is the
propagation constant at the xth site, and Cx,x+1 is the
coupling coefficient between waveguides at lattice sites x and
x + 1. Diagonal disorder corresponds to constant coupling
coefficients Cx,x+1 = C and randomly selected propagation
constants βx , which is implemented by fixing the separations
between waveguides of varying refractive index or width. On
the other hand, off-diagonal disorder corresponds to fixing
the propagation constants βx = β and randomly varying the
coupling coefficients, which is realized by implementing
random separations between identical waveguides. In the

2469-9926/2016/94(2)/021804(4) 021804-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.021804


RAPID COMMUNICATIONS

H. ESAT KONDAKCI et al. PHYSICAL REVIEW A 94, 021804(R) (2016)

FIG. 1. Experimental setup for HBT measurements. A cylindrical
lens focusing along the vertical direction (focal length f = 4 cm)
couples an input coherent plane wave to the array. An imaging lens
(focal length f = 3.5 cm) magnifies the output facet of the waveguide
array approximately fourfold. A CCD camera records the imaged
output intensity distribution. An example of the recorded intensity I

is shown.

experimental results and numerical simulations reported here,
we choose a uniform probability distribution for the random
variables Cx,x+1 (βx) of half-width �C (�β) for off-diagonal
(diagonal) disorder. All the disorder levels are scaled with the
average coupling coefficient C.

The normalized intensity correlation function at lattice sites
x and x + �x is

g(2)(x,x + �x) = 〈IxIx+�x〉
〈Ix〉〈Ix+�x〉 , (2)

where 〈·〉 denotes averaging over an ensemble of disorder
realizations and Ix = |Ex |2 (within a multiplicative constant).
Assuming that the lattice disorder is statistically stationary
in x and that the input is uniformly extended, g(2)(�x)
depends only on the separation in coordinates �x. Therefore, a
“moving-average” approach can be implemented to produce an
ensemble from a single disorder realization instead of repeat-
ing the measurement with multiple waveguide array samples
(as confirmed in [16]). This scheme is thus similar to the
shifting and averaging utilized in the demonstration of trans-
verse Anderson localization in diagonal [15] and off-diagonal
disordered lattices [16], where the disorder was statistically
stationary but the input was swept across single lattice sites.

In our experiment, we use a femtosecond-laser-written
waveguide array consisting of 101 identical 4.9-cm-long
waveguides [27] (see Fig. 1). We implement off-diagonal
disorder in the lattice by randomly varying the coupling
coefficients between the neighboring waveguide pairs via a
reliably calibrated control of their transverse separations—as
opposed to varying the refractive index of identical waveguides
to implement diagonal disorder. The average separation of the
waveguides is 17 μm giving C ≈ 1.1 cm−1 at a wavelength
of λ = 780 nm. The coupling coefficients are drawn from a
uniform probability distribution corresponding to a disorder
level of �C = 0.4. A quasimonochromatic plane wave at λ =
780 nm from a laser diode is coupled to the waveguide array via
a cylindrical lens focusing the beam along the vertical direction
(focal length f = 4 cm). Along the horizontal direction, the
beam has a very extended Gaussian profile that is essentially
exciting all waveguides in equal amplitudes. The output facet
of the array is imaged to a CCD camera using a spherical lens
(f = 3.5 cm) with approximately ×4 magnification (Fig. 1).

We plot in Fig. 2(a) the measured intensity distribution
across the output facet of the disordered waveguide array for

FIG. 2. The output intensity distribution across the disordered
waveguide array for an extended uniform input excitation by a
coherent optical field. (a) The CCD image of the output intensity
distribution of the central 70 waveguides is depicted. Brighter colors
imply higher intensities. (b) The bars represent the total intensity (in
arbitrary units) for each lattice site obtained by vertically integrating
the intensity distribution depicted in (a), followed by binning the
intensity in discrete cells along the horizontal direction.

an extended uniform excitation. To eliminate the effects of re-
flection from the lattice boundaries, only 71 waveguides in the
lattice center are considered (removing 15 sites at both ends).
These reflection effects from the boundaries are directly linked
to ballistic expansion of the field in periodic lattices, which is
linearly proportional to the product of the average coupling
coefficient and the propagation distance, i.e., the normalized
propagation distance zC. In our case, zC ≈ 5.4 and this corre-
sponds to expansion of the field across 15 lattice sites in both
sides. Of course, the extended input excitation precludes an
observation of localization in the random intensity distribution
across the lattice. The bar plot in Fig. 2(b) is obtained in two
steps: integrating the CCD image along the vertical coordinate
y and then binning the intensity registered at each discrete site
along x. A discrete speckle pattern Ix clearly emerges across
the lattice as predicted theoretically in [24].

We now move on to the analysis of the correlations
in the experimental data. The two conditions for statistical
stationarity discussed earlier are satisfied here: (1) the disorder
is introduced into the waveguide array by independently
randomizing the coupling coefficients between each pair of
neighboring waveguides; and (2) the excitation is uniformly
extended. Consequently, the output field is statistically sta-
tionary and the correlation function depends only on the
separation in coordinates �x; that is, the intensity distribution
is statistically invariant upon transverse translation. The large
size of the lattice therefore suffices to produce an ensemble
of disorder realizations from this single array. Exploiting this
feature, we produce from the 71 lattice sites in Fig. 2(b) an
ensemble of size 40, each consisting of 31 lattice sites.

The correlation function g(2)(�x), depicted in Fig. 3(a),
has a peak value of g(2)(0) ≈ 1.6 at �x = 0. This result
confirms that the emerging light is no longer coherent, but
instead is partially thermalized [25]. Surprisingly, g(2)(�x)
takes on values below unity at waveguide separations in
the range �x = 2–7. The stationarity of the output field is
confirmed by computing the moving average of the intensity
distribution with a window of size 30. The resulting average
intensity I (�x) = 〈Ix+�x〉x = 1

40

∑55
x=16 Ix+�x is depicted in
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FIG. 3. Measured Hanbury Brown and Twiss anticorrelation at
the output of a disordered optical lattice. (a) The correlation function
g(2)(�x) as a function of the separation coordinate �x. The signature
for anticorrelation g(2) < 1 is observed in the region for which
�x = 2–7. (b) The measured mean intensity in arbitrary units,
corresponding to the same region in (a). Solid curves are theoretical
predictions. The deviation in the tail of (a) the correlation function
and (b) the mean intensity distribution from the theoretical predictions
is attributed to the finite ensemble size (40 samples) utilized in the
experiment.

Fig. 3(b) and exhibits uniform distribution confirming our
prediction. Here 〈·〉x denotes a moving average over the lattice
coordinate x. This is to be contrasted to the typical observation
of Anderson localization due to single-site excitation. The
numerical simulation shown in Fig. 3 with an ensemble size
of 105 for the disorder level and array length used in the
experiment agrees well with the measurement.

When considering thermal light exhibiting Gaussian statis-
tics and circularity [28,29], g(2) can be expressed in terms
of the second-order field correlation g(1) through the Siegert
relation [30],

g(2)(�x) = 1 + |g(1)(�x)|2, (3)

where g(1)(�x) is the normalized field correlation

g(1)(x,x + �x) = 〈ExE
∗
x+�x〉/

√
〈Ix〉〈Ix+�x〉. (4)

Consequently, g(2) for thermal light takes values above unity
whenever the field displays correlation across the measurement
points and is reduced to unity in absence of any correlation.
Measuring a value of g(2) below unity—thus violation of
the Siegert relation—indicates anticorrelation (or negative
covariance [30]) between the intensities at the measurement
sites and, moreover, that the light is not truly thermal by

virtue of its intensity fluctuations not obeying Gaussian
statistics. Gaussian behavior is associated with satisfying the
requirement of the central limit theorem, which requires the
existence of a large number of statistically independent con-
tributions. In the Anderson localization regime, this condition
is no longer satisfied since only a small number of lattice
eigenmodes are excited [25]. Consequently, the emerging light
is characterized by non-Gaussian statistics.

A question may be raised whether the reported results in
this experiment are dependent on the class of disorder used.
To address this issue, we present numerical simulations of the
correlation functions for arrays with off-diagonal and diagonal
disorder as a function of disorder level. When the input field
is uniform in amplitude and phase, there are no qualitative
differences in g(2) between these disorder classes; compare

FIG. 4. Dependence of the Hanbury Brown and Twiss correlation
function g(2)(�x) on the disorder class (off-diagonal or diagonal
disorder), disorder level (�C or �β), and excitation configuration.
(a), (b) In the two-dimensional color plot we give g(2)(�x) for
off-diagonal disorder while varying the disorder level when the
excitation is uniform (Ex = 1). The line plot on the right depicts
g(2)(�x) that exhibits the maximum anticorrelation (minimum value
of g(2)) selected from the color plot on the left (the corresponding
disorder level is given in the top-right corner). (c), (d) Same as (a)
and (b) for a lattice characterized by diagonal disorder. (e) g(2)(�x)
for a lattice characterized by off-diagonal disorder that is excited from
a single point at the center (Ex = δx,0). (f) Same as (e) for a lattice
characterized by diagonal disorder. In all panels, the ensemble size is
105 and zC = 10.
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Figs. 4(a) and 4(b) to Figs. 4(c) and 4(d). Both cases agree in
the emergence of anticorrelations between sites having certain
separations. On the other hand, upon single-site excitation the
correlation functions show qualitatively different behavior as
previously reported in [18]. Here, g(2) exhibits an oscillatory
pattern in off-diagonal disordered arrays [Fig. 4(e)] which is
absent when the disorder is diagonal [Fig. 4(f)].

These results can be understood by examining the un-
derlying symmetries of the lattice in conjunction with the
excitation configuration. It is now understood that lattices with
off-diagonal disorder feature a disorder-immune “chiral sym-
metry” which results in the lattice eigenmodes and eigenvalues
occurring in skew-symmetric pairs. This symmetry is absent
in lattices with diagonal disorder. The unique consequences
of chiral symmetry—such as the emergence of superthermal
light from a coherent input—become dormant when the mode
pairs are excited asymmetrically. A single-site excitation
maintains chiral symmetry, while uniform lattice excitation
breaks this symmetry, a condition that renders the diagonal
and off-diagonal disorder classes essentially similar to each
other. This explains the subthermal statistics observed here

g(2)(0) < 2 despite the off-diagonal disorder, which is broken
here by virtue of the uniform excitation. It is an open question
how the input excitation and lattice disorder can be designed
together to maximize the intensity anticorrelation that can be
produced by a disordered photonic lattice.

In conclusion, we have demonstrated experimentally that
the propagation of a uniformly extended coherent field in
disordered lattices results in the emergence of intensity
anticorrelations—photon antibunching—at certain waveguide
separations. This anticorrelation is verified by observing the
normalized intensity correlations drop below unity at these
separations and is supported by simulations of the propagation
dynamics. This type of violation of Siegert’s relation implies a
departure of the field statistics at the output from Gaussianity
(departure from circularity is accompanied with enhanced
correlation). Underlying this anticorrelation is the transverse
localization of light, although the localization itself is not
observed because the excitation is extended. Since a uniform
excitation configuration breaks the chiral symmetry by excit-
ing the chiral modes with unequal amplitudes, off-diagonal
and diagonal disorder behave in similar manners.
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