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Abstract—The contact resistivity of evaporated Al on 

doped silicon is examined for a range of process conditions 
common to the fabrication of laboratory silicon solar cells. 
The effects of silicon surface preparation prior to 
evaporation, sintering temperature, the use of a shutter, 
and evaporation power are investigated.  The presented 
evaporation conditions yielded the lowest published 
contact resistivity between Al and phosphorus doped Si 
over a large range of doping concentration. It is also 
demonstrated that a contact resistivity below 10-6 Ω·cm2 
can be achieved without sintering. Three-dimensional 
simulations are utilized to compare the obtained results for 
evaporated Al contacts with those for passivated contacts.  

 
Index Terms— Photovoltaic cells, silicon solar cells, contact 

resistance, metal contacts, simulation 
 

I. INTRODUCTION 

he use of evaporated Al is common in high-efficiency 
laboratory solar cells due to its properties of having low 
contact resistivity, high reflectivity, enhanced passivation 

of oxide-coated surfaces via alnealing [1, 2], compatible with 
laser patterning and photolithographic patterning. It has been 
used as the metal contact interface in both n- and p-type high 
efficiency silicon solar cells [3-6].  

Evaporated Al has not been adopted in cell manufacturing 
due to its high costs and low throughput but it could 
potentially be viable with the advancement of in-line 
evaporator systems [7]. 

It is generally observed that at a given doping 
concentration, the contact resistivity of phosphorus doped 
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contacts is approximately 2-3 orders magnitude higher than 
that of boron doped contacts, attributable to a higher barrier 
height at the contact interface for n-type silicon.  

A sintering step at a temperature between 300-500 oC is 
often included in Al-evaporated contacts to form intimate 
contact [7-9]. The sintering step is undesirable for multiple 
reasons: it incurs an additional processing time and cost; it 
requires underlying dielectric films to be compatible in 
maintaining electrical isolation and passivation after sintering; 
it increases the possibility of contaminating the silicon; and it 
can cause non-ideal recombination or p-n junction shunting 
introduced by Al spiking into the silicon [9], adversely 
impacting the open-circuit voltage VOC and fill factor FF of 
finished devices [10].  

In this work, we present a thorough investigation of the 
correlation between contact resistivity and the process 
conditions, such as the evaporation rate, sintering 
temperatures, and sample surface doping concentration. 

The characteristics of Si/Al contacts (both n+ and p+ 
doped Si) are then compared against literature values for 
passivated contacts via 3D simulations to demonstrate the 
idealised efficiency of each contacting technology in regards 
to solar cell efficiency. 

II. EXPERIMENTAL DETAILS 

The test structures are fabricated using four-inch 
mechanically polished monocrystalline, (100) orientation, p-
type, Czochralski (Cz), 100 Ω·cm wafers. The diffusion was 
performed using a high temperature quartz furnace tube with 
POCl3 vapour as the dopant source with a 2 hour 1000 oC  
furnace anneal drive-in step. The samples were then etched 
back to provide a range of surface concentrations, which were 
determined by measuring the diffusion profile using 
electrochemical capacitance-voltage (ECV) measurements. 
For the samples that were not measured directly by ECV, the 
dopant profile was assumed to be identical with that measured 
for the non-etched sample but neglecting the first x µm of the 
profile.  The depth x is selected such that the calculated sheet 
resistance of the profile equaled the measured sheet resistance 
of the sample. The measured and calculated profiles are 
plotted in Fig. 1.  

The samples were given a dip in 5% hydrofluoric acid and 
blown dry immediately prior to metal evaporation. Metal 
evaporation was performed in a vacuum bell jar, using a 
disposable tungsten boat loaded with Al pellets (5N purity). 
The vacuum jar is evacuated to 5 × 10-5 Torr using an oil 
vacuum roughing pump and a cryopump with precautions to 
prevent back streaming of oil into the chamber via 
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electronically controlled valves. The deposition rate is 
measured using a gold coated crystal (6MHz by Inficon). The 
boat power is varied between 600 W and 800 W for the 
evaporation step which corresponds to a deposition rate of 10 
Å/s to 60 Å/s respectively and evaporation is stopped when 
the Al source is depleted, determined by the deposition rate 
dropping below 3 Å/s. The thickness of evaporated Al on the 
samples is approximately 1 µm.  

 

 
Figure 1: Doping profile of samples after etch-back. 
Comparison between measured profiles and profiles calculated 
from sheet resistance shows good agreement. 

 
The contact between metal and semiconductor is 

characterised by its contact resistivity ρc (Ω·cm 2) measured by 
the transmission line method (TLM) [9, 11]. The TLM 
structure used is illustrated in Fig. 2, with pad length, l  
measuring 2 mm, width, W measuring 6 mm and gap spacing 
(dx) ranges from 13 µm to 303 µm. The structures are formed 
by standard photolithography followed by an etch using a 
metal etch solution consisting of H3PO4:H2O:HNO3 at a ratio 
of  20:4:1. Individual TLM sets are physically cut out by 
dicing saw. A Keithley 2425 sourcemeter was used to perform 
4 point measurement to eliminate systemic error of including 
the contact resistance between the probe and Al pad in the 
resistance measurements.  

 
Figure 2: Illustration of TLM structure used. 

 

III.  RESULTS AND DISCUSSION 

We investigated the effect of sintering temperature using a 
baseline evaporation recipe with the shutter opened during the 

Al pellet melting phase and using a boat power of 600 W, 
providing a maximum deposition rate of 10 Å/s. A set of 
samples were prepared as described in Section II and then 
sintered at temperatures ranging from 230 oC to 380 oC for 30 
minutes in forming gas (FGA) (5% hydrogen 95% nitrogen). 
The results are presented in Fig. 3. The results published by 
Schroder [9] and Yu [8], which were attained by depositing Al 
with an electron beam gun and annealing between 400-500 oC, 
are also included for comparison. The contact resistivity prior 
to sintering is too high to be measured reliably with TLM, and 
is excluded from the data.  Compared to the samples sintered 
at 380 oC, the contact resistivity for samples sintered at 230 oC 
is two orders of magnitude higher, and the contact resistivity 
for samples sintered at 280 oC is one order of magnitude 
higher.  

 
Figure 3: Contact resistivity results for 600 W boat power 
with shutter always opened. Sintering was performed at 
designated temperature for 30 minutes. 

 
It was observed that while it takes ~10 seconds for the 

tungsten boat to glow red, the pellets require a significant 
amount of time to melt and deposition to be detectable by the 
crystal sensor; specifically, it took 90 s, 45 s, and 35 s for boat 
powers of 600 W, 700 W and 800 W, respectively.  

By keeping the evaporation shutter open, it is possible that 
contaminating substances from the exposed tungsten boat or 
surface contaminants from the Al metal are deposited onto the 
silicon samples prior to the Al pellets evaporating, forming an 
interfacial layer at the metal-silicon interface. To protect the 
samples from contaminants during this initial warm-up phase, 
the evaporation recipe was modified to keep the shutter closed 
until the Al pellets start to evaporate. Two sets of diffused 
samples were prepared and metal evaporation was performed 
at 600 W and 800 W. The sample preparation method is as 
described in Section II, and sintering was performed between 
230 oC and 380 oC for 30 minutes in a FGA ambient. TLM 
measurements were performed before and after the sintering 
step. 

The results are presented in Figs. 4 and 5.  For both 600 W 
and 800 W, the lowest contact resistivity occurs when there is 
no sintering. Contact resistivity with no sintering, and at 
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higher doping concentration is significantly lower when a 
higher boat power is used. The contact resistivity becomes 
higher when the samples are subjected to sintering, but does 
not exceed the values measured in Fig. 3. The reason for 
having lowest contact resistivity without sintering is unknown, 
but a possible explanation is that the contact resistivity 
between Si and Al is lower than the contact resistivity between 
Si and Si/Al alloy which forms as the interfacial layer when 
sintered even below the eutectic temperature.  

The temperature of the samples during metal evaporation 
was determined to have not exceeded 80oC by direct 
evaporation of Al onto temperature sensitive strips with 
permanent color indicators. 

The measured contact resistivity for the unsintered samples 
with Al deposition power of 800 W is the lowest published to 
date for the given surface dopant concentration, and is roughly 
an order of magnitude lower than values published in [8] and 
[9]. This result is extracted from three sets of TLM structures 
which were processed simultaneously. The measurements of 
resistance versus pad spacing for all three sets and the linear 
fit are presented in Fig. 6, and the extracted parameters 
presented in Table 1.  

 
 
 

 
 
Figure 4: Contact resistivity for 600 W boat power, 120 s 
shutter delay. Sintering was performed at designated 
temperature for 30 minutes. 
 
 

 
Figure 5: Contact resistivity for 800 W boat power, 60 s 
shutter delay. Sintering was performed at designated 
temperature for 30 minutes. 
 

 
Figure 6: Resistance vs TLM pad separation for ‘As 
evaporated’ 800W deposition of Fig. 5 for different surface 
doping concentration, NS. The fit is a linear fit but presented in 
a semi logarithmic scale to enable visibility of the intercept at 
x=0.  
 
Table 1: Extracted TLM parameters for ‘As evaporated’ 
800W deposition of Fig. 5. 
 Surface doping concentration (cm-3) 

 9.9x1019 5.2x1019 3.8x1019 2.4x1019 1.2x1019 

Rsheet (Ω/□) 19.5 30.6 45.6 75.9 157.1 

2*RC (Ω) 0.015 0.033 0.040 0.103 0.597 

LT (µm) 2.3 3.3 2.6 4.1 11.4 

ρC (µΩ·cm2) 1.04 3.31 3.16 12.75 204.2 
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IV. IMPLICATION TO CELL EFFICIENCY 

Solar cell design always contains a trade-off relating to the 
contact area.  Increasing the contact area introduces more 
recombination and shading losses (for front contact devices) 
whereas decreasing the contact area introduces greater 
resistive losses due to contact resistance and current crowding. 
Thus, the low contact resistivity presented above could lead to 
a reevaluation of the optimal contact area in high-efficiency 
cells.  We demonstrate this optimisation and its ramifications 
for cell efficiency using 3D simulation with Quokka [12]. The 
unit cell used for this simulation as illustrated in Fig. 7 is an 
idealised structure with fully contacted but unshaded front 
emitter, with locally diffused rear point contact as is typical of 
Passivated Emitter Rear Locally Diffused (PERL) solar cells, 
and locally diffused Interdigitated Back Contact (IBC) cells. 
The bulk recombination is calculated using the intrinsic 
lifetime model for a bulk resistivity of 100 Ω·cm [13], 
substrate thickness of 230 µm, and a generation profile 
calculated using the AM1.5g spectrum with an optimised anti-
reflection coating, yielding 42 mA/cm2 of photogeneration.  

Since the simulation is designed with the intention of 
maximising the sensitivity to the contact recombination and 
resistive losses, all surfaces are regarded as ideal (zero 
recombination) except for the locally diffused contact region, 
and no bulk Shockley-Read-Hall (SRH) recombination is 
included.  

The rear contact fraction is optimised for each combination 
of ρc and J0 in the simulation by fixing the dot size to 20 × 20 
µm squares and varying the pitch of the contact-to-contact 
spacing. The choice of the 20 × 20 µm contact size is due to it 
being achievable by photolitography, laser processing [4], and 
within achievable range for  high resolution ink-jet 
printing[14].  

 

 
Figure 7: Geometry of the simulation unit cell, featuring a 
locally diffused rear point contact. Front refers to the 
illuminated side. The contact size is fixed at 20 x 20 µm, and 
the unit cell dimensions in x- and y-direction are varied to find 
the optimum efficiency. 

The simulation is performed for both 100 Ω·cm n-type and 
p-type wafers where the locally diffused contact is N+ doped 
and P+ doped respectively.  

The bulk resistivity is high enough that it is essentially 
considered to be intrinsic silicon under operating conditions, 

and therefore nullifies the differences of the diffused regions 
being either a back surface field (BSF, same doping polarity as 
the bulk Si), or emitter (opposite doping polarity to bulk Si). 
Therefore, the presented results for both n+ and p+ contacts 
applies irrespective of it being a BSF or emitter, which is 
particularly useful in its interpretation for IBC devices. 

Results of the simulation are presented in Figs. 8 & 9, 
where the rainbow color contours represent the maximum 
efficiency found by optimization of the unit cell pitch. The 
resulting optimal pitch is also represented as an overlaid 
yellow/orange dotted line contour. Therefore, for any position 
within the x-y axis of the plot, there exist an optimal 
efficiency, and an optimal pitch used to achieve it. Such an 
approach to efficiency potential via multidimensional 
simulations of an idealised structure was similarly employed 
in [15, 16] using equivalent circuit models, and in [17, 18] 
with consideration of crowding effects.  

The n+ contact results from this work are superimposed 
into Fig. 8, where the J0 values used for this region are 
obtained experimentally by photoconductance decay 
measurement on the samples prior to its preparation for TLM 
measurements. The results are compared to several passivated 
contacts [17-19]. The difference between highest efficiency 
attainable for Si/Al contact and passivated contacts are small, 
which fall within the efficiency range of 27.8 -28.2 %.  

A similar observation is made for p+ contacts as presented 
in Fig. 9. The Si(p+)/Al contact data is from reference [6] and 
was performed using an identical process as described for Fig. 
5 using 800 W deposition power, and 230 oC sintering in 
FGA. Results for Si(p+)/Al contacts at higher surface dopant 
concentration as plotted in Fig. 9 was extracted by combining 
measured J0 results from [20] and converting the measured 
surface doping concentration to contact resistivity by using a 
power fit to Schorder’s data in [9]. Results of passivated 
contacts from literature [19, 21] are also superimposed over 
the contour plot. The best results for direct Si/Al contact and 
passivated contacts fall between 27.4 – 27.8 % efficiency.  

In both Figs. 8 and 9 the efficiency contours plateau at a 
contact resistivity less than 10-4 

Ω·cm2, indicating that the 
resistive loss at the contact no longer limits the device 
efficiency.  It is rather the internal bulk resistance and 
recombinative losses that dominate the losses.  

As was briefly noted above, this idealised simulation case 
highlights the differences between the contact properties. If 
realistic values of surface and bulk recombination are then 
included, it will further reduce the differences between 
optimal efficiency for the different contact technologies. 

By comparing the data points of different contact 
technologies on the same plot, we are assuming negligible 
difference in optical performance of the different rear contact 
stacks. This is a reasonable approximation since intermediate 
layers on most passivated contact stacks are very thin and 
weakly absorbing to long wavelength light. 

Unless a self-aligned technique is used for diffusion and 
contact opening, perfect alignment such as is assumed for the 
simulation is impossible. A fabricated device would require 
the contact opening to be smaller than the diffused region by 
an amount reasonable to the alignment tolerance of the tool 
used. To interpret Figs. 8 and 9 for a device fabricated with 
contact opening smaller than the diffused region (such as is 
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done in [6]), then the worst case assumption is to assume the 
unpassivated J0 for the entire diffused area, and an increase in 
the contact resistivity by the ratio of contact:diffused area. 
This would result in data points being shifted towards the right 
side of the contour plot. For both the n+ and p+ contacts, the 
contact resistivity for heavily diffused Si/Al contacts is 
sufficiently low that an increase by a factor of 2 in contact 
resistivity will not decrease its optimal efficiency. 

 

 
Figure 8: Optimal efficiency for rear locally diffused n+ 
contacts as would be the case for IBC or n-type PERL. The 
rainbow colored contour plot is efficiency and the 
yellow/orange dotted line is the optimal contact fraction to 
achieve it (eg: 0.01 representing 1% rear contact area).  

 
Figure 9: Optimal efficiency for rear locally diffused p+ 
contacts as would be the case for an IBC or p-type PERL cells. 
The rainbow colored contour plot is the efficiency and the 
yellow/orange dotted line is the optimal contact fraction to 
achieve it (eg: 0.01 representing 1 % rear contact area). 

V. CONCLUSION 

The results presented in Table 1 for  
Al contact resistivity on phosphorus doped Si are the lowest 
values presented to date at their respective doping 
concentration, and we demonstrated that very low contact 
resistance is achieved without the need of a sintering step. 

The obtained results are compared to passivated contact 
technology via 3D simulation of an ideal unit cell with locally 
diffused contacts. The conclusion from these simulations is 
that direct Si/Al contacts and the best published results for 
passivated contacts (amorphous Si for n+ and and 
Molybdenum oxide contacts for p+) appear to have efficiency 
above 27.4%. Therefore, for a practical device of ~25% 
efficiency, these contact techniques will not be the limiting 
factor at optimal contact fractions. 

From a fabrication practicality point of view, in order to 
take advantage of the very low contact resistivity achievable 
via evaporated Al, advanced techniques which provide fine 
features with precise alignment are required. Such limitations 
are not fundamental limits and can be alleviated by 
advancement in technology such as adoption of high 
resolution ink-jet printing or laser patterning / doping. 
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