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Abstract: We report a compressive imaging method based on active illumination, which 
reconstructs a 3D scene at a frame rate beyond the acquisition speed limit of the camera. We 
have built an imaging prototype that projects temporally varying illumination pattern and 
demonstrated a joint reconstruction algorithm that iteratively retrieves both the range and 
high-temporal-frequency information from the 2D low-frame rate measurement. The 
reflectance and depth-map videos have been reconstructed at 1000 frames per second (fps) 
from the measurement captured at 200 fps. The range resolution is in agreement with the 
resolution calculated from the triangulation methods based on the same system geometry. We 
expect such an imaging method could become a simple solution to a wide range of 
applications, including industrial metrology, 3D printing, and vehicle navigations. 
© 2016 Optical Society of America 
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1. Introduction 
Range imaging systems, which collect three-dimensional spatial information of the object 
surface, have a wide range of applications in medical procedures [1], archaeological 
landscape mapping [2], industrial metrology, 3D printing [3], tracking, and vehicle navigation 
[4]. Range imaging systems can be roughly categorized into either passive or active sensing 
methods [5]. Passive sensing methods are cost-effective and simple in implementation, yet are 
subject to the influences of the environmental lighting condition. Active illumination has 
more degrees of freedom in controlling the properties of the light source, such as wavelength, 
polarization, coherence, temporal profile, etc., making this category more versatile in the 
application space [6,7]. Most active range sensing techniques are based on three major 
principles: (1) time of flight (TOF), (2) triangulation, and (3) wave diffraction. The central 
theme of active range imaging is using illumination to encode the depth information into the 
measurement. TOF imager, capable of long working distance (kilometers) with better 
resolution than one millimeter, has been widely employed in gaming and automobile industry. 
Wave diffraction methods, including defocusing point-spread-function engineering [8,9], 
interferometry, holography [10], etc., have major applications in precision metrology and 
microscopy, which can achieve sub-wavelength resolution but have a limited working 
distance. Triangulation methods, calculating the depth information from the illumination 
angle and the reflection spot location, are suitable for imaging range from 0.1 m to 100 m and 
can achieve a resolution from 10−6 m to 10−3 m. Spot/line scanning and Moiré pattern 
projections are among the most popular triangulation methods. 

Recently, inspired by compressive sensing [11], recovery of multiple frames from a single 
image has been demonstrated [12–15]. In these settings, the measurement is acquired at a low 
frame rate, with a temporal-spatial coding at the rate faster than the acquisition rate. The high-
frame-rate video is computationally recovered subsequently. Instead of using detection-side 
coding, in [14], a temporally varying structured illumination is introduced, so that the 
fluorescence signal can be collected by the full aperture of the microscope objective. In this 
paper, we extend the simple active illumination scheme to implementing both the range 
encoding and temporal compression simultaneously. We have built an imaging system 
prototype to validate the imaging principle and have demonstrated a compression ratio of 
five. The simulated range resolution is in agreement with the resolution calculated from the 
triangulation methods based on the same system geometry. In this paper, we implement the 
temporal and range modulation at the same time via structured illumination. High-speed 
frames and the depth map are recovered via proposed inversion algorithms. 

The paper is organized as follows. In Section 2 we develop the mathematical model of the 
imaging system. Then in Section 3, we propose an iterative reconstruction algorithm that can 
reconstruct both the reflectance and depth information at a frame rate higher than the 
acquisition rate. In Section 4, the imaging system prototype is described. Experimental results 
are presented in Section 5. Section 6 initializes some theoretical discussions on the range 
resolution and Section 7 concludes the entire paper. 

2. Forward model 
2.1 Temporal modulation 

We consider a high-speed 3D video, modeled as a four-dimensional function F(x, y, z, t). A 
single snapshot by the camera integrates the high-speed scene F(x, y, z, t) within one frame 
period T. Figure 1 shows the schematic illustration of the setup. To discern the range of the 
scene and retrieve the high-speed temporal frames, we use the active illumination H*(x, y, z, 
t) to implement encoding in both temporal and range domain. On one hand, the integration 
time T of the camera limits the bandwidth in the temporal domain. The high-speed 

modulation function H*(x, y, z, t) aliases the high frequency components of scene F(x, y, z, t) 
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into the passband of the measurement, which allows us to reconstruct the high-speed frames. 
On the other hand, the active illumination varies in the range direction, which provides 
different structural encoding along z axis. 

 

Fig. 1. The forward model of our system. The projector projects high-speed masks onto the 
scene. The scene is modulated by the projected masks h*(x, y, t), the variants of the original 
mask at different range locations. The camera integrates the modulated high-speed frames into 
one measurement. 

We use a projector to project high-speed pseudo-random binary masks onto the 3D scene. 
For a scene composed of opaque objects, F(x, y, z, t) can be represented by a reflectance 
function f(x, y, t) and a range function Z(x, y, t). Since we use a single light source, the 
modulation function H* (x, y, z, t) is determined by the original masks h*(x, y, t), and the 
range z. We establish the coordinate system with its origin at the lens of the projector. A 
snapshot measurement g(x’, y’) is: 
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where fc is the focal length of the camera, l0 is the distance between projector and camera 
along z axis. 

2.2 Range modulation 

One key contribution of our work is to reconstruct the depth information of the scene as well 
as the temporal super resolution. Different from the previous method, which modulates the 
range of the scene with varied blur kernels [8], we employ different scales and shift of the 
masks. Let hz(x, y, t) denotes the ideal projected images of the original masks h0(x, y, t) 
projected to the range z without any objects (e.g., a uniform white background). In other 
words, hz is a plane located at range z. Considering the lateral offset d (in x axis) between the 
camera and the projector as shown in Fig. 2, the ideal projected masks can be expressed as 

 0( , , ) , , ,p p pz
f f f

h x y t h x d y t
z z z

 
= + 

 
 (2) 

where fp is the focal length of the projector. With this structured illumination, the scene at 
different depths are modulated by masks with various scaling factors fp/z and the shift fpd/z, 
which are both the functions of range z. The shift is induced by the lateral offset d. The ideal 
projected masks hz can be obtained by calibrations or simulations with the parameters fp, d, 
and the origin masks h0. In other words, the ideal projected masks hz(x, y, t) are known as 
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priori. This unveils the underlying principle of the range function Z(x, y, t) mentioned in the 
previous section. Our target is: given g(x’, y’) with prior of hz, estimating the reflectance 
function f(x, y, t) and the range function Z(x, y, t). 

3. Reconstruction algorithm 
We can discretize high-speed video f, projected masks h*, and measurements g. Let 

R ×∈ x yN N

kF  denote the kth discretized frame of the scene. For each pixel (m, n), m = 1, …, Nx; 

n = 1, …, Ny, we have 

 , , , , ,
1

,
TN

m n m n k m n k
k

g h f∗

=

= ⋅  (3) 

where we consider TN  discretized high-speed video frames within the integration timeT. 

Let fk be the vectorized form of Fk. The vectorized form of the measurement can be 
expressed as 

 .
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The inverse problem can now be formulated as 

 
2

2
ˆ ˆ( ) arg min ( ).Rτ= +*

* *

f,H
f, H g - H f f  (5) 

H* is the sensing matrix corresponding to the projected masks h*, and R(f) denotes a 
regularizer which can be used to impose the sparsity of the signal in the basis such as the 
wavelet, the discrete cosine transformations (DCT) or the total variation (TV) operator [16]. 
The regularizer penalizes characteristics of the estimated f that would result in poor 
reconstruction. τ is the Lagrange parameter balancing the measurement error and the 
regularizer. There are two parameters to estimate in Eq. (5), which is non-convex. However, 
given one, the other one can be solved via existing algorithms [8,14,16]. In the following, we 
solve the problem in an alternating way by estimating one with the other one fixed. 

3.1 Resolving the scene range 

Although we cannot directly obtain the projected masks h*, we know that h* is a combination 
of different portions of the ideal masks hz at different z. Considering the spatial information as 
well as the range resolution of the reconstructed results, we divide the measurement into 
small blocks by imposing local window on the measurement and sliding the window with 
sub-window step δ in both horizontal and vertical directions to obtain a sequence of blocks 

[8]. And then we estimate a range ẑblock for each block. Let Nz and { }
1

zN

i=

iH  denote the number 

of discretized ranges and the ideal sensing matrix corresponding to the ideal projected masks 
hz(x, y, t) at ith discretized range, respectively. For each block, we can enumerate the ideal 
sensing matrices Hi and obtain Nz candidates of the reconstructed fraction of the scene f̂block as 

 
block

2

block block block block2
ˆ arg min ( ),i i Rτ= +ff g - H f f  (6) 

where i = 1, …, Nz. Equation (6) can be solved by the generally used compressive sensing 
inversion algorithms, for example, the TV based optimization algorithms [16] or the Bayesian 
algorithms [17,18]. The second step is to select the one fitting the measurement best, 
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2

block block
2

ˆˆ , arg min , 1, , ,i i
block j i zz z j i N= = =g - H f   (7) 

where zj is the jth range. Empirically, we have found adding the regularizer on each block can 
provide better results 

 
2

block block block
2

ˆ ˆarg min ( ), 1, , .i i i
i zj R i Nτ= + =g - H f f   (8) 

We assume that the depth map Z(x, y, t) does not change within one measurement, thus we 
just enumerate Nz possible sensing matrices here. For the scenarios without this assumption, 
the number of possible sensing matrices is zN

TN which grows fast with the compression rate 

NT. After we select the best range for each block, we can get the corresponding reconstruction 
for each block. This reconstruction is based on the inferred scale and shift of the original 
mask h0 and the measurement g. The final results can be obtained by fusing these 
reconstruction blocks. However, due to the spatial correlation of different blocks, we refine 
the results globally via the following step in Section 3.2. 

3.2 Refinement of the reconstruction to estimate f 

Table 1. Reconstruction algorithm 

Require: Measurement g, different scales of the mask Hi, i = 1, …, Nz 

Divide the measurement into overlapping blocks 

 For each block, do 

  Given range zi, estimate the scene of each block using Eq. (6) 

  Estimate the range for each block via Eq. (8) 

 end 

Obtain the optimal mask for each pixel 

Refine the reconstruction using Eq. (5) 

After getting the range for each pixel in Section 3.1, we can obtain the correct mask for 
each pixel. Equation (4) can now be solved via the video compressive sensing algorithms 
[12–16], which considers both the global and local information. Table 1 summarizes the 
proposed inversion algorithm. 

4. Experimental implementation 

4.1 System setup 

The schematic is shown in the Fig. 2. The projector consists of a halogen lamp (Nikon, D-
LH), a digital micromirror device (Vialux, DLP4100) and a camera lens (Nikon, 18-55mm). 
The focal length of the camera lens is 50 mm. A digital micromirror device (DMD) is an 
array of highly reflective aluminum micromirrors. The maximum frame rate of the DMD is 
22.7 kHz which is much faster than the camera. To modulate the high-speed frames of the 
scene, the projector is used to project pseudo-random binary masks onto the scene at 1000 
frames per second (fps) while the camera is acquiring the measurement at 200 fps. Objects at 
different ranges are modulated by projected masks with various shift and magnifications. The 
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shift is induced by the separation of the optical axis of the projector and the camera. It is 
worth noting that the feature size of masks acquired by the camera depends on the distances 
to the projector Lp and the distance to the camera Lc. Indeed, the pitch is proportional to the 
ratio of Lp/Lc. If the baseline of the camera and the projector are the same line, the pattern 
feature on the camera would be the same regardless the range of the objects, in which case the 
only modulation on the range is the shift. To better discern the pattern at different ranges, we 
place the camera and the projector at different locations on the z axes. The modulated objects 
are imaged by a camera lens (Nikon, 18-55mm) onto the camera (JAI, GO5000M). The 
separation of the axes of the camera and the projector is d = 135 mm. The focal length of the 
camera lens is 50 mm. To ensure the coding process remains time-invariant, we write the 
pseudo-random patterns into the memory of the DMD prior to the display, and then use an NI 
board (NI, USB 6353) to synchronize the camera and the DMD in the projector. The NI board 
generates a pulse to start the DMD display, then generates a 200 Hz square wave to trigger 
the camera. There is a fixed delay between the DMD and the camera control signals to ensure 
the synchronization of these two. We use an active area of 296 × 325 detector pixels to 
account for the 128 × 96-pixel pseudo-random patterns with additional zero-padding. 

 

Fig. 2. System geometry. The lateral offset of projector and camera is d = 135 mm. The 
distance between the projector and the camera along the z axis is l0 ≈1.3 m. θ denotes the 
projection angle. The focal lengths of the camera and the projector are both 50 mm. 

4.2 Calibration 

To implement the algorithm, we need to calibrate the sensing matrix Hi mentioned in Section 
3. Firstly, we record pseudo-random mask projected on a white board located at range zi, i = 
1… Nz. The increment of the calibrated depths is 10 mm. Secondly, we record the image from 
an all-on state DMD to correct the nonuniformity of the illumination. Thirdly, we record the 
image of an all-off state DMD for subtraction of the background. After the corrections to the 
images of the masks, we can extract Hi. The whiteboard is translated by two motor-driven 
translation stages (Thorlabs, NRT100 and Newport, LTA-HS) which give us a 150 mm travel 
range of stable and repeatable translation. Some calibrated masks at different ranges are 
shown in Fig. 3. 
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Fig. 3. Calibrated masks at different ranges. Same patterns of the 5th mask projected at 
different ranges are highlighted with the red boxes. The shift of the red boxes indicates one 
modulation on the range. The scales of the zoom in patterns is the other modulation on the 
range. 

5. Results 

5.1 Simulation results 

In this section, we conduct simulations to verify the hardware principle and the proposed 
inversion algorithms. We use masks with different scales, shown in Fig. 3 as the projected 
masks. Three ranges are used in our simulation. The resolution of the masks are 160 × 120, 
and the scales and shift of the masks are different. 

We generate the measurement by the following steps: i) generate the video frames, each 
frame contains objects at all three ranges, ii) modulate each frame with corresponding masks 
with different scales and shift corresponding to the range, iii) integrate these modulated 
frames to one measurement image shown on the top-left of Fig. 4. In the simulation, we set 
the side length of the blocks to 16 pixels and set the sub-window step δ to 4 pixels. The 
depths of the letters U, C and F are 320 mm, 390 mm and 460 mm respectively. It can be seen 
that the scene is composed of three letters at different ranges. The top letter U is the nearest 
one and moves from left to right. While the bottom letter F is furthest and stationary. The 
middle letter C moves from right to left. In the simulation, the letters are modulated by three 
different ranges corresponding to the masks at 320 mm, 390 mm and 460 mm as shown in 
Fig. 3. After running our algorithm in Section 3, we get the reconstruction results as well as 
the range for each frame in Fig. 4. It can be observed that the motion of the letters is 
reconstructed well and the range of the scene is also inferred correctly. Thereby, this 
simulation verifies the efficacy of the sensing framework and the performance of the 
proposed reconstruction algorithm. 
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Fig. 4. The measurement and the reconstructed high-speed frames of reflectance are shown in 
the top row. The corresponding depth maps are shown in the middle row. Bottom row shows 
the ground truth of the scene. 

5.2 Experimental reconstruction 

We now use the camera to capture a real high-speed 3D scene and reconstruct it. The setup 
configuration is shown in Fig. 2. Before acquiring the data, we calibrate the camera with 
checkerboard to correct the aberrations. We place two objects at different ranges, one is a 
stationary white board S1 (68 mm x 28 mm) which is located at z1 = 320 mm away from the 
projector and l0 + z1 = 1.63 m away from the camera. The other object is a circular board S2 
(36 mm in diameter) which is fixed on a fan with a notch rotating at 30 rounds per second. A 
black square tape (18 mm x 18 mm) is added to the surface of S2, serving as a reference mark. 
S2 is placed at 360 mm away from the projector. The camera is operating at 200 fps, and we 
reconstruct five frames for each measurement. The scene is shown in Fig. 1, and we show one 
measurement and reconstruction results in Fig. 5. We set the side length of the block to 16 
pixels, and set the sub-window step δ to 8 pixels. It can be observed that we can retrieve the 
scene at 1000 fps and infer the corresponding depth map. A 3D video consisting of 95 
reconstructed frames from 19 measurements is included as Visualization 1 in the 
Supplementary Materials. The computing time for one measurement on our computer with an 
8 gigabyte memory and 3.4 GHz processor (Intel, i3-4130) is 48 seconds. As our algorithm is 
based on blocks and each block is reconstructed independently, parallel computing could be 
used on a GPU which could significantly accelerate the computing time. There are some 
artifacts on the boundary of both objects, because the resolution of the depth map depends on 
the size of the block and the overlapping between the adjacent ones as mentioned in Section 
3. Whenever there is a steep slope in the block, the artifacts will appear. These can be 
improved by using blocks with more overlap with compromised computation time. In 
addition, the error of the calibration and the noise in the acquisition will deteriorate the 
reconstruction result, which is inevitable. 
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Fig. 5. The top row presents a measurement at 200 fps and the reconstructed frames of 
reflectance at 1000 fps. The object is a disk rotating at 30 rps. The red box indicates the 
position of the black tape in the first frame. The bottom row shows a photo of the stationary 
object and the reconstructed depth map. A video of 1000-fps frames has been reconstructed 
from 200-fps measurement (see Visualization 1). 

6. Discussion 
We have demonstrated the principle of our prototype, the simulations, and the experimental 
results. In this section, we discuss the range resolution of our system. For the purpose of 
simplicity, we reduce our discussion to two-dimensional coordinates (x, z), as depicted in Fig. 
2. The focal lengths of the camera and the projector are both 50 mm. The analysis of the 
range resolution is applicable to 3D situation. The camera coordinates are linked with the 

object coordinates by similar triangles, 0

c

z l x

f x

+
=

′
, where x’ is the camera coordinate, fc is the 

focal length of the camera lens. Using the system geometry, we can relate the projection angle 
to the object coordinates, cotd z xθ− = , where d is the lateral offset of the projector, and θ is 
the projection angle [7]. Combine the two equations and eliminate the lateral object 
coordinate, x, we then get the well-known triangulation relation: 

 0 .
cot

c

c

f d l x
z

x f θ
′−

=
′ +

 (9) 

Equation (9) shows that the range of the reflectance point can be uniquely identified as 
long as projection angle and the camera coordinates of the reflected point are known. It is 
worth noting that Eq. (9) differs slightly from the equations in several literature where the 
camera lens and the projector are placed on the x axis, (z = 0). Let l0 = 0, Eq. (9) will have the 
same form of the common triangulation equation. The reflectance of the surface is f(x, z), and 
the measurement is: 

 0( ) ( ) ( , ( )) ( ) ,
cot

c

c

f d l x
g x t f x z x z x d

x f
θ δ θ

θ
′ −′ = ⋅ − ′ + 

  (10) 

where t(θ) is the projection pattern. The Dirac-delta function inside the integral defines the 
triangulation relation. Despite numerous triangulation methods based on different projection 
schemes have been proposed, they share the same goal to derive the depth mapping Z(x) and 
the reflectance of the surface f(x, z) from the measurement g(x’). Equation (10) assumes that 
i) the offset distance d is small relative to the object distance z, ii) the surface range function 
Z(x) is a convex function so that the projected light reaches all the points on the object surface 
and the reflected light are not blocked by the surface. Two of the most common choices of the 
projection patterns are (a) a point or line, which has a projection function 0( ) ( )t θ δ θ θ= − ; 
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and (b) a periodic pattern (line stripes), whose projection function can be simplified 

to 0

2
( ) 0.5 0.5cos ( )t

p

πθ θ θ 
= + − 

 
, where p is the period of the stripe pattern. It becomes 

obvious how we can retrieve the depth information by treating the Eq. (10) as a transform 
from an illumination pattern t(θ) to a measurement g(x’) from a reflection point at z. For the 
point projection scenario, the illumination is a delta function. So the measurement 

0 0( ) ( )g x g x xδ′ ′ ′= −  is also a delta function. The detector coordinate is thus determined by 

the range of the reflector, i.e. 0
0 0 0

( cot ) 1 cot
1c cd z f f d

x z
z l l l d

θ θ  −′ = ≈ − +   +   
, when 0 z  l  . 

This equation shows that the shift of the point on the camera depends on the range location of 
the surface. For single point projection, the range resolution is determined by the localization 
precision of the reflected point, which is limited by the camera optics and the detector pixel 
size. For the case where the detection resolution, Δx’, is limited by the detector pixel size (Δx 

’ = 10 µm), the range resolution
2
0 3.3
c

l
z x mm

f d
′Δ = Δ ≈ . 

This formula indicates that the system with a larger offset d could have a higher range 
resolution. However, due to the consideration on the total field-of-view of the system and the 
constraints on the system form factor we chose d to be 13.5 cm. 

For the scenario where the range profile of the object is piece-wise constant, the phase-
shift of a periodic pattern projection can be determined at sub-pixel precision, depending on 
the number of available fringes. According to the equation of range resolution, the Moiré 
pattern projection therefore could lead to an improved range resolution, thanks to a finer Δx’. 

In our reconstruction method, the range z is considered as a parameter of the forward 
model H*. The reconstruction errors of each block at the different ranges are compared. The 
range is determined by selecting the one with minimum reconstruction error. Assuming the 

object is located at range z1, the resultant measurement is 11g = H f , and ˆ if  is the optimal 

reconstruction using the forward matrix Hi at range zi, the error function can be expressed as 

2 2 1 1

22

ˆ ˆ ˆ ˆ ˆ ˆ, , , ,i i i i i i i i i i− = − − = − = −g H f g H f g H f g H f g g H f H f  (11) 

where <·> denotes the inner product of the vectors. Here we impose the fact that the residue 

of the optimal projection is orthogonal to the projection itself, i.e. ˆ ˆ, 0i i i i− =g H f H f . 

Equation (11) shows that if the forward matrix is at the correct range, i.e. H1 = Hi, the optimal 
reconstruction error is a minimum. The high range discernibility is equivalent to a large 
reconstruction error by a small difference in the range, Δz. This speculation is consistent with 
the analysis from the triangulation equation. For the reflective surface with the same range 
change, the more significant (shift and magnification) change of the projection pattern, the 
better the range resolution. To quantify the range resolution, we simulate the projected masks 
at different ranges and numerically modulate a planar rotational fan with the mask at range 
320 mm. Then we reconstruct the high-speed scene using the mask Δz away from 320 mm. 
The profile of the normalized reconstruction error which is defined in Eq. (8) with the 
deviation Δz is shown as the blue curve in Fig. 6. In addition, we calculate the correlation of 
the masks with the deviation Δz. The profile of the correlation subtracted from unity is shown 
as a red curve in Fig. 6. The simulated correlation curve has an full width half maximum 
(FWHM) of 3.2 mm which fits the analysis above. The FWHM of the reconstruction error 
curve is 1.7 mm which shows our system has a potential of finer range resolution. Figure 6 
plots the reconstructed 1st frame using the masks with z deviation of 0 mm, 1 mm and 2 mm 
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from 320 mm, which shows that the range resolution of our system is similar to that of the 
single point system. 

 

Fig. 6. The simulated range resolution. The red curve is the normalized negative correlation of 
the masks. The blue curve is the normalized reconstruction error using the masks which are Δz 
away from the correct one. The inserts indicate the first frame of the reconstructed results 
using the masks with Δz = 0, 1 mm, 2 mm. 

7. Conclusion 
In this work, we describe a novel range imaging system that encodes both range and high-
speed temporal information of a scene with a series of binary random patterns projected by a 
high-speed DMD. We have demonstrated the imaging principle by reconstructing a fast-
varying scene that is ~1.7 m away from the camera. To solve the inverse problem, a block-
wise alternating algorithm has been developed to reconstruct high-speed temporal and range 
information. A 1000-fps video of reflectance intensity with depth map is reconstructed from 
200-fps measurements. In our reconstruction algorithm, the range resolution is determined by 
the sensitivity of the reconstruction error, which is inversely related to the correlation of 
projected patterns at different ranges. The simulation has demonstrated a range resolution 
better than 3.2 mm, which is in agreement with the range resolution calculated from the 
triangulation method. To improve the range resolution, a finer projection pattern and further 
optimization of the system geometry is needed. Our system is simple to implement and has 
numerous potential applications in high-speed range imaging. 
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