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Abstract: We use our recently developed beam-deflection technique to measure the 

dispersion of the nondegenerate nonlinear refraction (NLR) of direct-gap semiconductors. 

The magnitude and sign of the NLR coefficient n2(ωa; ωb) are determined over a broad 

spectral range for different values of nondegeneracy. In the extremely nondegenerate case, 

n2(ωa; ωb) is positively enhanced near the two-photon absorption (2PA) edge and is 

significantly larger than its degenerate counterpart, suggesting applications for nondegenerate 

all-optical switching. At higher photon energies within the 2PA regime, n2(ωa; ωb) switches 

sign to negative over a narrow wavelength range. This strong anomalous nonlinear dispersion 

provides large phase modulation of a femtosecond pulse with bandwidth centered near the 

zero-crossing frequency. The measured nondegenerate dispersion closely follows our earlier 

predictions based on nonlinear Kramers-Kronig relations [Sheik-Bahae et. al, IEEE J. Quant. 

Electron. 30, 249 (1994)]. 
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1. Introduction 

In semiconductors, bound-electronic nonlinear refraction (NLR), also known as the optical 

Kerr effect, is one of the dominant optical nonlinearities in the sub-gap regime, resulting in a 

refractive index change, Δn, directly proportional to the irradiance with coefficient n2 [1–3]. 

Owing to the fast response of bound valence electrons, the Kerr effect has been exploited for 

various ultrafast applications including Kerr-lens mode locking [4], optical limiting [5,6] and 

soliton propagation [7,8]. Another application of n2 of semiconductors is all-optical switching 

(AOS) [9–14], particularly in waveguide geometries such as nonlinear directional couplers 

[15], Mach-Zehnder interferometers [10,16] or resonant cavities [17–19], in which the 

transmission of the signal beam can be modulated by a control beam. Precise knowledge of 

the magnitude, sign, and dispersion of n2 of semiconductors is needed for the design and 

prediction of AOS devices. In general, NLR is related to nonlinear absorption (NLA) via a 

Kramers-Kronig (KK) transformation of the nondegenerate (ND) NLA spectrum [20,21]. 

This theory has been extensively used for prediction of n2 of various solids [22–24]. For a 

single beam at frequency ω, Z-scan measurements of this nonlinear refractive index, denoted 

by n2(ω; ω), have shown excellent agreement with theoretical predictions [25–28]. However, 

the ND-NLR, namely the refractive index change at frequency ωa due to the presence of a 

beam at frequency ωb, of coefficient n2(ωa; ωb), is much less explored, particularly for the 

extremely nondegenerate case (i.e. ħωa  ħωb) and for spectral regions where 2PA is 

present. 

We have observed orders of magnitude enhancement of two-photon absorption (2PA), of 

coefficient α2(ωa; ωb), using extremely nondegenerate photon pairs. Such enhancement has 
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been utilized in applications including mid-infrared pulse detection [29], 3D IR imaging [30] 

and observation of two-photon gain [31]. Linked by KK relations, the nondegenerate 

enhancement of 2PA translates into enhancement of n2(ωa; ωb) [22,32], which suggests the 

use of semiconductors for applications such as nondegenerate AOS. The enhanced n2(ωa; ωb) 

lowers the switching energy required for various device geometries [33]. Traditional AOS 

devices with degenerate or nearly degenerate signal and control beams operate best below or 

near half the bandgap energy, Eg, to avoid loss from 2PA [15,19,34]. This excludes certain 

materials to be used for efficient Kerr effect based AOS at wavelengths of interest such as the 

telecommunication band. Nondegenerate operating schemes for AOS have the potential to 

overcome such limitations, as it tailors the nonlinearities, and, in principle, allows any signal 

wavelength below the bandgap to be used without the presence of 2PA. In the extremely 

nondegenerate case, the theory predicts that when ћωa Eg, the positively enhanced n2(ωa; 

ωb) becomes anomalously dispersive and rapidly switches sign from a large positive value to 

a large negative value over a very narrow spectral range, i.e., ~10 nm [32]. This rapid 

anomalous nonlinear dispersion provides a large modulation for a femtosecond pulse with 

bandwidth centered near the zero crossing frequency. This may enable other applications such 

as nonlinear pulse shaping. However, it should be noted that the ND-2PA is also greatly 

enhanced in this same spectral region. 

In this paper, we perform an extensive experimental study of the dispersion of ND-NLR 

for three direct-gap semiconductors (ZnO, ZnSe, and CdS) using our recently developed 

beam-deflection (BD) technique [35]. BD is a highly sensitive excite-probe technique capable 

of simultaneously measuring the absolute magnitude, sign, and temporal dynamics of both 

NLR and NLA. We previously applied BD to measure the nonlinearity of fused silica [35], 

the response functions of various liquid solvents [36,37] and NLR transients of molecular 

gases [38]. Here, using very different excitation and probe wavelengths, the dispersion of the 

ND-NLR is measured over the sub-gap region, along with ND-2PA or nondegenerate three-

photon absorption (ND-3PA). We observe the resonance enhancement of NLR and the rapid 

anomalous dispersion near the bandgap. The results are compared to theoretical predictions 

from the KK transformation of [22,23]. We also define a nondegenerate figure of merit 

(FOM) for AOS in both ND-2PA and ND-3PA regimes and compare theory and experiment 

showing potential advantages with respect to the degenerate case. 

2. Theory 

As a consequence of causality in any linear system, a dispersion relation governs the real and 

imaginary parts of the frequency-domain complex response function via Hilbert transform 

pairs [39]. In optical systems, this principle results in the Kramers-Kronig transformation, 

which relates the real and imagery parts of the linear susceptibility [20]. To include nonlinear 

effects, we introduce nondegenerate perturbations on the refractive index ∆n = 2n2(ωa; ωb)Ib 

and absorption ∆α = 2αNL(ωa; ωb)Ib due to the presence of an excitation optical field at 

frequency ωb with irradiance Ib. After subtracting the linear components and dividing out Ib, 

we derive the KK transformation that relates ND-NLR with ND-NLA [22,23]. 

  
 

2 2 2

0

;
; ,

NL b

a b

a

c
n P d

  
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 


   (1) 

where αNL is the total NLA coefficient, c is the speed of light and P donates the Cauchy 

principle value of the complex integral. Note that the degenerate NLR n2(ωb; ωb) can be 

evaluated by performing the integral and then taking ωa = ωb. As discussed in [20–24], this 

method of using KK with the ND-NLA linearizes the problem since the change in absorption 

is linear in the probe irradiance. 

In semiconductors, the major physical mechanisms of αNL(ωa; ωb) consist of 2PA, 

electronic Raman and the optical (AC) Stark effect, which together can be viewed as the 
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overall change of absorption of a material due to the presence of an excitation beam at ωb. As 

graphically illustrated in Fig. 1(a), ND-2PA describes simultaneous absorption of both 

photons of frequency ωa and ωb, which requires ћωa + ћωb Eg. Stimulated Raman scattering 

leads to simultaneous absorption and emission of photons at ωa and ωb, respectively, where 

|ћωa – ћωb| Eg is required. The optical Stark effect, also referred to as virtual band blocking 

[23], can be viewed as saturation of linear absorption for ћωa Eg, caused by virtual carriers 

generated by a strong beam at ωb. The nondegenerate NLA spectra of 2PA, Raman and AC 

Stark effect were formulated previously based on a two-parabolic band model using 

perturbation theory [22,23], from which the nondegenerate n2(ωa; ωb) dispersion is calculated 

via the KK transformation resulting in; 

 2 24
( ; ) ; ,

2

p a b

a b

g ga b g

EcK
n G

E En n E

 
 

 
  

 
 

 (2) 

where Ep is the Kane energy parameter, and na and nb are the linear refractive indices at the 

respective frequencies. G2 is the dimensionless dispersion function as explicitly defined for 

each corresponding NLA mechanism in [22,23]. K is a material-dependent parameter, which 

is ~3100 cm GW
1

 eV
5/2

 from an experimental best fit in [6,40], but may vary by a factor of 

~2 from one semiconductor to another due to the simplicity in the assumption of the band 

structure [6,22,23]. This simple theory results in a generality, making it possible to predict 

NLR of various solids given the bandgap, Kane energy, linear index and optical frequencies. 

 

Fig. 1. (a) Illustrations of nondegenerate NLA processes contributing to NLR in the sub-gap 

regime; (b) calculated degenerate NLR dispersion function G2 with total contribution (solid 
line) decomposed into 2PA, Raman and AC Stark contributions (dashed lines) [22]; (c) 

calculated ND-NLR (solid lines) and ND-2PA (dashed lines) coefficients of ZnO with 

excitation photon energy ћωb of 20% (2), 15% (3) and 10% (4) of the bandgap, as compared to 
the degenerate case (1). 
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In Fig. 1(b), the dispersion function G2 for degenerate (ωa = ωb) NLR is calculated from 

[22,23], which is independent of materials and therefore represents the universal nonlinear 

dispersion of direct-gap semiconductors. The total G2 is decomposed into contributions from 

2PA, Raman, and AC Stark effect. Of these, 2PA contributes the most in the spectral region 

well below the bandgap, which grows from low frequencies to a maximum near Eg/2 (onset of 

2PA) and then becomes anomalously dispersive and ultimately turns negative as ћω 

approaches the bandgap. 

With highly nondegenerate photon pairs, the two-photon transition rate is greatly 

enhanced due to intermediate-state resonance enhancement (ISRE) of the small photon 

energy with the intraband self-transition and the larger photon energy with the interband 

transition [32,41,42]. This directly results in the enhancement of 2PA, e.g., 270 × 

enhancement measured in ZnSe using photons with a ratio of energies of 12 [32]. Based on 

the ND-2PA spectrum derived from a two-band model, the ND-NLR dispersion can be 

calculated via a KK transformation from Eq. (2). Figure 1(c) shows the calculated n2(ωa; ωb) 

and α2(ωa; ωb) of ZnO by varying ћωa from 0 to Eg with the excitation photon energy, ћωb, 

fixed at 20% (λb = 1.9 μm), 15% (2.5 μm) and 10% (3.8 μm) of the bandgap. The degenerate 

spectra of n2(ωa; ωa) and α2(ωa; ωa) are also shown for comparison. Linked by KK relation, 

n2(ωa; ωb) is positive for low ωa and grows to a maximum near the ND-2PA resonance (ћωa = 

Eg – ћωb). Then n2(ωa; ωb) becomes anomalously dispersive and ultimately switches to 

negative as ћωa approaches the bandgap. Associated with ISRE of ND-2PA, n2(ωa; ωb) is 

positively enhanced near ћωa = Eg – ћωb, and the increase of nondegeneracy (ћωa/ћωb) results 

in larger enhancement. In the extremely nondegenerate case, with ћωb only ~10% of Eg, the 

maximum n2(ωa; ωb) is enhanced by ~30 × over its zero-frequency limit (ћωa = 0), and ~9 × 

larger than the maximum for the degenerate case. However, the nondegenerate NLR changes 

sign and is not as enhanced as the ND-2PA. Also, the anomalous dispersion near the bandgap 

becomes very steep for extremely ND-NLR, and n2(ωa; ωb) can switch sign over a very 

narrow spectral range. For example, with ћωb = 0.1Eg, n2(ωa; ωb) changes from 11 × 10
5

 

cm
2
/GW to –11 × 10

5
 cm

2
/GW by varying ωa from 3.1 eV (400 nm) to 3.2 eV (388 nm). 

Picosecond pulses with narrow bandwidth might be required to resolve such rapid anomalous 

dispersion experimentally. However, one can also directly observe this nonlinear dispersion 

using a linearly chirped femtosecond pulse with its bandwidth centered near the zero crossing 

frequency of n2(ωa; ωb). This is similar to time-wavelength spectroscopy [43–46], as 

discussed in detail in Section 4. 

3. Nondegenerate beam deflection 

To experimentally measure ND-NLR of semiconductors, we utilize our recently developed 

beam-deflection technique [35–38]. BD is an excite-probe technique where we use fs pulses 

along with a temporal delay line, as shown in Fig. 2(a). The strong excitation pulse at ωb 

creates an index change Δn(r) = 2n2(ωa; ωb)Ib(r) that follows its Gaussian spatial irradiance 

distribution, shown in Fig. 2(b). The probe pulse at ωa is focused to a spot size ~3-5 × smaller 

than that of the excitation beam and is spatially displaced to the Gaussian wings off the 

excitation’s center where the index gradient is nearly constant and maximized. This deflects 

the probe by a small angle which is measured using a position sensitive segmented detector 

by taking the difference of the energy falling on the left and right halves, ΔE = Eleft – Eright, 

and normalizing to the total energy E. The BD signal, ΔE/E, is directly proportional to n2(ωa; 

ωb), and the transmission change in E is proportional to the NLA (here 2PA). By choosing 

different wavelengths of excitation and probe, BD measures the magnitudes and signs of both 

nondegenerate NLR and NLA as well as their temporal dynamics. These measurements make 

possible the determination of the material FOM. 

We use a commercial Ti:sapphire laser system (Coherent Legend Elite Duo HE + ) 

producing ~12 mJ, ~40 fs (FWHM) pulses at a 1 kHz repetition rate to pump an optical 
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parametric generator/amplifier (TOPAS-800, Light Conversion) to generate the excitation 

pulses from the idler beam at a wavelength of λb = 2.3 μm with ~150 nm bandwidth 

(FWHM), which is then focused to a beam waist of wb = 210 μm (HW1/e
2
M) at the sample. 

To obtain the probe pulses with wavelength tunability, another beam from the Ti:sapphire 

laser system is focused into a 1 cm quartz cuvette filled with water to produce a white-light 

continuum (WLC), which is then spectrally filtered using narrow bandpass interference filters 

(10-25 nm, FWHM) to select wavelengths in the range of λa = 430-750 nm. The measured 

beam waist of the probe for different wavelengths at the sample varies from wa = 30-50 μm 

(HW1/e
2
M). The beam crossing angle is kept < 2°. The linear polarization of the excitation 

and probe beams was maintained using polarizers and for most experiments was set to be 

parallel to each other; however, we also used crossed polarizations for some cases where 

noted. The deflection of the probe induced by the excitation pulse is detected using a quad-

segmented Si photodiode (OSI QD50-0-SD) placed in the far field after the sample. Both ΔE 

and E are detected via a lock-in amplifier (Stanford Research Systems, SR830) at the 285 Hz 

modulation frequency of an optical chopper in the excitation beam. While this technique is in 

principle absolutely calibrated [35,37], the relative errors between different wavelengths and 

samples can be reduced by comparing to a standard reference. In this work, all BD 

measurements of the semiconductors studied were conducted relative to the results obtained 

from a 1 mm thick fused silica sample using n2 = 2.5 × 10
16

 cm
2
/W [47]. 

 

Fig. 2. (a) Illustration of the nondegenerate BD experiment [35]; (b) spatial irradiance 

distribution of the excitation beam (red) and overlapping geometry with the probe beam (blue) 
at the sample plane. 

The bound-electronic nonlinearity leads to a nearly instantaneous response for NLR, 

which only occurs when the excitation and probe pulses are temporally overlapped within the 

sample. In extremely nondegenerate experiments, significant group velocity mismatch 

(GVM) between excitation and probe pulses causes temporal walk-off within the sample. 

Following Negres et. al. [48], we have developed a methodology to account for GVM in the 

BD analysis [37], which analytically solves the electric field distribution of the probe at the 

rear surface of the sample including the effects of NLR induced by the excitation. This allows 

us to fit BD data and extract n2(ωa; ωb). To do this, we first define the probe electric field to 

be Ea(r, z, t) = ½Ea(r, z, t)exp[i(kaz – ωat)]ê + c.c., where Ea is the complex field amplitude, r 

is the radial vector, ka = naωa/c is the wave number, and ê is the unit vector in the probe field 

direction. Within the slowly-varying-envelope approximation [2,3], the nonlinear wave 

equation is derived to describe the evolution of a weak probe propagating through the sample 

in z; 
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where ng,a is the group index of the sample at the probe frequency ωa. Here, the group 

velocity dispersion (GVD) and linear absorption are neglected. The thin sample 

approximation is also applied (external self-action [49]), meaning the sample thickness L is 

less than the Rayleigh ranges of both beams and the nonlinear induced phase distortion does 
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not propagate within the sample to produce irradiance changes on either beam. In our 

experiments with fixed ћωb, α2(ωa; ωb) is nonzero only if ћωa  (Eg – ћωb). For (Eg – ћωb) > 

ћωa  (Eg – 2ћωb), the dominant NLA becomes ND-3PA, of coefficient α3(ωa; ωb, ωb), with 

two photons from the excitation and one from the probe absorbed [50]. Assuming temporally 

Gaussian pulses following [37,48,50] and analytically solving for Ea at the back surface of the 

sample, we obtain: 
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where E0,a is the input probe field, T = (t – ng,az/c)/τb and Td are the normalized time and 

delayin the frame of the excitation pulse, respectively, and τa and τb are pulse durations 

(HW1/eM) for probe and excitation, respectively. ρ = (ng,a – ng,b)L/(cτb) is the GVM 

parameter, related to the temporal walk-off between excitation and probe pulses. Treating 

n2(ωa; ωb), α2(ωa; ωb) and α3(ωa; ωb, ωb) as invariant w.r.t. T, Eq. (4) can be further simplified 

to: 
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The probe field at the detector can be calculated by numerically propagating Ea from Eq. (5) 

via Fresnel diffraction. Then ΔE and E are calculated by spatial and temporal integration of 

the probe irradiance profile at the detector, Ia(r,t) = cε0|Ea(r,t)|
2
/2, which we fit to the 

experimental results to extract both nondegenerate NLR and NLA coefficients. 

4. Results 

Examples of measured BD signals (ΔE/E) with fits are shown in Fig. 3(a), where ZnO, ZnSe, 

and CdS, along with a 1 mm thick fused silica sample, are measured under identical beam 

overlapping geometries with excitation (ћωb = 0.54 eV) and filtered WLC probe (ћωa = 1.9 

eV). The respective beam radii are 210 μm and 35 μm. For fused silica, the GVM between 

excitation and probe pulses is negligible (ρ = 0.03 [52]), therefore ΔE/E simply follows the 

cross correlation of the two pulses. For semiconductor samples, GVM becomes a significant 

factor in interpreting the measured signals. Particularly in ZnSe and CdS, the temporal walk-

off between excitation and probe within the sample results in a broadened ΔE/E towards 

negative delays where the probe comes prior to excitation but travels at a slower group 

velocity such that the faster excitation pulse catches up and walks through the probe over a 

distance less than L. The corresponding fits (solid lines) for each material take into account 

GVM using Eqs. (4, 5) where ρ = 3.7, 8.9 and 10.2 for ZnO [53], ZnSe [54], and CdS [55], 

respectively. 

The measured dispersion of n2(ωa; ωb) for ZnO, ZnSe, and CdS is shown in Fig. 3(b-d) as 

red circles along with the theoretical calculations for both nondegenerate (red curve) and 

degenerate (black curve) cases. Errors in n2(ωa; ωb) are mainly from irradiance uncertainties 

as well as experimental noise in ΔE/E, and those in ћωa/Eg originate from the bandwidth of 

the probe. In the measurements of ZnO, shown in Fig. 3(b), ωb is fixed to ~16% of the 

bandgap, and the WLC probe is filtered at several wavelengths from 750 nm to 440 nm to 

map out the dispersion of n2(ωa; ωb). With ћωa/Eg < 0.68 (λa > 600 nm), both 2PA and 3PA 

are not possible, since ћωa + 2ћωb < Eg, and no NLA is observed, giving values of n2(ωa; ωb) 

close to the zero-frequency limit. For ћωa/Eg = 0.69 and 0.72 (570 nm and 550 nm), ND-3PA 

occurs, and we measure n2(ωa; ωb) along with α3(ωa; ωb, ωb). Significantly larger n2(ωa; ωb) 

is measured in the 2PA spectral region of ћωa/Eg = 0.82 – 0.90 (λa = 480 – 440 nm) owing to 
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the ISRE. Near the onset of 2PA (i.e., at λa = 480 nm), n2(ωa; ωb) is measured ~6 × larger than 

the degenerate n2 (black squares) at 1.06 μm measured via Z-scan near its zero-frequency 

limit [23]. The greatest nondegenerate enhancement in ZnO is measured at λa = 440 nm, 

where n2(ωa; ωb) is more than one order-of-magnitude larger than the degenerate n2 (black 

squares) at 1.06 μm measured via Z-scan near its zero-frequency limit [23] and ~3 × larger 

than the maximum of the calculated degenerate n2. But it should be noted that at the 

wavelength where n2(ωa; ωb) reaches its maximum enhancement, ND-2PA is also greatly 

enhanced. Using K = 2400 cm GW
1

 eV
5/2

 in Eq. (2), gives good agreement with the 

measured ND-NLR. Additionally, the dependence of n2(ωa; ωb) on the polarization of the 

probe with respect to that of the excitation is also investigated for selected probe wavelengths. 

For λa = 550 and 600 nm, we measure that with perpendicularly polarized waves, n2(ωa; ωb) 

becomes 3.2 × and 2.7 × smaller respectively than for the parallel polarization case. 

 

Fig. 3. (a) Examples of measured BD signals (circles) from ZnO, ZnSe, CdS, and fused silica, 

along with fits (lines) using Eqs. (3-5) considering GVM; Measured n2(ωa; ωb) dispersion (red 
circles) of (b) ZnO, (c) ZnSe, and (d) CdS, compared to theoretical calculations for 

nondegenerate (solid lines) and degenerate (dashed lines) n2 using Eq. (2); Shaded region 

represents errors from the bandwidth of the excitation pulse; degenerate n2 data is from [23] 
(open squares) and [51] (black squares). 

For ZnSe, where ћωb ~20% of the bandgap, the increase of n2(ωa; ωb) is also observed as 

ћωa increases towards the 2PA resonance as shown in Fig. 3(c). For longer wavelengths (λa = 

750 – 600 nm), ND-NLR is accompanied by ND-3PA. The data of degenerate n2 dispersion 

(black squares) of ZnSe is taken from previous measurements using WLC Z-scan [51] for 

comparison. A remarkable agreement is found between theoretical calculations and 

experimental results from both BD and WLC Z-scan measurements when using the same K = 

3900 cm GW
1

 eV
5/2

, indicating the consistency of the theory in both degenerate and 
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nondegenerate cases. This K value is similar to the previously reported K = ~4000 as the 

experimental best fit for ZnSe [22,23]. For λa = 600 and 750 nm, with perpendicularly 

polarized waves, n2(ωa; ωb) is measured to be 3.7 × and 2.4 × smaller respectively than the 

values measured with parallel polarizations. Note that the theoretical model assuming a two-

parabolic band structure cannot account for this effect [22], but these ratios may be used to 

compare to the theory considering a more realistic band structure such as Kane’s model 

[42,50]. 

As shown in Fig. 3(d), n2(ωa; ωb) of CdS is measured with ωb ~23% of the bandgap. 

Besides the nondegenerate enhancement of n2, the anomalous dispersion after the maximum, 

as well as the associated sign change, are also resolved with a probe wavelength very close to 

the bandgap (λa = 570 nm and 550nm). Particularly at λa = 570 nm near the zero-crossing 

frequency, a small value of n2 (2.2 × 10
5

 cm
2
/GW) is measured in the presence of a large 

2PA (13 cm/GW) background, indicating the excellent ability of BD for separately measuring 

NLR and NLA. Such a separation would be very difficult using other techniques, including Z-

scan. All the measured nondegenerate NLR and NLA coefficients for ZnO, ZnSe and CdS are 

summarized in Table 1. 

Table 1. Measured nondegenerate NLR and NLA coefficients for semiconductors with λb 

= 2.3 μma 

λa (nm) 
n2(ωa; ωb) (105 cm2/GW) α2(ωa; ωb) (cm/GW) α3(ωa; ωb, ωb) (103 cm3/GW2) 

ZnO ZnSe CdS ZnO ZnSe CdS ZnO ZnSe CdS 

440 6.3 ± 1.4   2.7 ± 0.6      

460 3.8 ± 0.9   0.5 ± 0.11      

480 3.6 ± 0.8   0.3 ± 0.07      
550 1.3 ± 0.3 10.6 ± 2.5 –16.3 ± 4  12.5 ± 2.8 28.8 ± 6.5 1.6 ± 0.4   

570 0.7 ± 0.15 9.1 ± 2.0 2.2 ± 0.6  3.1 ± 0.7 13.2 ± 3.0 < 0.8   

600 1.4 ± 0.3 5.5 ± 1.2 21.0 ± 6.3   50.0 ± 16  63.8 ± 16.0  
650 1.2 ± 0.25 2.9 ± 0.6 6.8 ± 1.4     38.0 ± 9.5 87.6 ± 22 

700 1.0 ± 0.22 1.8 ± 0.4 3.4 ± 0.75     25.8 ± 6.5 41 ± 10 

750 0.6 ± 0.15 2.5 ± 0.6 3.5 ± 0.75     38.4 ± 9.6 21.7 ± 5.4 
aEg measured for ZnO, ZnSe, and CdS are 3.2 eV, 2.6 eV and 2.4 eV, respectively. 

Limited by the large bandwidth of femtosecond pulses, the frequency resolution is 

insufficient to directly measure the absolute value of n2 near the bandgap in the extremely 

nondegenerate case (e.g. ZnO in Fig. 3(b)), as the theory predicts a rapid anomalous nonlinear 

dispersion followed by a sign change in a very narrow spectral range. Here we utilize a 

methodology similar to time-wavelength spectroscopy [43–46] to resolve this strongly 

dispersive NLR. In ZnO measurements with the same excitation of 2.3 μm, the WLC probe is 

filtered at a center wavelength of 430 nm to 10 nm (FWHM) bandwidth, which covers the 

zero-crossing frequency of n2(ωa; ωb) predicted by theory (422 nm). Higher and lower 

frequency components will see a negative and positive n2, respectively, as shown in the inset 

of Fig. 4(a). In this experiment, the probe pulse is assumed to be linearly up-chirped, with 

lower frequencies arriving before higher frequencies, and the pulsewidth τa is determined to 

be ~500 fs from the cross-correlation in fused silica using the same BD setup. As shown in 

Fig. 4(b), the measured ΔE/E of ZnO is greatly different from the signals shown in Fig. 3(a), 

where the dispersion of n2(ωa; ωb) over the bandwidth of the probe is negligible. Around zero 

delay, the excitation temporally overlaps the rising edge of the probe pulse (lower frequency) 

at the front surface of the sample, giving a positive signal. A negative signal is observed at a 

delay of ~– 2.5 ps, where the excitation pulse overlaps with the falling edge of the probe 

(higher frequency) at the back surface of the sample. For delays in between, the excitation 

and probe completely walk through each other within the sample, giving an averaged small 

positive signal from all frequency components. 
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Fig. 4. (a) Converted n2(T) assuming linear chirp at the front (black) and back (red) surface of 

the sample compared to the initial probe pulsewidth (blue dashed). Inset is the theoretical 

n2(ωa; ωb) dispersion (black solid) of ZnO (same as Fig. 3(b)) relative to the probe bandwidth 

(blue solid) at λa = 430 nm. (b) measured ΔE/E (black circles), compared to theoretical 

predictions based on chirping conditions at the front (red dashed) and back (red solid) surface 
of the sample along with the averaged curve (blue solid). 

To investigate this transient NLR quantitatively, the n2(ωa; ωb) dispersion is converted to 

a time-domain quantity via the instantaneous probe frequency, which is defined as 

   0, 2

2
,a a

G

at
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
   (6) 

where ω0,a is the carrier frequency of the probe (here at 430 nm), τG is the pulsewidth of the 

probe field (HW
1eM), a is the chirping parameter, which is estimated as 14 for the initial 

input pulse based on the measured pulsewidth and spectrum. Due to GVD, the probe pulse is 

chirped further upon propagating through sample, which gives a = 20.5 at the back surface of 

sample, as calculated using the linear dispersion from [53]. n2(T) is calculated by substituting 

Eq. (6) into Eq. (2), which is plotted in Fig. 4(a) for the two different chirps at the front (red 

dashed) and back (red solid) surface of the sample, where the temporal profile of the probe 

(blue dashed) is also plotted for comparison. Clearly, Eq. (5) is not applicable for predicting 

ΔE/E in this experiment because n2(ωa; ωb) in Eq. (4) cannot be assumed to be constant in the 

integral of T. But the variation of α2(ωa; ωb) is negligible within the same spectral (temporal) 

range. For extremely ND-NLR, this anomalous dispersion is very steep within the 

instantaneous frequency (or temporal profile) of the probe, so that we can take a first-order 

approximation to obtain a linear dependence of n2 on ωa(t) (or T), giving n2(ωa; ωb) = n2(T) = 

n2,0 + n2,1T. By substituting this into Eq. (4), the output probe field with ND-2PA becomes, 
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where n2,0 and n2,1 are derived from a linear fit of n2(T) at T = 0. Figure 4(b) shows theoretical 

predictions of ΔE/E calculated from Eq. (4) for an initial probe chirp of a = 14 (red dashed) 

and that after the sample of a = 20.5 (red solid). The averaged curve between the two cases 

(blue solid) leads to a better agreement of the shape of the NLR transients. Note an even 

better agreement can be achieved by varying n2,0 and n2,1 as fitting parameters. Therefore, we 

confirm the theoretical prediction of the anomalous dispersive sign switching of extremely 
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nondegenerate n2 near the bandgap, which provides a large nonlinear modulation of a 

femtosecond pulse. 

5. Nondegenerate FOM of AOS 

Owing to the large enhancement of NLR, the nondegenerate operating scheme can be 

implemented into Kerr-effect based photonic devices such as AOS, where the signal beam, 

with ωa close to the bandgap, can be modulated with an infrared control beam at ωb. With a 

larger n2(ωa; ωb), the switching irradiance of the control beam, Isw, can be significantly 

reduced for a required nonlinear phase change ∆ = 2kan2(ωa; ωb)IswL. In practice, the 

nonlinear loss terms imposed by ND-2PA and ND-3PA should satisfy 2α2(ωa; ωb)IswL < 1 and 

3α3(ωa; ωb, ωb)Isw
2
L < 1, respectively [33], from which FOMs are defined by the absolute 

value of the ratio of ∆ and loss terms as 
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where a factor of 2 is added to be consistent with other definitions (i.e., FOM2PA = 

|Re(χ
(3)

)/Im(χ
(3)

)|) [56]. For different AOS geometries, both FOMs need to be larger than 4π 

for a Mach-Zehnder (MZ) interferometer [33], 8π for a nonlinear directional coupler (NLDC) 

[21,23] and 2/3 for a Fabry-Perot (FP) filter [34,57]. Table 2 summarizes measured 

nondegenerate FOM2PA and FOM3PA for ZnO, ZnSe, and CdS based on the definitions of Eqs. 

(8) and (9). It should be noted that the most enhanced n2, measured with a probe at 440 nm, 

550 nm, and 600 nm in ZnO, ZnSe, and CdS respectively, do not result in the largest FOM. 

This is because in the spectral region where nondegenerate enhancement of NLR is 

maximized, the enhancement of 2PA is even larger, leading to a smaller FOM2PA [32]. The 

largest FOM values measured in the 2PA spectral region are either near the onset of 2PA (i.e. 

480 nm in ZnO and 570 nm in ZnSe) or near the bandgap with a negative n2 (i.e. 550 nm in 

CdS). 

As an example, Fig. 5 shows measured FOM2PA and FOM3PA of ZnSe for both degenerate 

and nondegenerate cases, along with theoretical curves calculated using Eq. (2) and α2(ωa; 

ωb) spectra from the same two-band model [22,23]. The degenerate data (black squares) are 

calculated based on the experimental results of n2 and α2 from [51]. Within the 2PA region, 

ωa/Eg > 0.5, the degenerate FOM2PA is too small to meet the criteria of all the AOS 

geometries, except ωa/Eg > 0.9 where loss from band-tail absorption increases. This 

essentially limits the operating wavelength of ZnSe for AOS to below half of the bandgap, λa 

> 928 nm. Such limitations may be overcome with nondegenerate enhancement of NLR. In 

agreement with theory, the nondegenerate FOM2PA (red circles) near the onset of ND-2PA 

(ωa/Eg ~81%) is measured to be ~7 × larger than the degenerate FOM2PA at the same 

wavelength of λa = 570 nm. The improvement over the degenerate case can become even 

larger with higher nondegeneracy (e.g. ~50 × in ZnO at λa = 480 nm). For 0.6 < ωa/Eg < 0.8, 

ND-3PA becomes the dominate loss mechanism in ZnSe as ND-2PA no longer occurs since 

ωa + ωb < Eg. Based on Eq. (9), FOM3PA is inversely proportional to Isw. In Fig. 5, 

nondegenerate FOM3PA of ZnSe is calculated from the measured parameters in Table 2 using 

two different irradiances, Isw = 10 GW/cm
2
 (green triangles) and Isw = 1 GW/cm

2
 (blue stars), 

where the smaller Isw results in significant improvement of FOM3PA over the degenerate case 
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in the same spectral region (i.e. ~340 × at λa = 700 nm) and satisfies the criteria of all AOS 

geometries. 

 

Fig. 5. Measured FOM of ZnSe in the presence of 2PA for degenerate (black squares) and 
nondegenerate (red circles) NLR, as compared to theory (solid lines) [22,23]; FOM in the 

presence of ND-3PA are based on Isw = 10 GW/cm2 (green triangles) and Isw = 1 GW/cm2 (blue 

stars). The degenerate data is from [51]. The minimum requirements for AOS geometries of a 
Mach-Zehnder (MZ) interferometer, nonlinear directional coupler (NLDC) and Fabry-Perot 

(FP) filter are included for comparison. 

Table 2. Measured nondegenerate FOM in 2PA and 3PA spectral region a, b 

λa (nm) FOM 

 ZnO ZnSe CdS 

440 6.7 ( + 3.8/-2.3)   

460 20.8 ( + 11.3/-7.6)   

480 31.4 ( + 18.7/-11.6)   
550 1238 ( + 793/-476) 1.9 ( + 1.2/-0.7) 1.3 ( + 0.7/-0.5) 

570 >1286 6.5 ( + 3.7/-2.4) 0.37 ( + 0.23/-0.15) 

600  120 ( + 75/-45) 0.88 ( + 0.8/-0.4) 
650  98 ( + 60/-36) 100 ( + 61/-36) 

700  84 ( + 52/-32) 99 ( + 61/-37) 

750  73 ( + 47/-29) 180 ( + 111/-67) 
aFOM is defined in Eqs. (8-9), where Isw = 1 GW/cm2 for FOM3PA. 
bThe asymmetric error bars are calculated based on the upper and lower limits of n2, α2 and α3 in Table 1. 

6. Conclusions 

We have presented experimental measurements on the dispersion of the nondegenerate 

nonlinear refraction of ZnO, ZnSe, and CdS using our recently developed beam-deflection 

technique. With various values of nondegeneracy, the ND-NLR coefficient n2(ωa; ωb) is 

measured over a broad spectral range, along with the corresponding ND-2PA and ND-3PA 

coefficients. To extract the values of these nonlinear coefficients, GVM has been taken into 

account in the analysis of the data. Using an excitation pulse at ωb = 0.54 eV, a positively 

enhanced n2(ωa; ωb) is measured in all direct-gap semiconductors with a probe ωa near the 

ND-2PA resonance. In ZnO, with ωb at 16% of the bandgap, more than one order-of-

magnitude enhancement of n2(ωa; ωb) over its zero-frequency limit is measured. In CdS, the 

sign change of n2(ωa; ωb) near the bandgap is also resolved. We found good agreement 
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between experimental results and our earlier theoretical predictions using nonlinear Kramers-

Kronig relations [20–23,25], in both nondegenerate enhancement and spectral dispersion 

shapes of n2. We therefore confirm the theory over an extremely large range of photon energy 

ratios, allowing predictions of the best operating wavelengths of semiconductor devices 

engineered to use cross-phase modulation. 

Based on time-wavelength mapping of a linearly up-chirped probe pulse, we also 

demonstrate the anomalously dispersive behavior of extremely nondegenerate n2(ωa; ωb) near 

the bandgap in ZnO, which rapidly switches sign from the enhanced positive n2 to a large 

negative value over a very narrow spectral range. This strongly dispersive NLR has potential 

to provide not only large but ultrafast modulation of a femtosecond pulse with bandwidth 

centered near the zero-crossing frequency to enable new applications such as nonlinear pulse 

shaping. 

This enhancement of NLR also suggests the possibility of all-optical switching based on 

the nondegenerate Kerr effect. A larger n2(ωa; ωb) significantly reduces the switching energy 

for the required phase changes for all AOS devices. Also, the magnitude, sign, and dispersion 

of NLR can be significantly tailored with nondegenerate beams by selecting the appropriate 

excitation wavelength, which can lead to advantages over its degenerate counterpart. 

Operating in a nondegenerate scheme with a control beam at a (mid-) infrared wavelength, we 

can essentially avoid 2PA in the signal beam, leaving a relatively smaller nondegenerate 3PA 

as the dominant nonlinear loss, resulting in a larger FOM3PA. Approximately 340 × 

improvement of the FOM3PA over the degenerate case at the same signal wavelength has been 

measured in ZnSe when using < 1 GW/cm
2
 switching irradiance. 
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