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Abstract: Diffraction places a fundamental limitation on the distance an optical beam propa-
gates before its size increases and spatial details blur. We show here that imposing a judicious
correlation between spatial and spectral degrees of freedom of a pulsed beam can render its
transverse spatial profile independent of location along the propagation axis, thereby arresting
the spread of the time-averaged beam. Such correlation introduced into a beam with arbitrary
spatial profile enables spatio-temporal dispersion to compensate for purely spatial dispersion
that underlies diffraction. As a result, the spatio-temporal profile in the local time-frame of the
pulsed beam remains invariant at all positions along the propagation axis. One-dimensional
diffraction-free space-time beams are described — including non-accelerating Airy beams, despite
the well-known fact that cosine waves and accelerating Airy beams are the only one-dimensional
diffraction-free solutions to the monochromatic Helmholtz equation.
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1. Introduction

When a beam of light propagates freely, diffraction leads to transverse spreading and blurring of
spatial details [1,2]. Circumventing this constraint has prompted the development of ‘diffraction-
free’ beams, which are monochromatic solutions of the Helmholtz or paraxial wave equations
whose transverse spatial profiles evolve self-similarly [3-5]. In one dimension (1D), it can
be demonstrated that only (accelerating) Airy Beams [6—8] and cosine waves [5] propagate
self-similarly. More options are available in two dimensions (2D), including Bessel [9, 10],
Weber [11-13], and Mathieu beams [14], among a hierarchy of possibilities [5, 15, 16]. Optical
nonlinearities can be exploited instead to preserve the beam profile [17], but this typically
requires the use of pulsed beams. However, maintaining the spatial profile and pulse shape —
so-called ‘light bullets’ — is challenging because such waves require either a specific material
dispersion [18—22] or nonlinearity, whereupon they become unstable [23,24]. It is useful to search
for free-space diffraction-free solutions in light of their wide range of potential applications.
Along these lines, if the spectral and spatial spatial degrees of freedom (DoFs) of the optical field
are separable, each can make use of standard solutions; e.g., an Airy pulse waveform (the only
known 1D solution) and a Bessel-beam spatial profile [25]. In other configurations, the pulsed
beam disperses temporally even when the spatial profile is maintained [26,27].

Here we show that an optical beam having an arbitrary transverse spatial profile in 1D or
2D can in principle become independent of the location along the propagation axis — given the
availability of a sufficient spectral bandwidth. The underlying principle is the introduction of
correlations between the beam’s spatial and spectral DoFs by assigning each transverse wave
vector component to a single wavelength according to a prescribed rule. Spatio-temporal cou-
pling — which is typically undesirable — occurs naturally during the propagation of ultrafast
pulsed beams [28-30] or the generation of ultra-high-power laser pulses [31]. Here we exploit
intentionally introduced space-time (ST) correlations to eliminate axial variations in a pulsed
beam during propagation by compensating for the spatial dispersion that underpins diffraction
with spatio-temporal dispersion. We examine several examples, including diffraction-free Gaus-
sian beams, ‘bottle’ beams with a non-diffracting null, and non-accelerating Airy beams. Such
ST beams may have applications in laser manufacturing [32], 3D optical lattices, and particle
trapping and manipulation [33,34].

2. Diffraction of pulsed beams

A 1D pulsed optical beam evolves according to

R | R M)

here x and z are the transverse and axial coordinates, respectively, k, and & are the correspond-
ing wave-vector components, and the ST spectrum F(ky,w) is the Fourier transform of the
initial field f(x, 0;¢). For a monochromatic beam w = w,, F(ky,w)=F (kyx)d(w — w,) so that
fx,z;0)=f(x,2; 0)e~'@o! and diffraction is driven by spatial dispersion k% = (a)o/c)z—k)zc. Such
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(a) Monochromatic beam

k

0 k,

Fig. 1. Representations of optical beams in (kx, k) space. Each point uniquely identifies a

monochromatic plane wave (ky, k;; w), w= c‘lk,zc + k%. A circle in this plane represents
all possible iso-frequency plane waves. (a) A monochromatic beam of spatial bandwidth
Ak is represented by the red arc. This representation captures the plane waves needed in
constructing such a beam but not its actual shape, which depends on the amplitudes F (k).
(b) A pulsed plane wave of spectral bandwidth Aw represented by the vertical red line. (c) A
pulsed beam of spatial and spectral bandwidths Ak and Aw, respectively, is represented by
the red patch. The beam diffracts and the pulse waveform disperses. (d) A diffraction-free
space-time beam represented by a horizontal red line corresponding to a constant k; =K.
Both spatial and temporal profiles are z-independent.

a beam is represented in (k,, k;)-space by an arc of an origin-centered circle whose horizontal
extent is the spatial bandwidth Ak, [in Fig. 1(a)]. Each point in the (k,, k. )-plane identifies a
monochromatic plane wave. Alternatively, a pulsed plane wave f(x, z;t)= f(0, z;t) for which
F(kyx,w)=F(w)d(ky) is represented in (k,, k;)-space by a vertical line whose radial extent is
the bandwidth Aw [Fig. 1(b)].

In general, the ST spectrum F(k,,w) for a pulsed beam is taken to separate into a product
of spatial Fy(k,) and temporal F;(w) contributions [the shaded region in Fig. 1(c)], so that
the initial beam in turn separates in space and time f(x, 0;¢) = fy(x) f; (). Nevertheless, the
beam subsequently loses this separability — a phenomenon known as ‘space-time’ coupling in
the propagation and focusing of ultra-short pulses [28-30, 35-37] — as a consequence of the
non-separability of k, and w in the integral in Eq. (1). We still have k)zc +k% = (w/c)?, but the
complementarity between k, and k_ is no longer strict because w varies over Aw and each k,
can be associated with a continuum of frequencies w and hence axial wave numbers k. Spatial
dispersion is thus compounded with ST dispersion: the beam diffracts and the pulse disperses.

3. Diffraction-free space-time beams

We now show that an alternative exists to thwart diffraction. Any monochromatic plane wave
(kx,w) may be excited when k, <w/c and is associated with a particular k. The key insight
is that there exists a trajectory in (ky, k,) space that guarantees all the constituent plane waves
have the same k;: the k_-iso-surface k. (ky,w)=% that fixes a hyperbolic relationship between
k, and w,

K2 = (w/c)® - k2. 2)



Research Article Vol. 24, No. 25 | 12 Dec 2016 | OPTICS EXPRESS 28663

Optics EXPRESS

Such a pulsed beam is represented in (ky, k)-space by a horizontal line [Fig. 1(d)]. This one-to-
one correspondence between |k, | and w — by imposing the constraint w (k) =wy on the (ky, w)
pairings — entails that each spatial frequency k, is ‘encoded’ on a single frequency w to ensure
that k, is independent of both k, and w. Such a beam evolves self-similarly except for an overall
phase,

flx, =™ f dkF (ky)e! Fxx=ext) =g (1), 3)

Crucially, in this conception we need not restrict ourselves to any specific 1D beam profile to
achieve diffraction-free propagation. The only requirement is to use a sufficient bandwidth Aw
of the auxiliary spectral DoF to ‘protect’ the beam’s spatial DoF [Fig. 1(d)],

Aw = Wmax — Win = (CAkx)z/zwo, “4)
where Wmin =cK, a)lznax = a)fnin+ (cAkx)z, and wo = (Wmax +Wmin) /2. This bandwidth is necessary
to ‘protect’ the beam and arrest its spreading. In general, a broader spectrum is required to
protect a beam with larger Ak, (i.e., finer details). Therefore, a beam with a highly localized
transverse profile becomes associated with a highly localized pulse; that is, there is a correlation
between localization in space and time in this conception. We refer to such a beam as a ‘space-
time’ (ST) beam since the two DoFs are inextricably intertwined or ‘entangled’. The notion of
‘classical entanglement’ has recently attracted considerable attention [38—46]. Most previous
experimental and theoretical studies of classical entanglement have focused on optical beams in
which correlations exist between discretized DoFs, such as polarization or a few spatial modes.
The diffraction-free ST beams described here rely instead on correlation between two continuous
DoFs (w and k).

The generalization to 2D optical beams is straightforward. We assign to each transverse
spatial frequency krt = (kx, ky) in the 2D spatial spectrum Fy (k,, k,) the frequency w such

that k, =ylkt|2—(w/c)? =K, which guarantees diffraction-free propagation. Therefore, all 2D
transverse spatial frequencies such that k2 + k§ =constant are encoded on the same frequency w.

4. Examples of diffraction-free ST beams

To illustrate the concept of a diffraction-free ST beam, we present in Fig. 2 an example of
a Gaussian beam in two configurations. The traditional case of a Gaussian beam of FWHM
Xo =10 um and spectral bandwidth of A4 =0.01 nm (corresponding to a FWHM pulse-width
of 94 ps) is shown in Fig. 2(a)-2(d). The ST spectrum F(ky; A1) = Fy(kx)F;(Q) is separable
[Fig. 2(a)] and so is the initial ST intensity | f(x, O; Ik [Fig. 2(b)]. The beam profile diffracts
with a Rayleigh range of zr =nw§//1 ~283 um (w, is the Gaussian beam radius [2]) [Fig. 2(c)],
whether at the pulse center | f(x, z;0)|? or in the time-averaged profile f dt|f(x,z;1)|>. The
contribution of the beam center to the pulse | f (0, z;¢) 2 consequently drops [Fig. 2(d)], while
the spatially averaged pulse f dx|f(x, z;1)|? is axi-symmetric [Fig. 2(d), inset]. Increasing the
bandwidth here reduces the pulse-width and increases the ST coupling effects [2].

By introducing hyperbolic ST spectral correlations according to Eq. (2), we obtain the non-
separable spectrum in Fig. 2(e) from Fig. 2(a). Each k is correlated to a specific 4 with an
uncertainty of 64, whereas the bandwidth A1 is determined by Ak, (Eq. (4)). The beam size
Xo =10 um requires an associated bandwidth of ~ 1 nm. The ST intensity is no longer separable
and is instead localized around x =0 and 7 =0 for all z. The transverse sections of the beam
|f(x,z;0))* and fdtlf(x, z;1)|? are invariant upon propagating a distance 20zr [Fig. 2(g)],
whereupon the Gaussian beam of identical spatial bandwidth has increased 20-fold in width
[Fig. 2(c)]. Note that the pulsewidth at x = O is determined by AA [Fig. 2(h)] whereas the
spatially averaged pulsewidth is set by 4 [Fig. 2(h), inset]. Note also that a delay in the pulse
at x =0 emerges as a result of the reorganization of energy in the time-frame of the pulse after
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Fig. 2. (a) ST spectrum F(ky, A) for a Gaussian beam of initial FWHM x, =10 ym and
AA1=0.01 nm. (b) ST intensity | f(x, O;t)l2 at z=0. Inset shows | f(x, z;t)l2 at z/zr =20.
(c) Beam profile |f(x, z;0)|2 at z/zr = 0, 10,20. The beam profiles correspond to the
peaks of the pulses at each z. Inset shows the time-averaged profile f dr|f(x,z;1)|? at the
same z. (d) Pulse shape |f(0, z; 1)|? at the beam center for z/zr =0, 10, 20. Inset is the
spatially averaged pulse shape f dx|f (x, z;1)|%, which is independent of z. All color maps
are normalized independently. (e)-(h) Correspond to (a)-(d) except that ST correlations are
introduced between kx and 4; §4=0.01 nm and Ad=1 nm. (e) The ST spectrum F(kx, 4).
(f) The ST intensity | f(x, 0; 12 is localized in x and ¢. The inset is removed since there
is no axial variation. (g) Beam profile | f(x, z; 0) |2 at z/zr =0, 10, 20. The beam profile is
z-invariant. (h) Pulse shape | (0, z; 1)|? at the beam center for z/ zr =0, 10, 20. Inset is the
spatially averaged pulse shape fdxlf(x, z;0)|2, which is independent of z.
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Fig. 3. Diffraction-free beams of arbitrary spatial profile with ST correlations introduced
between kx and A; the correlation uncertainty is 64 = 0.01 nm and the bandwidth is
AAd=1nm. (a) ST spectrum F(ky, 1) for a *bottle-beam,” where the phase along the spatio-
temporal spectrum is phase-modulated to create an odd-parity beam with a minimum at its
center. (b) ST intensity | f(x, 0; t)I2 at z=0. The inset is removed since there is no axial
variation. (c) Beam profile | f(x, z; 0) 12 at 7/zr =0, 10, 20. The beam profiles correspond
to the peaks of the pulses at each z. Inset shows the time-averaged profile f dr|f(x, z;0)|%
at the same z. (d) Pulse shape | f(0, z;7) |2 at the beam center for z/zr =0, 10, 20. Inset is
the spatially averaged pulse shape f dx|f(x,z;1)|?, which is independent of z. All color
maps are normalized independently. (e)-(h) Correspond to (a)-(d) except that the phase
modulation is e~ (kxx(’)}, which is designed to produce a non-accelerating Airy beam. (e)
Real part of the ST spectrum F(ky, A), while the inset shows the imaginary part. (f) ST
intensity | f(x, 0; )% at z=0. (g) Beam profile | f(x, z; 0)|2 at 7/zr =0, 10, 20. Inset shows
the time-averaged profile fdtlf(x, Z; t)l2 at the same z. (h) Pulse shape | f (0, z; t)l2 at the

beam center for z/zg =0, 10, 20. Inset is the spatially averaged pulse shape fdxlf(x, z02,
which is independent of z.
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propagating for a long distance [Fig. 2(h)], whereupon different parts of the transverse wave
front shift in time with respect to the center of the time-frame (we only plot the pulse at x =0).
Once the beam is integrated over the transverse plane, these local time delays vanish [Fig. 2(h),
inset]. Here, we also note that the smaller transverse width of the ST beam desired, the bigger
bandwidth AA is required, resulting in a narrower pulsewidth at x =0.

A unique advantage of our approach is that diffraction-free propagation is ensured by satisfying
the constraint in Eq. (2) without reference to the actual ST spectrum. Consequently, by modulating
F(k,, 1) we produce diffraction-free pulsed beams of arbitrary profiles. We present two examples
in Fig. 3. In the first [Fig. 3(a)-3(d)], we modulate the spectrum in Fig. 2(a) with a phase term
of the form e?**x) where u(-) is the unit-step function, so the spectrum is odd along k. The
corresponding axially self-similar ST intensity [Fig. 3(b)] now has a null at x=0: | £(0, z;1)|*>=0
and f dt|f(0, z;1)|> = 0. The result is a ‘bottle-beam’ with a diffraction-free null along z. A
second example is provided in Fig. 3(e)-3(h) where the spectrum is modulated by the phase
—imlks x°)3, which produces a diffraction-free Airy profile [Fig. 3(g)]. Note, crucially, that the
Airy profile here is not accelerating transversely and is thus a truly diffraction-free beam, in
contrast to accelerating monochromatic Airy beams.

e

5. Impact of uncertainty on diffraction-free length

The diffraction-free length is determined by the uncertainty in the relationship w(ky) = wy,
which is subject to practical restrictions on ST beam generation. In Fig. 4, we further relax the
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Fig. 4. The impact of the ST correlation uncertainty 64 on the diffraction-free propagation
length. (a) ST spectrum F(kx, A) for a Gaussian beam with ST correlations introduced
between k, and A; 64 = 0.05 nm and A4 =1 nm. (b) ST intensity |f(x,0; n%atz=0.
Insets show | f(x, z; 1)|? at z/zr =10, 20. (c) Beam profile | f(x, z; 0)|2 at 7/zr =0, 10, 20.
The beam profiles correspond to the peaks of the pulses at each z. Inset shows the time-
averaged profile fdtlf(x, z;t)l2 at the same z. (d) Pulse shape | f (0, z; z)l2 at the beam
center for z/zg = 0, 10, 20. Inset is the spatially averaged pulse shape fdxlf(x, 0%,
which is independent of z. The pulse at the beam center | £(0, z; N2 undergoes z-dependent
delay and deformation. All color maps are normalized independently.
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ST correlations and increase 64 to 0.05 nm and find that the initial ST intensity | f(x, 0; t)I2 now
diffracts [Fig. 4(c)] over the same axial range considered in Fig. 2 and Fig. 3, where the reduced
correlation uncertainty (64 =0.01 nm) arrests the beam spread.

We have examined thus far ST beams propagating across distances over which traditional
beams of comparable spatial bandwidth diffract significantly (~ 20zr). Because of the finite
correlation uncertainty 64, it is critical to examine the propagation of the beam at larger z. The
width of a Gaussian beam increases linearly when z>> zg at a rate inversely proportional to the
initial width [2]. Considering a ST beam having the same spatial bandwidth and a correlation
uncertainty of 64 =0.05 nm, we find the diffraction dynamics delineated into two regimes: a
slow diffraction regime for z <3 mm followed by a fast diffraction regime in which the width
approaches that of the traditional Gaussian beam [47,48]. Here, we define critical distance z.
that occurs at the knee separating ‘slow’ and ‘fast’ diffraction regimes (Fig. 5). Decreasing the
uncertainty to 61 =0.01 nm increases z. to ~ 16 mm [Fig. 5].
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Fig. 5. Impact of ST correlation uncertainty on the diffraction-free (DF) range z. of ST
beams compared to monochromatic Gaussian beams (A4 =0.01 nm). Smaller 1 increases
Zc.

6. Proposed realization for diffraction-free ST beams

The question remains of the feasibility of constructing such diffraction-free ST beams. We
propose an arrangement that combines traditional approaches of pulse-shaping [49-51] with
those for beam-shaping [52-54]. Starting with a separable pulsed beam f(x,¢) = f»(x)f:(¢),
where the beam profile f,(x) is generic (e.g., the TEMyy mode of a pulsed laser), the pulse
spectrum is dispersed along the y-direction via a diffraction grating and then directed to a 2D
spatial light modulator (SLM) that imprints a phase distribution in the transverse x—y plane of
the form e/*>()* (see [55-61]). Since the spectrum is spread along y, each spatial frequency
kx(y) is selected to correlate correctly to the wavelength at position y according to Eq. (2). A
second diffraction grating combines the spectrum to reconstitute the pulse, thereby producing
the desired ST beam. Preparing a diffraction-free ST beam of width 10 ym at a wavelength
of 800 nm requires a 1-nm-wide spectrum and a spatial spectrum Ak, = 556 rad/nm. These
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requirements can be fulfilled by spreading the pulse by a diffraction grating with 1800 lines/mm
that is illuminated over a 45-mm-wide section, and then directing the spectrum via a cylindrical
lens of 200-mm focal length to an SLM with 5-um-wide pixels. This system can produce the
desired ST correlation with an uncertainty of 4 =0.01 nm, corresponding to a diffraction length
of 16 mm ~ 55zr of a monochromatic beam having the same spatial bandwidth Ak,.

7. Conclusion

In conclusion, we have described a general approach to preparing diffraction-free ST beams in
1D and 2D with arbitrary cross sections. This is particularly surprising in 1D where it has been
conclusively demonstrated that only two spatial profiles (Airy and cosine) propagate with no
transverse changes — assuming monochromatic light. Relaxing the monochromaticity constraint
enables ST correlations to arrest changes in the transverse beam profile along the propagation
axis. Current technology can readily achieve a ST correlation-uncertainty of 64 ~ 0.01 nm
over a bandwidth of 1 nm, which can maintain a pulsed beam of width 10 ym and pulse-width
94.1 ps over a distance of 16-mm — sufficient for deep-tissue imaging, for instance. The ST-beam
concept can be applied to other manifestations of waves, such as acoustic and electron beams,
for instance. Finally, the theory outlined here was formulated for coherent light in free space. It
remains an open question whether this strategy can be extended to partially coherent light, to
propagation in dispersive media, and propagation in the presence of scattering perturbations.

We have recently learned that another group has been studying similar pulsed beams and
that their work will appear published concurrently with ours [62].
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