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Abstract: Second-order optical nonlinear effects (second-harmonic and sum-frequency 
generation) are demonstrated in the telecommunication band by periodic poling of thin films 
of lithium niobate wafer-bonded on silicon substrates and rib-loaded with silicon nitride 
channels to attain ridge waveguide with cross-sections of ~2 µm2. A nonlinear conversion of 
8% is obtained with a pulsed input in 4 mm long waveguides. The choice of silicon substrate 
makes the platform potentially compatible with silicon photonics, and therefore may pave the 
path towards on-chip nonlinear and quantum-optic applications. 
© 2016 Optical Society of America 
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1. Introduction

Quasi-phase matching (QPM) for three-wave mixing has enabled progress in fields such as 
telecommunications [1] and quantum optics [2,3]. Numerous three-wave optical mixers on-
chip have been investigated towards high performance integration with material systems such 
as silicon and III-V compounds. Silicon (Si) lacks intrinsic second-order nonlinearity (χ(2)), 
essential for efficient nonlinear three-wave frequency mixing, due to its centrosymmetric 
crystalline nature. Nonlinear effects demonstrated on the silicon-on-insulator (SOI) platform 
are thus typically based on third-order nonlinearity (χ(3)), which is significantly weaker than 
nonlinear mixing driven by the χ(2) tensor. Furthermore, important three-wave mixing 
nonlinear effects such as second-harmonic generation (SHG) are conveniently realized using 
χ(2) nonlinearity, and are much more difficult to implement using χ(3) nonlinearity. SHG has 
been pursued in III-V waveguides [4,5]. However, these attempts are limited by high optical 
propagation losses and difficulties of poling. 

It is well-known that lithium niobate (LiNbO3 or LN) possesses one of the highest χ(2) 
values and a broad transmission window [6]. Z-cut bulk periodically-poled lithium niobate 
(PPLN) waveguides have thus been established as the method of choice for implementing 
QPM for efficient three-wave mixing [7]. The in-diffusion of titanium into bulk LN wafers 
[8] and annealed proton exchange [9] are two methods used to define conventional LN stripe 
waveguides for QPM. However, these conventional diffused LN waveguides suffer from low 
index contrast and typically work only for transverse-magnetic (TM) waveguide modes. This 
leads to poor optical confinement, large mode sizes, and poor overlap between different 
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optical modes for three-wave mixing, such as the fundamental and second-harmonic modes 
involved in SHG and sum-frequency generation (SFG). PPLN waveguides have been reported 
in the past on bulk Z-cut [10] and X-cut [11–13] LN with normalized nonlinear conversion 
efficiencies around 40%W−1cm−2 [10–12] in telecom wavelengths. One approach to integrate 
LN on Si is metallic bonding using gold, where ~10 µm thick films of LN are bonded after 
poling on Si, with conversion efficiencies around 80%W−1cm−2 [14]. Recently, there has been 
an interest in poling X-cut thin film LN [15,16]. One effort based on thin film X-cut PPLN on 
a LN substrate has demonstrated a nonlinear conversion efficiency around 160%W−1cm−2 
[16]. 

Fig. 1. (a) Schematic of the device depicting the silicon nitride (SiN) rib, the lithium niobate 
(LN) slab, the silicon dioxide (SiO2) lower cladding, the silicon (Si) substrate, and the metal 
poling electrodes. The SiO2 top cladding is excluded for clarity; (b) & (c) COMSOLTM 
simulations of the fundamental TE waveguide modes at the pump wavelength (1580 nm) and 
the second harmonic wavelength (790 nm). 

Evidently, the most widely used QPM devices based on bulk PPLN are not directly 
compatible with state-of-the-art integrated photonics on silicon substrates or suffer from low 
efficiency due to large optical mode size. Hybrid submicron waveguides of LN integrated 
onto silicon substrates would be the ideal solution for introducing efficient χ(2) photonics on 
silicon. We have previously solved the challenge of obtaining tightly confined LN 
waveguides by ion implantation and slicing of thin films of LN heterogeneously integrated 
onto an oxidized silicon substrate, and rib loading the films with index-matching materials 
[17,18]. Different materials, such as tantalum pentoxide and chalcogenide glass have been 
previously developed for low loss [19–21] and used for rib loading the house-made LN thin 
films for demonstrating optical modulators [17,18]. Another index-matching alternative 
material with a wide transmission window used by us for modulators is silicon nitride (SiN) 
[22]. 

Fig. 2. Numerical simulations for the generation of second harmonic (S.H.) power using PPLN 
waveguides across different input CW pump powers and propagation losses for varying 
effective mode overlap areas: (a) and (b) For an input power of 100 µW, there is about an 
order of magnitude improvement in nonlinear conversion for submicron waveguides, even for 
propagation lengths up to 4 cm, irrespective of propagation loss; (c) and (d) For an power of 1 
W, the nonlinear conversion offered by submicron PPLN waveguides is ~50% in less than 1 
cm of propagation, even at a relatively high loss of 1 dB/cm, while conventional PPLN 
solutions require much longer lengths. 

A schematic of the PPLN on Si device with SiN ribs presented in this work is shown in 
Fig. 1(a). Using this structure, the first integration of a locally-poled PPLN wavelength 
converter on a silicon substrate is demonstrated. Unlike previous PPLN on Si efforts [14], the 
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poling in this work is performed locally after wafer bonding, offering greater flexibility than 
directly bonding pre-poled LN on Si. Besides, the present ion-slicing approach [17,18] avoids 
metallic bonding and the high optical loss associated with it. 

Fig. 3. Major fabrication steps (a) Y-cut LN on Si substrate (b) First lithography and etching of 
LN; (c) Metal electrode deposition; (d) Lithography and etching to completely define the 
periodic electrodes; (e) Poling of LN on Si with periodic domain reversal; (f) SiN rib definition 
by PECVD, lithography, and etching to form the ridge waveguide. Not shown in this figure is 
the final deposition of a SiO2 top cladding by PECVD. 

2. Design

The slab region of the ridge optical waveguide is formed by bonding a 400-nm-thick film of 
Y-cut LN to a lower cladding 2-μm-thick layer of SiO2 on a Si substrate. The crystal 
orientation of the LN thin film is chosen to utilize the highest nonlinear coefficient of LN, 
viz., d33 = 30 pm/V [6], for the transverse-electric (TE) waveguide modes. The z-axis of the 
LN thin film is thus aligned along the electric field of the TE mode. Waveguides are formed 
by rib-loading the LN thin films with strips or channels of SiN (Fig. 1(a)). COMSOLTM 
simulations are used to determine the poling periodicity required for the QPM of the SHG 
process with a pump wavelength in the telecommunication band, based on the dimensions of 
the SiN strips. The SiN ribs are 400 nm tall and 2,000 nm wide, resulting in a poling period 
around 5 μm for TE polarized pump and harmonic light. Around 65% of the pump and 90% 
of the second harmonic fundamental TE optical modes are confined in the LN thin film. The 
modes, simulated with COMSOLTM, are shown in Figs. 1(b) and 1(c). The simulated value of 
the normalized conversion efficiency is around 1400%W−1cm−2 for including propagation 
loss, with a mode overlap integral around 2.3 μm2 at a pump wavelength of 1,580 nm. DC 
electric field simulations run in COMSOLTM are used to determine the duty cycle of the 
poling electrodes, targeting a 50% duty cycle in the distribution of the electric field along the 
propagation axis. It is noteworthy that the final duty cycle that is obtained for the reversed 
domains is also a function of the poling time [23]. The high optical confinement leads to 
significantly enhanced nonlinear interaction, thereby reducing the device length required for 
nonlinear conversion. This is verified in Fig. 2, where the generated second harmonic power 
is numerically simulated across a wide range of effective mode overlap areas for different 
input continuous-wave (CW) power levels and propagation losses. The figure indicates a 
clear increase in nonlinear power conversion with increasing modal confinement for shorter 
propagation lengths, irrespective of the propagation loss. 
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3. Fabrication

Similar to our prior works on optical modulators [17,18], ion implantation and room-
temperature bonding are used in-house to transfer Y-cut LN thin films onto thermal SiO2 
cladding layers on silicon substrates in accordance with the design and dimensions described 
above. The fabrication steps are depicted in Fig. 3. Electron-beam lithography on a Leica 
EBPG5000 + writer, followed by dry etching using inductively-coupled plasma reactive-ion 
etching (ICP-RIE), was used to define the boundaries of the periodic electrodes. The dry etch 
was engineered to produce a pronounced LN side wall angle around 70°. This ensured good 
contact between the subsequent metal deposition and the LN sidewall for the entire depth of 
the LN film. The electrodes are sufficiently far away (> 3 μm) from the waveguide code (SiN 
rib) to avoid metallic loss of the optical waves. Metal poling electrodes with a 30% duty cycle 
(based on the COMSOLTM DC simulations discussed above) and 9 µm separation were 
fabricated using electron beam evaporation of 100 nm of chromium, lithography, and dry 
etching. The dies were poled across the etched ridges by applying high voltage pulses to the 
poling electrodes using contact probes at room temperature. Next, the SiN rib layer was 
deposited using plasma enhanced chemical vapor deposition (PECVD). This was patterned 
using electron-beam lithography, and dry-etched to form the rib-loaded region. Finally, a 2-
μm-thick SiO2 top cladding was deposited using PECVD, and the dies were diced and 
polished. 

Fig. 4. Top-view SEM of a poled LN mesa after etching in hydrofluoric acid. The domain duty 
cycle is seen to be uniform and close to 0.35 based on the differential etching of the polar 
surfaces of LN. 

During poling, the electric field was ramped up to ~40 kV/mm, with voltages around 350 
to 400 V, for 10 ms and ramped down slowly to prevent back-switching of the inverted 
domains [23]. The high electric field was used to ensure the onset of nucleation and 
subsequent domain reversal. Domain merging was avoided by using three identical pulses and 
limiting the pulse duration to 10 ms [24]. The domains are expected to be poled entirely 
through the LN film based on the high poling field, the long pulse duration, and the deep LN 
etching for the poling electrodes. The quality and uniformity of the poling was confirmed 
after characterization by wet etching in hydrofluoric acid, shown in Fig. 4. This was in 
keeping with the differential etching of the positive and negative z-axis of LN [25], where the 
negative z surface etches faster than the positive z surface, and confirms successful poling. 

4. Characterization

Obviously, the ultimate proof for successful poling is demonstration of nonlinear optical 
processes that require QPM. The fabricated 4-mm long thin film PPLN waveguides were 
optically characterized by coupling light in and out of the chips by lensed fibers. The input 
was a mode-locked fiber laser operating at a MHz repetition rate amplified by an erbium-
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doped fiber amplifier, followed by a polarization controller. The propagation losses at the 
pump and second harmonic wavelength are < 1 dB/cm, obtained by analyzing the insertion 
loss across a number of waveguides. The material absorption of the SiN rib material is < 1 
dB/cm and < 0.2 dB/cm at the fundamental and second harmonic wavelength respectively, 
measured on a Metricon prism-coupling system. The coupling loss measured per facet at the 
pump wavelength is ~10 dB. The coupling loss at the second harmonic wavelength is 
marginally higher due to the multimode nature of the lensed fibers used. The coupling losses 
can be potentially reduced by the use of appropriately-designed input and output waveguide 
tapers, or the use of free-space lensed input and output coupling. 

Fig. 5. (a) Autocorrelation and (b) optical spectrum, of the pulsed input to the PPLN 
waveguide; (c) Output of a reference unpoled waveguide; (d) Output of a poled waveguide, 
with a frequency doubled signal around 788 nm. 

Figure 5(a) shows the autocorrelation of the input pulse. The input pulse is around 500 fs 
wide, sitting on a 7 ps wide pedestal. While the pedestal lowers the peak power of the input 
and generated output pulse, it is sufficiently wide to diminish the effects of pulse walk-off 
induced by group-velocity mismatch induced in the 4 mm long devices [26–29]. Group-
velocity-induced walk-off can reduce the conversion efficiency, depending on the waveguide 
length and the pulse widths. The optical spectrum of the input pulse is shown in Fig. 5(b). The 
output after the PPLN samples was fed directly to an optical spectrum analyzer. An optical 
power meter was used alternatively to monitor the output power after the waveguide. The 
optical spectrum recorded for the reference unpoled waveguide is shown in Fig. 5(c), with no 
evidence of harmonic generation. The poled waveguide phase-matches near a fundamental 
wavelength of 1,580 nm. The output optical spectrum is shown in Fig. 5(d), with a clear 
frequency doubled signal generated around 788 nm. 

The average second-order nonlinear conversion efficiency of the device is extracted to be 
8% by integrating the input and output average power. This effective efficiency includes 
contributions from any phase-matched second-order process, i.e., primarily SHG, although 
SFG could have considerable contribution too. It is practically difficult to differentiate the 
weight of each effect, due to the pulsed nature of the input source. Similarly, it is difficult to 
extract the normalized conversion efficiency in %/W.cm2 using the present data. That is 
because it requires detailed numerical modeling based on the relative contributions of SHG 
and SFG in addition to the input and output temporal profiles [26–29]. 
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Fig. 6. (a) Optical spectra for decreasing input pump powers (top to bottom), displaced by 60 
dB. The input power for each trace can be read in part (c); (b) Optical spectra around the 
generated output signal wavelength of 3 of traces in part (a) with input average powers of 1.67, 
0.87 and 0.31 mW, respectively; (c) A straight line fit of slope 1.91 on a logarithmic scale 
shows the quadratic dependence of the output signal on the input pump. 

Optical spectra, displaced by 60 dB, recorded at decreasing input pump powers, are 
plotted in Fig. 6(a). Figure 6(b) shows the generated output signals of the 1st, 4th, and 7th 
traces, from the top, plotted in Fig. 6(a). The slight asymmetry of the spectrum in Fig. 6(b) 
could be attributed to the asymmetry of the contribution of SHG to the generated signal. The 
quadratic nature of the generated signal is seen in Fig. 6(c), where the average integrated 
output power is plotted against the average integrated input power on a logarithmic scale from 
the traces in Fig. 6(a). A linear fit to these measurements yields a slope of 1.91, which is very 
close to the slope of 2 expected for low propagation loss. 

5. Conclusions

The first compact heterogeneous periodically-poled thin film LN waveguides on silicon 
substrates have been fabricated and characterized. A nonlinear conversion of 8% has been 
obtained with a pulsed input. These devices are 4 mm long and the cross-sections are 
significantly smaller than traditional PPLN wavelength converters. The compact size along 
with the use of a silicon substrate demonstrates the compatibility of efficient χ(2)-based 
nonlinear photonic devices with silicon photonics for potential on-chip nonlinear and 
quantum-optic applications. 
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