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ABSTRACT: The theoretical description of observables in attosecond
pump—probe experiments requires a good representation of the system’s
ionization continuum. For polyelectronic molecules, however, this is still a
challenge, due to the complicated short-range structure of correlated
electronic wave functions. Whereas quantum chemistry packages (QCP)
implementing sophisticated methods to compute bound electronic
molecular states are well-established, comparable tools for the continuum
are not widely available yet. To tackle this problem, we have developed a
new approach that, by means of a hybrid Gaussian-B-spline basis, interfaces
existing QCPs with close-coupling scattering methods. To illustrate the
viability of this approach, we report results for the multichannel ionization
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of the helium atom and of the hydrogen molecule that are in excellent agreement with existing accurate benchmarks. These
findings, together with the versatility of QCPs to describe a broad range of chemical systems, indicate that this is a valid approach

to study the ionization of polyelectronic systems in which correlation and exchange symmetry play a major role.

1. INTRODUCTION

Advances in generating controlled few-cycle laser pulses and
novel ultrashort extreme ultraviolet (XUV) and X-ray sources,
from free-electron laser (FEL)-based to attosecond high
harmonic generation (HHG)-based facilities, have opened
completely new avenues for imaging and controlling electronic
and nuclear dynamics in molecules, with exciting applications in
physics, chemistry, and biology.l_8 The advent of X-ray free-
electron lasers (XFEL),” has extended the domain of inquiry to
nonlinear processes promoted by intense ionizing radiation
(>10" PW/cm?), while advances in the technology of table-top
HHG sources of femtosecond and sub-femtosecond XUV
pulses have opened the way to observe the dynamics in the
attosecond time scale,'® a whole new branch of science devoted
to the study of electronic motion at its natural time scale.''
Recently, attosecond technology has been incorporated in
FEL'*~'* to generate intense XUV pulses with high spatial and
temporal coherence as well as short duration, with which
matter can be interrogated in the nonlinear regime in a time-
resolved way."” Finally, HHG technology has now reached the
water window (3—4 nm wavelength),'® thus making it possible
to study ultrafast correlated processes in biological samples in
their natural media.

The common feature to all these light sources is their ability
to ionize a molecule by absorption of just a single photon.
Thus, theoretical studies devoted to understanding ultrafast
phenomena induced by such energetic electromagnetic
radiation must necessarily deal with the problem of describing
the ionization continuum. This also applies to ultrafast
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dynamics induced by IR or visible pulses in which the probing
step leads to ionization of the system.'’”*° Although
description of the ionization continuum is rather straightfor-
ward for atomic systems, for which a large number of accurate
computational tools are available,”' ~** this is not the case for
molecules, for which the number of available codes is much
scarcer and often limited to study ionization under significant
restrictions, e.g., by assuminég a single active electron (SAE) ora
mean-field approximation.”*~** However, electron correlation,
a hallmark of electronic motion in bound atomic and molecular
systems,”” plays an even more prominent role when absorption
of XUV and X-ray light leads to emission of photo-
electrons.”**>* In ionization, correlation gives rise to salient
features such as Auger resonances,” > associated with the
formation of transiently bound, often multiply excited
configurations,”** whose decay is due to the coupling between
different ionization channels (configuration interaction in the
continuum),’® and satellite peaks associated with orbital
relaxation”’ ™ and to the failure of the SAE approximation.*”*"

Multiply excited autoionizing states, shape resonances, and
collective excitations play a fundamental role in the chemistry
of the interstellar medium, in the highest layer of the earth
atmosphere,™ as well as for most of the processes leading to
radiation damage.*’

Nowadays most of these ultrashort light sources can be
combined with sophisticated detection techniques such as cold-
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target recoil-ion mass spectrometry (COLTRIMS),** velocity-
map imaging (VMI),* time-of-flight photoelectron spectrom-
etry," and high-resolution XUV spectrometry,”” allowing for
the study of photoelectron emission from atoms, molecules,
and surfaces with a level of detail that would have been
unthinkable only 2 decades ago. In addition to FELs and HHG
generated pulses, third-generation synchrotron facilities** ™"
allow one to measure the ionization spectrum of atoms and
molecules in stationary conditions with much higher resolution
than before, across a wide energy range. This can also be done
in association with synchronized laser pulses.””

It is therefore clear that theoretical efforts aimed at
improving the description of ionization processes in molecules
are necessary and timely to provide the support that these
sophisticated experiments require. Current quantum chemistry
multiconfigurational methods have nowadays reached a
considerable level of sophistication in the treatment of ground
and electronically bound excited states®* and are able to account
for electron correlation with a great level of accuracy. The
variational principle is at the heart of conventional multi-
reference calculations; however, it cannot be applied as such to
the calculation of states embedded in the ionization continuum.
For this reason, systematic inclusion of correlation in the ab
initio description of autoionizing and scattering states in
polyelectronic molecules remains a challenge. A common
approach used by several authors”**>"**>> to describe the
electronic continuum in molecules makes use of the static-
exchange approximation (SEA),"**” in which the coupling
between continuum states associated with different parent ions
is neglected. SEA meets the minimal requirements for the
treatment of the continuum, and hence it is often used as the
starting point of more sophisticated treatments based on the
close-coupling (CC) approximation,” where interchannel
coupling is included. In this sense, SEA can be regarded as
the equivalent for jonization of what Hartree—Fock is for the
description of bound states. SEA is adequate for describing
primary photoemission from valence shells or core orbitals in
which the photoelectron emerges with energies of the order of
~10 eV or more, since in these conditions the SAE picture still
holds. However, SEA is not appropriate for describing
ionization processes in which more than one electron
participates, e.g, autoionization arising from multiply excited
states, ionization with simultaneous excitation of one or more
of the remaining electrons (shake ups), and so on.

Another important requirement for the description of the
electronic continuum is to disentangle, across a continuous
range of energies, the asymptotic distribution of the ejected
electron associated with any given molecular parent ion. This
can be done by augmenting the parent-ion states with electrons
distributed in a large set of orbitals capable of reproducing the
periodic oscillations characteristic of asymptotically free states.
The primitive Gaussian functions normally used in QCPs
rapidly exhibit numerical linear dependencies that prevent the
description of more than a few radial oscillations, and hence
they are not well suited to describe a free electron except for
the smallest energies and in a short radial region. This
limitation can be partially circumvented by going beyond the
usual Gaussian e orbitals (GTOs) by using polynomial
spherical GTOs,”” but the continuum wave function quality
still worsens when the photon energy increases and not only
the outermost valence shells are involved in the photo-
ionization. The radial basis suitable for this task, such as B-
splines”"®” and finite-element discrete-variable-representation

functions (FE-DVR),% have been employed in ad hoc codes
for the electronic continuum of small systems,**"**~%” mainly
for diatomic molecules. These codes, however, are not easy to
extend to more complicated molecules, and their treatment of
short-range electronic correlation is still rudimentary if
compared with standard QCPs.

To overcome the above limitations, we have developed an
approach that matches the capability of state-of-the-art
techniques for the calculation of correlated excited states,
provided by widely available packages such as MOLCAS®® and
MOLPRO,” with well-established techniques for the descrip-
tion of the electronic continuum. We do so by using a hybrid
Gaussian-B-spline basis (GABS).” There are other approaches
based on a similar philosophy, in which a short-range part
represented by GTOs is complemented with other functions
more appropriate for the scattering description, such as finite-
element (FE) representation of the radial coordinate,”"”>
discrete variable representation (DVR),”*~”° and plane waves.*’
Other efforts have been made within the framework of density
functional theory (DFT), using for instance a multicenter
expansion in B-splines.”” Despite the existence of all these
models, ours has its own advantages. Increasing the number of
electrons for a fixed number of scattering channels does not
make the computational cost of the full dimensional problem
significantly higher. This means that the effort made to
compute the helium atom would be similar to that needed to
compute the water molecule for instance. Although this points
to the fact that the computation of very small systems would
not be very efficient, our real target, small- and medium-size
molecules, would be easily achievable without serious penalties.
Another benefit of our implementation is the capability to
obtain from a multichannel scattering problem either time-
independent observables, e.g, resonance energies and widths,
or time-dependent ones, expanding for the latter the wave
function in the box of eigenstates, a very convenient way to
carry out the time propagation and to extract observables from
it. An additional advantage is that resonances, such as doubly
excited states, arise naturally from the close-coupling expansion
without the need of an ad hoc inclusion, if one of them plays a
key role in the dynamics. Our model can also support core
holes, which will be the object of future studies.

To illustrate the viability of our approach, hereafter called
XCHEM for short, we report results for the multichannel
ionization of the helium atom and of the hydrogen molecule
that are in excellent agreement with existing accurate
benchmarks. These findings, together with the flexibility of
QCPs, make this approach a good candidate for the theoretical
study of the ionization of polyelectronic systems.

This work is organized as follows. Section 2 presents the
theoretical background, with emphasis in our merging of
scattering methods with quantum chemistry approaches, and
section 3 describes the computational implementation of the
new method. Results for the He and H, benchmark systems are
given and discussed in section 4. The work finishes with some
conclusions and future perspectives in section S. Atomic units
are used throughout unless otherwise stated.

2. THEORY

The single photoionization of an atomic or molecular species A
by means of the absorption of one photon 7,

+ _
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converts the initial state li) of the N-electron target to one of
the energetically accessible states of the parent ion la) of the (N
— 1)-electron parent ion, E, — E; < hw,, and liberates a
photoelectron with asymptotic linear momentum k and spin
projection o. This process, therefore, involves the transition
from a bound to a scattering state of the N-electron system.
This latter circumstance remains true irrespective of whether
the single-ionization event involves the exchange of one or
several photons, possibly with different frequencies, or of
whether these photons come in the form of pulses rather than
in stationary conditions. Although more complex fragmentation
processes, such as multiple ionization and dissociative
ionization, may follow valence and inner-valence ionization of
atomic and molecular species with XUV light, single ionization
with (or without) electronic excitation normally dominates.
Furthermore, multiple ionization processes tend to take place
through a sequence of single-ionization steps when this
mechanism is permitted. Therefore, single ionization can
describe a broad range of phenomena. In the present work
we will limit our attention to this process.

The interaction between matter and radiation is mediated by
a one-body operator. To a first approximation, therefore,
photoionization amplitudes can be estimated already at the SAE
level. In polyelectronic targets, the interaction of the photo-
electron originating from a given orbital and the other electrons
in the system can be described in terms of an effective
potential,77’78 or within the Hartree,”” Hartree—Fock, %"~ or
DFT approximations.”**"””*** These approaches normally yield
accurate photoelectron distributions at high photoelectron
energies but fail to reproduce experiments at energies a few
electronvolts above the ionization thresholds, where exchange
and correlation effects are important.**** It has been recently
shown that antisymmetry needs to be taken explicitly into
account to obtain qualitatively reliable results.”' Shape
resonances are also normally not well reproduced, and SAE
approaches, of course, cannot account for processes associated
with interchannel coupling, such as inelastic scattering and
autoionizing states, particularly when the latter are populated
through multiple excitations from the ground state.

The first few correlated bound electronic states of atoms and
molecules, and the radiative transitions between them, can be
computed quite accurately with existing QCPs. Correlated
states in the electronic continuum, on the other hand, are much
more challenging to obtain for three reasons. First, as
mentioned above, they require the representation of oscillatory
electronic wave functions up to large distances, which is
challenging for the Gaussian basis sets used in QCPs. Second,
the calculation of bound and scattering states requires different
algorithms. For bound states, the energy is an unknown
quantity that is determined through diagonalization, and
degeneracy is an issue only for selected subsets of the
configuration space. For ionization states, on the other hand,
energy is given and, as a rule, each level is multiply or, possibly,
infinitely degenerate. Simply restricting the Hamiltonian to a
finite basis and diagonalizing it, therefore, is not an option.
Third, the scattering states required to reproduce given
experimental conditions must fulfill well-defined asymptotic
boundary conditions.

A common procedure to build a complete set of scattering
states at a given energy E is the CC approach. In CC, the
configuration space is expressed in terms of the linear
combination of antisymmetrized products of bound states of
the parent ion A" and states of the asymptotically free electron

with a well-defined angular momentum. Indeed, when
separated by large distances, the parent ion and the electron
do not interact and these states are therefore sufficient to
enumerate all the possible initial or final configurations of the
system. When the parent ion and the electron are spatially
close, they can exchange energy, angular momentum, and spin
in an interaction that can be represented as a collision,

Ajtep, = At e, 2)
The following sections illustrate how to set up the equations
that define single-ionization scattering states for polyelectronic
targets, and how these can be solved numerically by making use
of QCPs.

2.1. Close-Coupling Method. To describe a single-
ionization scattering state, it is convenient to distinguish
between two radial ranges: a short-range, r; < R,, where all N,
electrons are within a fixed radius R, from the conventional
center of mass, and a long-range, ry > R,, where one and only

one electron (e.g., the N,th) is located beyond Ry; that is, r,.y <

R,. If the boundary value R, is large enough, the eigenstates of
the parent ion are negligible whenever r; > Ry. As a result, the
complete single-ionization wave function in the second region
is well-represented by the CC ansatz

mw, > R,

_ 1 N u[;,aE(rNe)
Vop(xy . Xy) = — Z N/,EY/,(XI, oy XN 15 Ty {y)————
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e
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where x; denotes the position and spin coordinates of electron i,
7y, are the angular coordinates of electron N, {y is the spin

component of electron N, Y, is a spin-coupled channel
function (see below), Ny is a normalization factor that ensures
the correct asymptotic behavior, and uj,(r) is the radial
function that describes the continuum electron, which is
asymptotically given by

- 2 e 2 ek
Usga (7‘) = 501 ——e = [——e S a
5 ,aE I 7k, J 7k, p @

with

0,(r) = k,r + z In2k,r — Iz/2 + o, (k,)
ke ’ ©)

86,87

where S, is the on-shell scattering matrix, Z the parent-ion

charge, k, the absolute value of the momentum of the
continuum electron in the @ channel, and o; its Coulomb

phase. Thus, the scattering wave function W behaves
asymptotically as a combination of incoming spherical waves
for all open channels (a, f, and y in Figure 1) and an outgoing
spherical wave in channel a corresponding to an outgoing flux
of 1.

In the present work, the spin-coupled channel function Y, is
obtained when the antisymmetrized parent-ion function ®, is
coupled to the N,th electron spin wave function y, while its
angular part, given by a spherical harmonic Y,,, is factorized:
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Figure 1. Sketch of the incoming boundary conditions that must fulfill
the scattering wave function Wj;; (see text for notations).

Ya(xp - XN -1 ?M, CNE) (6)
25+1 2 A
=" (R o xy ) @ (En)]s Vi)
25,+1 N
= 2 Cs%a,l/z(; q)a,zaz% (CN) Ylm(’M) (7)
X0

where S is the total spin of the system, X is its z projection, S,
and X, are the corresponding values for the parent ion, o is the

z component of the electron spin, and Cs%,l /26 15 @ Clebsh—

Gordan coefficient. For the sake of clarity, the spin multiplicity
of both the parent-ion and continuum-electron components,
2S, + 1 and 2, respectively, have been indicated as prefixes of
the corresponding wave functions. The channel index «
corresponds to the set of indexes (S,%,a/,m), while the
parent-ion index a defines entirely the state of the parent ion,
except for its total spin projection. We will be mostly interested
in spin-free Hamiltonians. Therefore, the total spin S and spin-
projection X will be constant parameters across the whole
scattering calculation.

Due to the natural asymptotic separation between a finite
number (or a denumerable set) of channel functions
Y (xpXy_15n,Cn) and the radial wave function of an

electron in the continuum, in a scattering perspective we
describe the complete function as a linear combination of
“extended” channel functions Y,; and of localized short-range
N,-electron states ;:

Yo = Z NiCioE + Z Z YpiCpiak- 8)
7 B
The extended channel functionsY ,; are defined as
Ym‘ = Nm"?{Ya(XIJ e XN 1) ;‘\l\lz, CNe) (Pi(VM) (9)

where {@,} is a set of radial functions suitable to describe the
continuum and A is the antisymmetrizer

~ 1 p _ .
A N Z (-1)PP, p = parityof P

T PES,y, (10)

with P the standard permutation operator that belongs to the
space of N -particle permutations, Sy. The channel functions

Y, are assumed to be already totally antisymmetric with respect
to the permutation of the first N, — 1 parent-ion electrons

VP e SM_I,
PY (X oy X135 gy Cn)
= (_1)pYa(X1; o XN 1 ?Ng’ CN) (11)

. . . £ (N) . .
The antisymmetrizer for N, particles A~ can be written in
. & (N—1)
terms of that for N, — 1 particles, A :

N-1
()

N 1 - ~ (N—
a e=_1_zpﬂ\reﬂ(Nz 1)
N, s (12)

where £ denotes the permutation operator between particles i

and N,. Therefore, the extended channel functions can also be
written as

N,—-1
¥ Ny X A
Yy = 1\{; I- Z PlNe Y, (xy ey XN-1 TNy é’Nl) (/’,-("M)

e i=1
(13)

2.2. Equivalence between Extended Channel Func-
tions and Augmented States. QCPs can provide an
accurate description of the parent-ion states. To account for
the additional continuum electron, these states must be
supplemented with additional one-electron functions, which
can be done in practice by using the so-called augmented states,

defined as

yaug ASZAT
Yw’ =P ailumaaq%z,f.ﬂ (14)

for an orbital with well-defined /, and m, quantum numbers,
where P5* is the projector on the functions with total spin S and
spin projection X, ;) is the creation operator of an electron in
the spin—orbital ¢,(x) = gbl(r) Y, (7) 2){(7 (£), and @5 is a
parent-ion state with well-defined total spin projection X,. For
simplicity in the notation, the /, m, and ¢ quantum numbers are
implicit in the i index used to denote a particular spin—orbital
¢,(x). The creation operator is defined on the space of spin—
orbital occupation-number vectors as

. i -1 i
a'lny, 1y, 0y 0, .2y = (=12 "y, ny, oy 1, 22 (15)

R i
a;rlnl, fyy ey 1, ) =0 (16)

Furthermore, the spin—orbital occupation-number vectors are
identified with Slater determinants as

o0
(x)) Xy ) xylny, ny, ey = NIA H g{)i"‘(xM),
i=1

N = Z n;
j=1 (17)

What is the exact relation between the augmented states and
the extended channel functions introduced in the preceding
subsection? In the close-coupling formalism, the antisymmet-
rization of the product of an (N, — 1)-electron determinant
|y, ..y, | times a given spin orbital ¢, is

1

Ay by, b= N

P, ... |
By -
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Whenever the appended spin—orbital follows all the occupied
spin—orbitals in the determinant (as it is always the case when
augmenting a parent ion with a virtual orbital), the following
relation holds:

ADp = ——(-1)¥"3/ @

JN. e (19)

Using the definition of the augmented states and of the
extended channel functions, it is therefore easy to derive the
following relation:

uug )N 1 \/7 ¥

SaZu, 1/20 “ai
a‘ (20)

3. IMPLEMENTATION

3.1. Parent lons. The parent-ion wave functions are
calculated using multiconfigurational methods, ie., the wave
function of every parent ion, a vector in the configuration
interaction (CI) picture, is represented by a linear combination
of configuration state functions (CSFs) as

10,(x)) = Y ¢, l2%"'E (%))
i (21)

where |§S“+15i(x) ) represents an (N, — 1)-electron CSF with
multiplicty 2S, + 1 and symmetry q. These CSFs can be related
to Slater determlnants using the graphical unitary group
approach (GUGA),*® avoiding the possibility of spin
contamination, so that the eigenfunction a can be converted
into combinations of Slater determinants (D;), key pieces in
second quantization theory,” as

10,(x)) = Y ¢/ ID(x))

i (22)

where the orbitals included in the Slater determinants are
constructed as a linear combination of localized Gaussian
functions

¢ (x) = Z R;iG; (x,)

(23)

R;; being the expansion coefficient for the orbital i in the
localized Gaussian basis function G)L. It is important to
remember that Gaussian basis functions are centered on the
different nuclei of the molecule, which requires the evaluation
of polycentric integrals to calculate the properties of the system.
For reasons that will become apparent later, in the latter
equation we have included a superscript L to explicitly indicate
that all these functions are localized.

The optimization of the orbitals and CI vectors can be done
using standard quantum chemistry methods. Specifically, we
use the complete active space self-consistent method
(CASSCF) where the orbitals are divided into inactive, active,
and virtual subspaces. The inactive and virtual orbitals are
doubly occupied and empty, respectively. The active orbitals
define the so-called active space and the CI vector is
constructed in the CSF basis considering all possible
configurations for the electrons in this reduced set of orbitals,
i.e., a full CI calculation inside the active space. To allow for the
description of different parent ions with the same set of orbitals,
parent-ion states are obtained by using the state-average
formalism, SA-CASSCE.” The orbitals are calculated, imposing
symmetry constraints, using the QCP MOLPRO, % which

allows one to average states of different symmetries. In this way,
all the states are represented in the same set of orbitals
irrespective of the symmetry group to which they belong, and,
consequently, the size of the active space can be substantially
enlarged by using symmetry considerations. Furthermore, as
symmetry is well-defined in both the CI vector and the orbital
representation, one can also exploit symmetry properties in the
augmentation procedure described in section 3.3. The set of
orbitals resulting from MOLPRO is then transformed to make
it compatible with the MOLCAS®" code, and the CI vector of
eq 21 is recalculated preserving the symmetry constraints. The
required matrix elements, Hamiltonian and multipoles up to
fifth order between the parent ions, are calculated by using the
RASSI module of MOLCAS. Finally, in order to further
manipulate the electronic wave function, the CI vector is
transformed into a linear combination of Slater determinants
using the GUGA table provided by MOLCAS, thus leading to
parent-ion wave functions in the form given by eq 22.

3.2. GABS Hybrid Basis. The localized functions used to
expand the short-range domain are supplemented by a
monocentric GABS basis,” placed at the molecular center of
mass. This basis has recently been introduced by Marante et
al.” to investigate photoionization of the hydrogen atom. In
brief, the GABS basis comprises a set of Gaussian functions and
a set of B-splines whose support starts from a given radius R,
(see Figure 2). The Gaussian functions are numerically

- - R
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- - B-spline functions l
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Figure 2. Top panel: Plot of the radial part of some Gaussian (solid
lines) and B-spline (dashed lines) functions, representatives of the
monocentric GABS basis set as a function of the distance from the
origin. The first B-spline node is located at Ry = 10 au. The basis
defines three characteristic regions: (i) r € [O0,R,], where only
Gaussian functions are present, (ii) r € [Ry,R, ], where Gaussian and B-
spline functions overlap, and (iii) r € [R,Ry] Where the Gaussian
functions are negligible. Bottom panel: Radial part of the He*
scattering state with / = 1 and E = 0.2 au, computed analytically
(dots) and numerically using GABS (thick solid line). The Gaussian
(solid line) and the B-spline (dashed—dotted line) components of the
numerical function are also shown.

negligible beyond a distance R; higher than R, Due to this,
functions expressed in terms of the GABS basis are exclusively
represented by Gaussian functions for r < Ry, by a combination
of Gaussian functions and B-splines in the intermediate region
where the former are nonvanishing, and only by B-splines
thereafter.

The set of Gaussian functions included in the GABS basis is
in general more flexible than those included by default in
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Figure 3. Matrix structure of the Hamiltonian operator. See text for notations. Shaded areas represent matrix blocks containing nonzero matrix
elements. The QC block is obtained from the QCPs. The remaining matrix elements are evaluated by using the equations given in the Appendix.

QCPs. For a given angular momentum / and projection m, they
are defined as

—ar? A
Gill?(x) = NiHKe W X (7) (24)

where K=1,14+ 2,1 + 4, .., K, and N, is a normalization
factor. The X, functions are the symmetry adapted spherical
harmonics, also known as real spherical harmonics,”* defined
through the spherical harmonics Y},, and for m > 0 by

S
Xio = Ypo
1
Xp, = —=((=1)"Y;, + Y,_
Im \/z (( ) Im I m) (25)

1
iv2
Note that the symmetry adapted spherical harmonics defined in
this equation are not the same that the ones used in the
XCHEM code, ie., X;, = (=1)" X;,..

B-spline functions are a minimal-support basis for piecewise
polynomials of degree k — 1 and defined in a set of nodes
{t,-},-=1,zwn.93 The support of each B-spline is compact and
covers k consecutive intervals, allowing local operators to be
represented by sparse matrices. This property imparts high
flexibility to the basis without affecting numerical accuracy,
explaining why B-splines are widely used for atomic and
molecular calculations.”"**

In the extended channel functions (eq 9), the one-electron
radial functions @,(r) are represented by the GABS basis. This
basis allows the parent jons to be augmented using Gaussian
functions in the short range, while B-splines are responsible for
describing the oscillations of the continuum-electron wave

Xls—m = ((_l)mYlm - Yl—m)

function in the field of the parent ion. The upper panel of
Figure 2 shows a typical GABS basis set.

As an illustration of the performance of the GABS basis, we
compare in Figure 2 (lower panel) the radial part of the exact
He" continuum wave function for an electron with energy E =
0.2 au above the ionization threshold with that obtained by
using the GABS basis. The two curves are indistinguishable to
the naked eye. The presence of B-spline functions in the long
and intermediate ranges (r > R,) gives more flexibility to the
Gaussian functions in the short range. This is the reason for the
large deviation of the Gaussian contribution to the continuum
wave function in the intermediate radial range, which is largely
compensated by the B-spline contribution. More details about
the GABS basis can be found in ref 70.

It is worth emphasizing that, at variance with existing all-B-
spline methods,”"%” in which B-splines are used for both the
inner and the outer regions, e.g., by fitting the electronic density
obtained with ordinary Gaussian functions in the inner
region,””® in our approach B-splines are used to supplement
Gaussian basis sets provided by quantum chemistry packages
and subsequently augmented with the monocentric Gaussian
functions included in the GABS basis. The procedure adopted
to perform the augmentation is described in the following
subsection.

3.3. Augmentation. In order to calculate the augmented
states, the virtual orbitals of the parent ion (defined as linear
combinations of the localized Gaussian functions centered at
the atomic positions) are removed, while the auxiliary set of
Gaussian functions belonging to the GABS basis and located on
the center of mass is added; i.e., we follow a strategy similar to
that usually employed to describe Rydberg states.”* As
explained above, these Gaussian functions will help us to
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reproduce the electronic continuum close to the nuclear region
by providing a set of mainly monocentric orbitals that connect
the localized ones at short distances with B-spline functions at
long distances.

The monocentric orbitals, ¢™, are constructed by removing
linear dependencies and orthogonalizing them to the localized

orbitals ¢":
¢ (x) = Z Rj; GM(Xi) + Z ¢ (x))

(26)

where RJ are the linearly 1ndependent components of the
orbital i in the monocentric Gaussian functions GI and a;
contains the contribution of the localized orbital j to fulfill the
orthonormalization requirements. For the sake of clarity, we
have dropped all indices but one in the definition of the
monocentric Gaussian functions given in eq 24 and we have
explicitly added the superscript M to emphasize the
monocentric character of these functions.

The augmentation procedure is carried out for all chosen
parent-ion states over all possible orbitals, both localized (¥,
eq 23) and monocentric (¢, eq 26),

a)m(x)> = aiqu)a(x)> (27)

where ®,; describes the parent ion a augmented in the orbital i.
This augmentation is easy to implement when the parent ions
are described in the basis of Slater determinants (see eq 22) as

1®,(x)) = Y. ¢},aID(x))
- (28)

This function is then projected into a basis with a well-defined
spin, using the GUGA table of the parent ion with an extra
electron, to obtain the augmented state defined in eq 14:

Yo' ()) = X ciudy " Eu))
k (29)

where the elements c[,; are given by

Coai = Z ¢l Xtlg (x)|u1lD (x))

(30)

and we have used the fact that & = (S,%,a,/,m). Finally, all the
properties between the different augmented parent ions, i.e., the
Hamiltonian, overlap, and dipole matrices, are obtained with
the RASSI module of MOLCAS.

3.4. Scattering States. From the equations provided in the
CC section 2.1 and in the Appendix, the Hamiltonian (eq 51)
and overlap (eq 45) operator matrices can be computed and,
using these, the scattering states obtained. The block structure
of the operators is shown in Figure 3. The N j functions
represent the N, -electron localized states (obtained using a
polycentric Gaussian expansion), the YQG]M ones involve the
parent-ion wave functions augmented with the monocentric
Gaussian set (which are related to the extended channel
functions as explained in section 2.2), and the Y B, functions
represent the extended channel functions with B-splines By for
the outer electron. In this notation, a runs over all channels
included in the CC ansatz. The blocks that cross the wave
functions exclusively expanded in terms of Gaussian functions
are computed with the QCPs. To compute the other matrix
elements, the equations given in the Appendix have been used.
In the present work, we neglect the overlap between
polycentric Gaussian functions and B-splines. This is a good
approximation since the former are strongly localized by

construction and the latter start at several Bohr radii from the
molecular center. Beyond a certain radius R,, even the overlap
between the fast-decreasing monocentric Gaussian functions
and the B-splines becomes negligible, and then, from that
distance on, these blocks will be zero as well. This last feature
together with the fact that B-spline functions have a compact
support lead to sparse matrices, whose structure can be
exploited when operating with them. The zero blocks in Figure
3 are represented by a white background.

To compute the scattering solution Wz, we require (H -
E)W,;; to vanish when projected onto the N basis functions that
are zero at the box boundary (i.e., the farthest grid point used in
the definition of the B-spline basis). If the CC expansion
includes M channels Y, that are open at the energy E, the
corresponding components of ¥ generally do not all vanish at
the box boundary and they must therefore include the last B-
spline in the box. These two requirements lead to a N X (N +
M) homogeneous system of linear equations which has M
nontrivial solutions:

(H—-ES) ¥ =0 (31)

To solve eq 31, we require the left-hand matrices to contain
linearly independent rows and columns. Let us call O, the
matrix representation of an operator O in the same basis as that
used to express the Hamiltonian matrix in Figure 3. In general,
the operator blocks coming from QCPs exhibit linear
dependencies. Similarly, the blocks in which the bras
correspond to a parent ion augmented with monocentric
Gaussian functions and the kets correspond to a parent ion
coupled with B-splines or vice versa can also have linear
dependencies, because several of the Gaussian functions can be
represented by linear combinations of B-splines. We will call
the ensemble of these blocks O,’, whose equivalent is the
submatrix limited by R, in Figure 3. In other words, O’
contains the QC matrix elements and the rows and columns in
which there is a non-negligible overlap between monocentric
Gaussian and B-spline functions. In contrast, the blocks in
which bras and kets involve only B-splines are linearly
independent due to the effective completeness of this basis.”
To eliminate the linear dependencies, O, is converted to a

~ »
conditioned version O, by means of the transformation

con ~pTcon

The conditioning matrix P, is given by

(33)

where V and A are, respectively, the eigenvector and eigenvalue
matrices resulting from the diagonalization of the overlap
submatrix §' (equivalent to O,’) after removal of those
eigenvectors whose associated eigenvalues are lower than some
threshold (typically 107®). Therefore, P,,, only transforms the
square block O,".

After conditioning the overlap and the Hamiltonian matrices,
the system of linear eqs 31 can be rewritten as

(H-ES)¥=0 (34)

where the new solutions W are related to the original ones by ¥
= P, ¥. The system of linear eqs 34, now free from linear
dependencies, has M independent solutions. To find them, we
use standard linear-algebra routines that factorizes the H — ES
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matrix in the product of a lower triangular N X (N + M) matrix
L and an upper triangular (N + M) X (N + M) matrix U, which
has M zeros along the diagonal, H — ES = LU. Therefore, the
solutions of eq 34 are just the solutions of

[y wyy o Uy Uy i
0 u22 uZN uZn
-~ 0 0 - uyy Uy,
UVY =
0 0 0 - 0 wunypw+2) ™ YWN+Dn
0 0 0 0 0 . u(N+2)n
|0 0 0 O 0 0 0 )
11 lPIZ 1M
Y Y You

o0 o0 o -1 | (35)

i.e, they constitute the right null space of U, which can easily be
determined by back-substitution.

The radial monoelectronic function coupled to the parent
ions in the scattering solution (see eqs 8 and 9) appears as a
linear combination of orbitals containing both Gaussian and B-
spline functions

&y, (1) = D N (r)cp o
! Z PO e (36)

and is asymptotically fitted to a combination of regular, F(r),
and irregular, G(r), Coulomb functions”®

¢ﬁa(r) = aﬁaFﬂ(r) + by, Gy (37)

From this fit, we can compute the scattering matrix S(E, E’)
for the elastic collision, S(E) 5(E — E') = (VZIV¥}), as
_A+iB
~ A-iB (38)

where Ag, = | %k” age and By, = %k” by With ks being the

momentum relative to the threshold defined by the f-parent
ion. Using these matrices, we can also obtain the correct
scattering wave function with incoming boundary conditions

through

Yo = Z W(Ag, + iB/;a)_l
B (39)

where W ; are the solutions of eq 31. The eigenvalues of S have
the form ¢*%, where 6, (a = 1, .., M) are the so-called phase
shifts or eigenphetses,97’98 which can be used as a sensitive
observable to check the accuracy of the calculation of the
multichannel continuum by comparing them to independently
established benchmarks. In the presence of an isolated
resonance, the sum over all the eigenphases, the total phase
shift 0;(E), experiences a jump of 7 when the energy moves

from well below the resonance energy to well above it

IE-E,.| .
(ZT > 1). In the presence of several resonances, their

energies E, and total widths I', can be extracted by fitting the
total phase shift with the function

[
0:(E) = 6,(E) + ) arctan] ————
®) =05 + ¥ [z@n_m) "
where 6,(E) is a background, approximated by a low-order
polynomial function of the energy.

Another observable of interest is the photoionization cross-
section from the ground state (‘I"g). To compute this quantity,
we need the calculated multichannel scattering states and the
ground state obtained, for instance, from the diagonalization of
the Hamiltonian in a box. In velocity gauge, the photoionization
cross-section is given by

47 _
O = —————|(P - PI¥ )
bodE-E) (41)

where c is the speed of light, Egis the ground state energy, € is
the polarization of the incident light, and P is the momentum
operator.

4. PERFORMANCE OF THE XCHEM METHOD

4.1. lonization of the Helium Atom. The helium atom is
a good system to test the XCHEM method because accurate
independent ab initio codes are available for it.”

The hydrogenic parent-ion states of He" were obtained by
performing a SA-CASSCF calculation of five states, where the
active space consists of one electron and five orbitals: 1s, 2s,
2p., 2p,, and 2p,. For this computation we used a modified
version of the aug-cc-pV6Z'* basis set, where only the s and p
expansions were considered. As mentioned in section 3.1, the
orbitals are obtained with the MOLPRO package within D,
symmetry (two states for symmetry A, and one state for the
symmetries By, B,,, and B,) and exported to MOLCAS. With
MOLCAS we generate two different GUGA tables, CAS(1,5)
for the case of the parent ions and CAS (2,7) for the case of the
neutral, needed to carry out the augmentation.

For the monocentric GABS basis, B-splines of order 7 were
used starting at Ry = 10 au, in a box of 400 au, with a uniform
grid of 0.5 au separation between consecutive nodes. The
Gaussian functions in eq 24 were generated using an even-
tempered set of 22 exponents, with a; = 0.01, a,, = 28.28, and
K, = 3.

Using this GABS basis, we defined three different CC
ansatzes (3), with total multiplicity 2S + 1 = 1 (see Table 1).
The first one (CC,) contains two helium parent ions, He*(1s)
and He"(2s), while the second and the third CC ansatzes (CC,
and CC,) have the extra parent ion He*(2p) and are intended

Table 1. CC Ansatzes Used for the Helium Atom
Computations”

ccl cC, CC,
1s ® X, 1s ® X,
5® X, 00 1m
configurations 2s @ Xy 2s @ X,
2s @ X,
2p ® Xy, 2p ® Xoor Xom

“For each angular momentum, the projection m takes all the possible
values. ¥1 = 0,1, 2.
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to build up the channels with symmetries 'S® and 'P°,
respectively.

Using the CC, ansatz, we obtained the Hamiltonian
spectrum in the box. Several of its Rydberg state energies
converging to the N = 1 threshold (—2 au) are shown in Table
2. As a reference, an ab initio code relying exclusively on B-

Table 2. Energies (au) of Several Rydberg States Converging
to the N = 1 Ionization Threshold of He (—2 au), Obtained
by Using B-Splines Only (Reference Calculation) and the
CC, Ansatz Given in Table 1

state B-splines CC,

1sSs —2.0210583 —2.021047
1s3d —2.019996 —2.019996
1s4p —2.019821 —2.019814
1s6s —2.014493 —2.014486
1s4d —2.013887 —2.013879
1sSp —2.01378S —2.013777
1s7s —2.010582 —2.010574
1s5d —2.010203 —2.010195

splines and resembling the same correlation level imposed by
the CC, ansatz was used. This independent method yields
accurate solutions for the bound and single-ionization states of
the helium atom in the electrostatic approximation.”” The
agreement is very good, due to the fact that the Rydberg states’
ripples, dominant in the middle and long ranges, are mainly
reproduced by the B-splines, whereas the short-range part is
accounted for by Gaussian functions.

Figure 4 shows the total phase shifts, O(E) [see eq 40], for
the CC, and CCj, ansatzes in the vicinity of the first two 'S* and
'P° resonances below the N = 2 threshold (—0.5 au). In this
energy region, only one channel is opened for each symmetry.
The presence of the resonances is clearly recognized from the

jumps of 7 in the total phase shift. By fitting (E) to eq 40, we
have extracted the corresponding energy positions and
autoionization widths. The agreement with the reference
calculations is very good. For the energies, the maximum
absolute deviation is quite small: 0.002 au. For the widths, the
error is smaller than 6%, except for the first resonance of the 'S°
series, for which it is ~20%.

Figure 5 shows the eigenphases in the energy region between
the N = 2 and N = 3 thresholds, where several channels are

08~ e
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Figure 5. Multichannel scattering total phase shifts above the N = 2
(—0.5 au) threshold. The top panel shows the channels with even
symmetry and the bottom panel those with odd symmetry.

opened for both the CC, and CC; ansatzes. This region does
not feature any resonance because we are excluding all the
parent jons beyond the N = 2 threshold from the configuration
space. Once again, the calculated eigenphases computed with
XCHEM compare very well with the benchmark. Only for
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Figure 4. Total phase-shift energy dependence in units of 7. The two top panels and the two bottom panels show the first two resonances for the 'S
and 'P° series, respectively, below the N = 2 (—0.5 au) threshold. Herrick’s notation'®" has been used to label these doubly excited states (K, T)2.
Three of the eigenphases have been shifted in energy to better visualize the comparison of the resonant profile with the benchmark. E, ¢ and I,

correspond to the reference values.
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Figure 6. Cross-section from the He ground state. The inset shows the region where the first resonances appear, having the characteristic Fano
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Figure 7. Orbitals included in the active space of the Hj parent ion, from left to right: Lso,, 250, 2po,, 2pm,, and 3d7rg. The sphere defining the region

in which B-splines are not present is also shown.

those profiles corresponding to the channels in which the
parent ion is left in the He*(1s) state, deviations from the
reference results are larger than 5%. This is because the energy
of the continuum electron coupled with the 1s parent ion is
high (>1.5 au) and the chosen GABS basis is not flexible
enough to provide an accurate representation of the
corresponding rapidly oscillating continuum orbital. The
agreement can be systematically improved, however, by
increasing the number of K’'s in the monocentric Gaussian
components of the GABS basis.

Figure 6 shows the photoionization cross-section below the
N = 2 threshold, obtained by using eq 41 and the CCj; ansatz.
The calculated spectrum exhibits pronounced peaks corre-
sponding to the resonances belonging to the 'P° series, which
display the characteristic Fano line shapes.*® Figure 6 also
shows the comparison between our results in velocity gauge
and those from the reference calculations in velocity and length
gauges. The agreement between the two gauges within the
benchmark and between the benchmark and our results is again
very good.

4.2. lonization of the H, Molecule. To test our model in
a molecular target, we have chosen the simplest multielectronic
molecule, H,, for which one can compare with accurate
benchmark calculations.****

In the calculations of the parent ion Hj, several states were
obtained by using the CASSCF methodology with an active
space of one electron in seven orbitals and the s and p functions
from the aug-cc-pV6Z basis set.'”” The states included in the

parent-ion calculation were 2 for the symmetry A, (1so, and
250,), and 1 for each of the symmetries B;, and By, (2p7rj, B,,
(2po,), By, and B;, (3dﬂ'g). The orbitals obtained for these
states are shown in Figure 7. As explained in section 3.1, the
orbitals were optimized with the MOLPRO package using D,
symmetry and exported to MOLCAS to carry out the
augmentation procedure. In this case, the GUGA tables
employed were a CAS(1,7) for the parent ion and a CAS(2,9)
for the augmented states. For the GABS basis we used the same
parametrization as for the helium atom (see previous section),
except for the fact that this time the box radius is 200 au.

To assess the performance of the GABS basis for the
description of molecular properties, we first compare the
XCHEM results with those obtained from high-level QC
methods. Due to the limitations of the latter in describing the
ionization continuum, the comparison is restricted to bound
states. In particular, we have compared the energies of the
lowest 'Z; and 'Y states of H, and the corresponding
transition dipole moments between them at the equilibrium
distance, obtained from (i) a standard MRCIS calculation with
the s and p functions from the aug-cc-pV6Z basis set, (i) the
XCHEM calculation performed by augmenting the parent ions
with the polycentric localized Gaussian orbitals only, (iii) the
XCHEM calculation where both polycentric and diffuse
monocentric Gaussian orbitals were included, and (iv) the
XCHEM calculation performed with the localized Gaussian
orbitals plus the whole GABS basis, ie., the full XCHEM
calculation. We notice that evaluation of transition dipole
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matrix elements is a stringent test of the accuracy of the one-
particle density matrix. The results are shown in Table 3.

Table 3. Energies and Transition Dipole Matrix Elements for
the First Three 'X} and the First Two 'E] States of H, at the
Equilibrium Distance (R = 1.4 au), Obtained from Four
Different Computational Schemes®

MRCIS XCHEM-1° XCHEM-2° XCHEM?
Energy (au)
'z —-11674  —1.1380 —1.1650 ~1.1650
—0.6908 —0.5682 —0.6905 —0.6905
—-0.5717 —0.0185 —0.6263 —0.6263
Dy —0.7047 —0.5156 —0.7040 —0.7040
—0.6159 0.0163 —0.6280 —0.6279
Dipole (au)
1('g)) - 1('Z)) 04546 0.3643 0.4537 0.4530
1('%y) - 2(')) 0.3105 0.0296 0.2145 0.2201
2('gy) - 1('g)) 00370 —0.1722 0.0382 0.0382
2('g)) - 2('%) 01956 0.0140 0.1465 0.1468
3('zy) - 1('g))  —0.1088 —0.0452 —0.1713 —0.1724
3('gy) —2('z)) —0.1595 0.0037 —0.0083 —0.0129

“In the multireference configuration interaction singles calculations
(MRCIS), besides the active orbitals described in the text to obtain the
parent-ion wave functions, we have also included the 3soy 3pm, 3po,
and 4dr, orbitals. Using this approach, only single excitations were
allowed. The other results have been obtained by using the XCHEM
formalism at three different levels of approximation (see b, ¢, and d
footnotes). The dipoles were calculated along the z direction in the
velocity gauge. bOnly polycentric Gaussian basis functions. “Polycen-
tric and monocentric Gaussian basis functions. “All Gaussian basis
functions plus B-spline functions.

Apart for the third 12; and the second 'T} states, which are
poorly represented in the MRCIS calculations due to the lack
of diffuse functions, models i and iii yield nearly identical
energies and dipoles. These findings show that the Gaussian
basis set we use in our calculations is at least as accurate as that
used in standard MRCI calculations. More importantly, the
results of iii and iv show that the addition of B-spline functions
has no effect on the energies and transition dipole elements.
Therefore, we can safely conclude that the combination of
polycentric Gaussian and GABS basis functions is as accurate as
standard QC basis sets for the description of the lowest bound
states and hence of the inner part of the molecular continuum.

To assess the quality of the XCHEM approach in describing
the ionization continuum, we have performed calculations in
the fixed-nuclei approximation for the first three ' resonances
at several internuclear distances and compared them with those
from an independent computation based on a different
formalism,>* which essentially leads to exact results. The CC
ansatz used to build the '=! channel from a collection of Hj
parent-ion states is

Lso, ® X,
2p0, @ X,

(Zpﬂu)x,y ® le’ /= 12,3, m==+1 (42)

1=0,1,2,3

1=01,23

250, ® X, 1=0,1,2,3

1,2,3, m

+1

(3d77:g)x,y ® X, !

The results for the resonance positions and widths are given
in Table 4. As can be seen, there is a good agreement for almost
all the resonances. The larger discrepancies show up for the
second and third resonances at an internuclear distance of 2.0
au, for which the resonance widths are ~40% off. The second
and third 'T} resonances are almost degenerate in a large
interval of internuclear distances, and they exhibit a sharp
avoided crossing.34 As a consequence, even minor errors in
their relative energy cause a major shift of the internuclear
distance at which the crossing takes place, thus leading to large
errors in the corresponding autoionization widths. Apart from
this special case, the general trend is that the shorter the
internuclear distance the better the accuracy, which is
reasonable given that we are using the same monocentric
Gaussian expansion for all radial distances.

Figure 8 shows the photoionization cross-section, from the
ground 12; state to the 'E} continuum in velocity gauge, at the
equilibrium internuclear distance (1.4 au). The cross-section
includes contributions from doubly excited states associated
with our choice of the parent-ion states given in eq 42. In the
figure, we only show the first resonance, which appears as a
pronounced dip at around a photon energy of 1.13 au, in
excellent agreement with earlier results in the fixed-nuclei
approximation.’”'”® Using the code of ref 104, we have also
performed all-B-spline reference calculations for the photo-
ionization nonresonant background in which we included the
same number of parent-ion states as in eq 42. These reference

Table 4. First Three "X} Resonances Energies and Widths (au), for Several Internuclear Distances, R”

R Resonance E,ef

1.0 1 0.2853
1.0 2 0.3708
1.0 3 0.3808
14 1 —3.592(-2)
14 2 4.237(-2)
14 3 4.794(-2)
2.0 1 —0.2926
2.0 2 —0.2236
2.0 3 —0.2212
3.0 1 —0.4783
3.0 2 —0.4238
3.0 3 —0.4177

T,y E r
8.74(-3) 0.2847 8.94(-3)
1.89(-3) 0.3703 1.97(-3)
2.71(—4) 0.3809 2.86(—4)
1.54(-2) —3.602(-2) 1.45(-2)
3.58(=3) 4.206(-2) 3.89(-3)
6.21(—4) 4.792(-2) 5.88(—4)
2.55(-2) —0.2899 2.33(-2)
3.52(-3) —0.2225 1.39(-3)
3.94(-3) —0.2223 6.45(-3)
4.10(-2) —0.4673 3.67(-2)
2.80(—3) —0.4230 221(-3)
1.15(-2) —0.4170 9.73(-3)

“The results obtained with eq 42 CC ansatz are compared with accurate reference results taken from ref 34. Numbers in parentheses represent

power of 10.
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Figure 8. Photoionization cross-section from the H, ground state at equilibrium distance to the ' continuum. The reference (see text for details)
does not include the resonances (only the background); meanwhile the present computation does include the resonances, the first of which is

shown.

calculations do not include the contribution from the doubly
excited states and lead essentially to results that are nearly
indistinguishable from those reported in ref 61 for the
nonresonant background. Except for the obvious absence of
the resonance in the latter calculations, the agreement with our
results is excellent.

4.3. Extension to Larger Systems. Application of the
XCHEM code to larger molecules is straightforward, and the
increase in computational time with respect to, e.g., H, should
be similar to that experienced in bound-state calculations for
the same systems. This is due to the quite different sizes of the
polycentric and monocentric Gaussian bases used to describe,
respectively, the short-range part of the wave function and its
transition to the asymptotic region (the [Ry,R,] interval in
Figure 2). Typically, in calculations aiming at describing
ionization, the monocentric basis should contain, as in the
present work, ~400 functions, leading to N,, ~ 200 orbitals
after removing linear dependencies. In contrast, a 6Z
polycentric Gaussian basis, which is among the largest ones
contains ~30 functions per atom, leading to N, ~ 10 orbitals
per atom in both active and inactive spaces. The large
monocentric basis enters the calculation through the
augmentation procedure described in section 3.3, which is
thus the most expensive part of the calculation. When moving
from H, to a larger molecule, only the number of polycentric
Gaussian functions has to be increased and, therefore, the cost
of augmentation remains more or less the same. Indeed, for a
molecule containing N atoms, the size of the basis is
approximately given by the formula N,, + N X N.. Since N,
is big, one has to go to a rather high N to observe a significant
increase in computational time associated with the augmenta-
tion procedure. For example, for GABS bases similar to those
used in the present work, this is expected to occur when N,, ~
N X N, ie, for N ~ 20.

5. CONCLUSIONS

One of the main limitations of existing QCPs is their inability
to describe the electronic continuum of molecules, which for
many years has limited the study of molecular ionization

processes. In this work, we have merged existing QCPs and
state-of-the-art numerical scattering methods to overcome this
limitation. The new method follows the spirit of earlier close-
coupling approaches, in which the scattering wave function is
expanded in a basis of channel states representing a molecular
cation in a given electronic state and a continuum electron
satisfying the appropriate scattering boundary conditions. The
electronic configuration space is divided into a short-range
region, where electronic configurations are built in terms of
Gaussian functions compatible with QCPs, and a long-range
region, where a single electron interacts with a finite number of
correlated molecular-ion states. The state of this electron is
expressed in terms of the hybrid-basis GABS, which combines
monocentric Gaussian functions with B-splines appropriate to
represent the continuum. As a first step toward more complex
systems, we have illustrated the performance of this method in
multichannel ionization of He and H, by comparing with
results from nearly exact ad hoc computational methods
available in the literature for such simple systems.

Our method takes advantage of existing ab initio quantum
chemistry packages such as MOLCAS and MOLPRO, thus
putting their advanced machinery at our disposal and
facilitating its widespread use by chemical physicists. This is
in contrast with ongoing developments,76 in which both the
short-range and long-range parts of the scattering wave function
are described by the same kind of basis functions, usually
chosen to provide a good description of the continuum electron
but offering much less flexibility for the description of the
many-electron wave function in the molecular region. Other
computational approaches combining ab initio quantum
chemistry and scattering methods are currently under develop-
ment,”””*™"° but, at variance with them, our method is able to
include electron correlation and exchange in the electronic
continuum at the same level of accuracy as quantum chemistry
does for bound states. Another important advantage is that
increasing the number of electrons for a fixed number of
scattering channels does not increase the computational cost of
the full dimensional problem significantly. In other words, the
effort made to evaluate the electronic continuum in, let us say,
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H,, would be similar to that required for a polyatomic molecule
such as water or acetylene. Finally, the present method also
allows us to describe ionization in many-electron atoms, again
taking advantage of many of the features that QCPs incorporate
and that are not so often available in atomic computational
codes.

Applications of our method to describe ionization in more
complicated systems, such as Ne, N,, CO, and H,O, are
currently in progress in our laboratory.

B APPENDIX: MATRIX ELEMENTS BETWEEN
EXTENDED CHANNEL FUNCTIONS REPRESENTED
WITH GABS BASIS FUNCTIONS

The matrix element of a totally symmetric operator O between
extended channel functions is

21\% %
o= 37

€

Oy = (YalON) =

]IYﬁcp)

(43)

where we have made use of the hermiticity and idempotency of

the antisymmetrizer (J%IT = A, A= A) and of the
invariance of the operator O with respect to permutations
VPe SNJ [0, P] =0 = [0, A] = 0). If either @; or @;
have disjoint support from those of the parent ions, the
permutation operators in eq 43 can be dropped

o NaNy

€

ifp(r) =0V qo}(r) =0,Vr<R, (44)

In the latter condition, the overlap, monoelectronic and
bielectronic interchannel matrix elements (a = alm,, f =
blgmg) have simple expressions, as given below.

Overlap Matrix Elements
*
NNy,

NN
M]<Ya|Yﬂ>((p,-|<p,>= N

(4 (4

IYﬁj) = 60,/35]

m N/ <
(45)
where 6, f = 6ab6101ﬂ6m,, m, and s; = (@/lp)).

Mono-electronic Operators
These operators can be written as

N,
T= ) t(i)
i=1
and the corresponding matrix elements

wl\r/j] (

(46)

T,

ai,ﬂj balﬂl/j mamﬂst; + Ot b 1myi Iﬁm/}j)

aa

(47)

where T, = (@ITI®;) and t,,;,,,; = ((pinm‘t‘(ij,fm,). The
matrix elements T, can be obtained from the QCPs.

Hamiltonian Matrix Elements
The total electrostatic Hamiltonian is given by

H=K+ V*+ V"™ 4+ y™ (48)

where V" = ZAB>AZAZB/RAB is the nuclear repulsion

potential, K is the kinetic energy operator, V" is the
electron—nuclei interaction potential,

i=1 A=1 TiA (49)

and V* is the electron—electron repulsion potential,

Z_

ij>i 1] (50)

The corresponding matrix element has the form

NyNy,
H a ﬁ][

_ ()
ai,fj abé[{ll/fém(lm/}sij + 6“[751(11/;5

mam/ikilj
—I1—1 mol,Im
+ 20 (Y XYy Mool )M
Im (51)

where M""™ is the molecular transition multipole given by
LIm __ 1,11 pi
Mg = My 4 My (52)

ah]m being the electronic transition multipole,

M — ol Y, 1y, ()
ab 2 + 1< lzl /m( ) h)
4z(N, — 1)
= ——(D) ly )
T+ 1 (@I Im('1) b (53)

and M} '™ the nuclear transition multipole,

4
21+ 1

NYI
8 D, ZaRYin(R,)
A=1 (54)

mol,Im

Mnuc,lm _

ab

The matrix elements H,, and M}, are obtained from the

QCPs. Notice that the monopole term has the simple form

M = Jar6,Q (55)

where Q is the total charge of the parent ion. Notice also that,
in order for the scattering theory to be applicable, the channels
must be asymptotically decoupled, ie., the parent-ion states
must diagonalize the N, — 1 molecular Hamiltonian

Hab = Eaaab (56)

If we define the hydrogenic mono-electronic operator h as
0 — 1O -1

hi,j = ki,j + Q,(@lr l(pl> (57)

we can rewrite the expression for the Hamiltonian matrix
elements by explicitly indicating the contribution of the
multipoles with / > 0 only
NN,
P
Hai,/)’j = N [(Ea z] + hl] )) b51 ol My

€

+ 20 (G Yl Mol ™ )M
1>0,m (58)

Other Matrix Elements

For completeness we also provide the expressions for the
matrix elements of the electron—nucleus and electron—electron
interactions potentials. For the former, the matrix element is
given by
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*
NoilNy,

(4

a

VE?,/}]' = [V‘%‘él{x{ pémam/isij + Z <Y1umaY1m|Y[/im/i>
Im

<(pl.|1‘_[_ llfﬂj>M:l1:C]1m] (59)

where the integral of three harmonics has the following
expression

2a+1)2b+1) _,
(Y YY) = <060 ot b
47(2c + 1) (60)
and for the latter,
NNy
ee v P ee
ai,fj = —[Vahéln]ﬁémamﬁsij + IZ (Ylam,lYIlelﬂmﬁ>
(4 m
—I-1 el,Im
(Pl )My, ] (61)
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