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Basis-neutral Hilbert-space 
analyzers
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Ayman F. Abouraddy1

Interferometry is one of the central organizing principles of optics. Key to interferometry is the 
concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, 
when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode 
multiplexing and quantum communication – basis-specific principles are invoked that are altogether 
distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial 
domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified 
using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond 
to optical implementations of fractional transforms; for example, the fractional Hankel transform is 
the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer 
incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an 
inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have 
constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis.

Interferometry is the cornerstone of fundamental investigations and precise measurements in optics1. The nature 
of light – both classical2,3 and quantum4–6 – was unraveled largely through interferometric experiments, and the 
exquisite precision inherent in optical interferometry has been instrumental in metrology7, bio-imaging8, devis-
ing ultra-sensitive systems for the detection of gravitational waves9, and enabling novel lithographic schemes10. 
These examples share a common feature: interference results from combining beams with relative phases engen-
dered by optical delays. A principal utility for optical interferometry is spectral analysis – determining the contri-
butions of the continuum of time-frequency harmonics to the optical signal. Recent applications have emphasized 
the utility of discrete spatial-mode bases for optical beams, such as orbital angular momentum (OAM) states11–13 
exploited in free-space14,15 and multimode fibers16,17 to increase their information-carrying capacity (so-called 
spatial-mode multiplexing) and in quantum communication protocols18 (such as quantum key distribution19). An 
optical beam in this conception is an element in a Hilbert space spanned by such a basis. In general, strategies for 
spatial-mode analysis rely on approaches altogether different from the concept of optical delays that has served 
interferometry so well. In other words, we currently lack a ‘Hilbert-space analyzer’: a hypothetical device capable 
of analyzing an optical beam in the vector space defined by any prescribed modal basis. Examples of strategies for 
modal analysis range from phase-retrieval combined with direct mode projections20, correlating the modes with 
spectral or temporal degrees of freedom21, combining principal-component analysis after adapting the detection 
system with a training data set22, to performing a coordinate transformation that converts the beam into a more 
convenient basis23. In particular, despite multiple techniques for OAM beam analysis24–27, comparable progress 
has been lacking for other important modal bases, such as radial Laguerre-Gaussian28–32 (LG) modes.

In archetypical two-path interferometers, two copies of a beam are combined after a relative optical delay is 
inserted. The delay is swept and an interferogram is traced, which yields the modal weights of time-frequency 
harmonics through spectral analysis. In this paper, we present a unifying principle for modal analysis by address-
ing the following question: can the traditional optical delay – one of the most fundamental concepts in optics 
– be extended beyond its implementation in the time domain to apply to Hilbert spaces associated with discrete 
spatial-mode bases? We show here that such a generalization is indeed possible. We introduce the concept of a 
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generalized delay (GD): an optical transformation characterized by a continuous, real order-parameter that can 
be tuned to produce – once placed in one arm of an interferometer – an interferogram that reveals the modal 
weights in a prescribed functional basis via harmonic analysis. We find that GDs correspond to optical implemen-
tations of fractional transforms in the case of discrete modal bases33,34. For example, it can be shown34 that the GD 
associated with Hermite Gaussian (HG) modes is the fractional Fourier transform35,36, whereas that associated 
with radial LG modes37 is the fractional Hankel transform38,39. Sweeping the order of a fractional transform cor-
responds to varying a temporal delay in traditional interferometry – each in its own Hilbert space.

In the implementation presented here, we exploit electrically addressable spatial light modulators (SLMs) 
to realize tunable-strength cylindrical and spherical lenses that are building blocks of fractional transforms40. 
We make use of the polarization discrimination of SLMs41,42 to construct a polarization interferometer – in lieu 
of a two-path interferometer – to accomplish generalized interferometry in an inherently stable configuration. 
Switching between Hilbert spaces – that is, examining a beam in different bases – is readily achieved in the same 
setup with no moving parts, simply by changing the phases imparted by the SLMs. We thus establish a versatile, 
basis-neutral Hilbert-space analyzer based on a generalized conception of optical interferometry.

Concept of a generalized optical delay
An optical delay τ is typically implemented by inserting an additional propagation length in a beam’s path. In the 
time domain, a delay shifts the temporal origin E(t) →  E(t −  τ), whereas in the spectral domain it adds to each 
harmonic frequency component ω a phase eiωτ that is linear in both the delay and the frequency (Fig. 1a). In other 
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Figure 1. Concept of a generalized optical delay. (a) Traditional temporal optical delay. The impact of a 
temporal delay τ on a pulse E(t) can be viewed in two ways. In the time domain (first row), the pulse is delayed, 
E(t −  τ). In the spectral domain (second row), the pulse is a superposition of temporal harmonics ω−e i t (angular 
frequencies ω) each with a spectral amplitude cn. The delayed pulse E(t −  τ) is the result of inserting phase factors 
ωτei  for each harmonic ω. (b) Generalized delay (GD) α in a Hilbert space spanned by a discrete modal basis 
ψ x{ ( )}n . The impact of the GD on an optical beam can also be viewed in two domains. In the spatial domain 

(first row), the GD is not simply a shift but instead it transforms the transverse field profile E(x) →  E(x; α). 
However, in the modal space (second row) where the field is viewed as a superposition of the modes ψ x{ ( )}n  
with weights cn, the impact of the GD is identical to that of the temporal delay on the spectral harmonics in (a). 
The GD adds a phase factor αei n to the nth mode amplitude, which ‘delays’ the beam by α in the Hilbert space 
spanned by ψ x{ ( )}n .
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words, spectral harmonics {e−iωt} are eigenstates of the delay operation with eigenvalues eiωτ. Guided by this 
observation, we introduce a generalized delay (GD) that operates in the Hilbert space spanned by a modal basis 
{ψn(x)}, such that the GD’s effect on a beam described in this space is completely analogous to that of a delay τ for 
a pulse. A GD operates between an input plane ′x  and output plane x, and implements a unitary transformation 

′ αΛ x x( , ; ) characterized by a real, continuous order-parameter α,

∑′ α ψ ψ ′Λ = α ⁎x x e x x( , ; ) ( ) ( ),
(1)n

in
n n

where the functional basis ψ x{ ( )}n  is orthonormal and complete, and its members are the eigenstates of Λ : they 
emerge  f rom t he  GD unchange d  except  for  a  mo de-dep endent  phas e  αein  (F ig .   1b) , 
∫ ′ ′ α ψ ′ ψΛ = αdx x x x e x( , ; ) ( ) ( )n

in
n ; see Methods.

Consider a monochromatic beam ψ= ∑E x c x( ) ( )n n n , where c{ }n  are modal coefficients and E(x) is normal-
ized ∫ =dx E x( ) 12 , such that ∑ =c 1n n

2 . Upon passage through the GD, the field is transformed according to

∫ ∑α ′ α ′ ψ= Λ = .αE x dx x x E x c e x( ; ) ( , ; ) ( ) ( )
(2)n

n
in

n

Each mode thus acquires a phase αein  that depends linearly on its index n (Fig. 1b) – in analogy to the impact 
of a traditional delay with respect to spectral harmonics. For a discrete modal basis indexed by n (Equation 1), 

′ αΛ x x( , ; ) is periodic in α with period 2π. Furthermore, Λ  can be generalized to two transverse coordinates and 
is applicable to a continuous basis33,34.

As an example, consider the set of one-dimensional (1D) HG modes, = −H x A e h x( ) ( )n n
x

n
2

, where h x( )n  is the 
nth-order Hermite polynomial and An is a normalization constant. This modal set is well-established as a useful 
basis for laser beams and arises naturally in many contexts43. The corresponding GD is the 1D fractional Fourier 
transform (fFT)34 of angular-order α (scaled heretofore by convention from 0 to 4). Indeed, HG modes are eigen-
states of the fFT36 with eigenvalues π αei n /2. A beam traversing this GD is not shifted in physical space, as an optical 
delay shifts a pulse in time. Nevertheless, because each underlying HG mode acquires the requisite phase after the 
GD, the fFT ‘delays’ the beam in the Hilbert space of optical beams spanned by HG modes, which thus facilitates 
analyzing the beam in the HG basis. Alternatively the set of radial LG modes associated with zero-OAM states 
given by φ = −r B e L r( ) ( )n n

r
n

/2 22
 constitutes a modal basis for radial functions having azimuthal symmetry; here 

⋅L ( )n  is the nth-order Laguerre polynomial, Bn is a normalization constant, and r is a radial coordinate. The GD 
here corresponds to the fractional Hankel transform (fHT); i.e., an optical implementation of the fHT ‘delays’ the 
beam in the Hilbert space spanned by radial LG modes33. Techniques for beam analysis into radial LG modes are 
lacking, leading the radial coordinate to be recently dubbed the ‘forgotten’ degree of freedom29.

Generalized optical interferometry
A GD can be exploited for the modal decomposition of an optical beam in its associated Hilbert space. The overall 
scheme for ‘generalized optical interferometry’ is a balanced two-path interferometer, in which the usual tempo-
ral delay is replaced by a GD (Fig. 2a). For an incident beam ψ= ∑E x c x( ) ( )n n n  and a GD constructed using the 
modal basis ψ x{ ( )}n , the output field is α ψ∝ ∑ + αE x c e x( ; ) (1 ) ( )n n

in
nt  and the power recorded by a ‘bucket 

detector’ is

∫ ∑α α α∝ ∝ +P dx E x c n( ) ( ; ) 1 cos ,
(3)n

nt
2 2

such that harmonic analysis of P(α) identifies the weights cn
2; Fig. 2b. Each mode thus produces individually a 

sinusoidal interferogram ∝ 1 +  cos nα. Mode-orthogonality dictates that each mode interferes only with itself. 
Crucially, the form of the interferogram in Eq. 3 is independent of the particular modal basis. A superposition of 
two HG modes of order n and m, for example, yields an interferogram that is identical to the same superposition 
of LG modes of order n and m – if the appropriate GD associated with each Hilbert space is implemented. This 
generalized interferometer is thus ‘basis-neutral’. Furthermore, since the GD associated with a discrete modal 
basis is periodic in its order α, the resulting interferogram is in turn periodic, such that its Fourier transform 
yields a discrete spectrum. The number of modes that may be distinguished in this manner is determined by the 
sampling rate of the interferogram (the number of settings of α measured) and is ultimately Nyquist-limited.

Experimental implementation
A fFT or fHT can be implemented via combinations of cylindrical or spherical lenses, respectively, and the 
transform orders are varied by changing either the lens strengths or their separation (or both)36,44. The former 
approach does not require moving parts and can be realized with electrically addressable phase-only SLMs that 
implement generalized lenses of variable power – which is the strategy we follow here. A minimum of three gen-
eralized lenses can implement a 1D fFT40, where the first and last lenses have the same power and the distances 
separating the SLMs are equal (Methods). The fFT order can thus be varied without overall scaling or additional 
phases imparted to the field40, which is critical since we will interfere the beam with its own fFT.

The two-path interferometer in Fig. 2a requires a high degree of stability since several large com-
ponents (SLMs) are introduced into one path, the overall path lengths may be large (~1 m here), and a 
fractional-transform-order-dependent relative phase must be included (Methods). These difficulties are obviated 
by introducing a novel configuration that exploits the polarization-selectivity of liquid-crystal-based SLMs41 to 
construct the single-path polarization interferometer (Fig. 3a). The three SLMs impact the horizontal polarization 
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component H, whereas the vertical component V is unaffected. After rotating the input polarization to 45°, 
only the H-component is transformed by the SLMs whereas the V-component is unchanged, thus serving as a 
reference. Projecting the output polarization at 45° allows the H and V components to interfere. However, the 
V-component undergoes diffraction during propagation and at the output it no longer corresponds to the original 
field E(x) needed as a reference. We therefore introduce lenses between the SLMs arranged in a 4-f configuration 
to image the V-component and reproduce E(x), and modify the strength of the lenses implemented by the SLMs 
accordingly (Fig. 3b; Methods). Since the symmetry of the configuration is maintained, reflective SLMs allow 
folding the system such that only two SLMs and one lens are required (Fig. 3c). This stable polarization interfer-
ometer is thus in one-to-one correspondence with the two-path interferometer in Fig. 2a.

In implementing the fHT, we require that the SLMs produce simultaneously equal-order1D fFTs along x and 
y. Each SLM thus corresponds to equal-power crossed cylindrical lenses, or a spherical lens.

Results
We first realize modal analysis via generalized interferometry in the basis of 1D HG modes, where the associated 
GD is the 1D fFT. We examine beams having the separable form =E x y E x E y( , ) ( ) ( )x y  and focus on the 
x-dependence alone. The input beams are prepared by a single SLM (SLM0) that imprints a phase-only pattern on 
a Gaussian-mode laser beam, which is then imaged to SLM1 that constitutes the input plane to the generalized 
interferometer. A second SLM (SLM2) reflects the beam back to SLM1, and the phases imparted by SLM1 and 
SLM2 are varied to cycle the fFT order α.

We report in Fig. 4 measurements carried out on 1D beams approximating the four lowest-order HG modes. 
For each beam, we provide: (1) the intensity of the ‘delayed’ beam after the fFT α α=I x E x( ; ) ( ; ) 2 while varying 
the ‘delay’ α; (2) the intensity after interfering the delayed beam with the original, α α∝ +I x E x E x( ; ) ( ) ( ; )t

2; 
(3) the interferogram recorded by the ‘bucket detector’ ∫α α=P dxI x( ) ( ; )t ; and (4) the Fourier transform of 
P(α) that reveals the modal weights cn

2. In Fig. 4a, each vertical line plot corresponds to the magnitude squared 
of a 1D fFT αE x( ; ) 2 associated with a different order α, whereas each vertical plot in Fig. 4b is the correspond-
ing spatial interferogram α+E x E x( ) ( ; ) 2. These data enable us to diagnose the system and evaluate its perfor-
mance, but only the interferogram P(α) is required for modal analysis, which corresponds to the temporal 
interferogram obtained in traditional two-path interferometers incorporating an optical delay. This interferogram 
is basis-neutral now that the spatial degree of freedom has been integrated over.

Whenever E(x) is a pure nth-order HG mode, the interferogram α π α∝ +P n( ) 1 cos /2 is a sinusoid whose 
Fourier transform produces a delta function at n. We verify this with modes H x( )0  through H x( )3 . Because the 
Gaussian beam =E x H x( ) ( )0  is an eigenstate of the fFT, we do not observe modulation in αI x( ; ) or αI x( ; )t , and 
the interferogram P(α) is thus a constant whose Fourier transform has a single contribution at n =  0. Next, the 
1st-order HG mode =E x H x( ) ( )1  produces an interferogram having a full sinusoidal period P(α) ∝  1 +  cos α 
whose Fourier transform reveals the strongest contribution at n =  1. We approximate H x( )1  by imparting a 
π-phase step (via SLM0) to a Gaussian beam (Supplementary Information Sec. S3), so contributions from other 
modes appear in the modal analysis, and simulations provide a computed modal content that is in excellent 

Figure 2. Generalized optical interferometry for modal analysis in an arbitrary basis. (a) Operation of a 
generalized interferometer in real space. Two copies of the beam E(x) are created at beam splitter 1 and 
subsequently combined at beam splitter 2 after one copy traverses the GD and is ‘delayed’ in the associated 
Hilbert space by α, E(x; α). The beam emerging from the interferometer – a superposition of the delayed  
beam and a reference α α= +E x E x E x( ; ) ( ) ( ; )t  – is collected by a bucket detector and an interferogram is 
recorded with α, ∫α α=P dx E x( ) ( ; )t

2, whose Fourier transform reveals the modal weights cn
2. (b) 

Operation of the generalized interferometer in the Hilbert space spanned by the modal basis ψ x{ ( )}n  on the 
beam ψ= ∑E x c x( ) ( )n n n  (Fig. 1b). The underlying modes of the ‘delayed’ copy acquire phase shifts of the form 
αein  after passing through the GD to yield a new beam α ψ= ∑ αE x e c x( ; ) ( )n

in
n n . The original and ‘delayed’ 

beams are combined α ψ∝ ∑ + αE x e c x( ; ) (1 ) ( )n
in

n nt  to produce an interferogram 
α α∝ + ∑P c n( ) 1 cosn n

2 . Because the modes are orthogonal to each other, each interferes only with its 
phase-shifted counterpart to yield an interferogram of the form 1 +  cos nα with weights cn

2 – independently of 
the underlying basis ψ x{ ( )}n  that is traced out at the bucket detector. The sought-after weights are then revealed 
through harmonic analysis.
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agreement with the measurements (Supplementary Information Sec. S4). Similarly, H x( )2  and H x( )3  produce 
shorter period sinusoids and reveal the strongest contributions at n =  2 and n =  3, respectively. We note a discrep-
ancy at the fFT order α =  2, whereupon the rapid variation imposed on the SLM phases results in a sudden drop 
in diffraction efficiency (Supplementary Information Sec. S5).

We next analyze beams into radial LG modes by implementing the fHT as the GD. The results for L r( )0
2  through 

L r( )2
2  are presented in Fig. 5. Since these beams are azimuthally invariant, we first integrate the recorded 2D inten-

sity I(r, θ) in polar coordinates over θ to obtain a 1D radial distribution ∫ θ θ=
πI r d rI r( ) ( , )

0
2 , where I(r) is the 

power in a thin annulus of radius r centered on the beam axis. Figure 5a depicts the ‘delayed’ beam I(r; α) as we vary 
the fHT-order α. Integrating over r after interfering the delayed beam with the reference produces the interferogram 
P(α). The basis-neutrality is clear when comparing the interferograms associated with H x( )0  in Fig. 4 to L r( )0

2  in 
Fig. 5; similarly for H x( )1  and L r( )1

2 , and for H x( )2  and L r( )2
2 .

To highlight the versatility of this approach, we examine beams formed of various superpositions of HG 
modes in Fig. 6. First, we analyze the beam = +E x H x H x( ) { ( ) ( )}/ 20 1  which we approximate by blocking half 
the cross section of a Gaussian beam (Fig. 6a–d). Next, we examine the field = +E x H x iH x( ) { ( ) ( )}/ 21 2  which 
we approximate by only varying the phase of a Gaussian beam to maximize the overlap with the desired beam 
(Fig. 6a–d). Finally, we investigate the superposition θ θ= +E x H x i H x( ) cos ( ) sin ( )0 1  while varying θ from 0 
to π/2, thereby switching the beam from H x( )0  to H x( )1  (Fig. 6e).

Discussion and Conclusion
We have demonstrated that optical interferometry can be generalized to apply for any modal basis by replacing 
the traditional temporal delay with a generalized delay (GD): an optical transformation that ‘delays’ the beam in 
a Hilbert space spanned by the modal basis of interest. This basis-neutral strategy provides a unifying framework 
for modal analysis in an arbitrary basis – whether discrete, continuous, or combinations thereof for different 
degrees of freedom34. The fFT performs a rotation of the Wigner distribution associated with the field45, which 

Figure 3. Inherently stable implementation of a generalized interferometer. (a) Implementation of a 1D 
fFT using three generalized (variable-power) lenses L1, L2, and L3 with symmetric strengths p1, p2, and p1, 
respectively, that are selected to produce a fractional transform of prescribed order (Methods). Because the 
lenses are implemented by polarization-selective SLMs (affecting only the H-component), the system is in 
fact equivalent to the two-path interferometer in Fig. 2a, with the H- and V-components corresponding to 
the delay and reference arms, respectively, while the half-wave plate (HWP) and the polarizer correspond 
to beam splitters 1 and 2, respectively. This common-path interferometer is inherently stable. However, the 
V-component undergoes unwanted diffraction over the distance 2d. (b) Same as (a), except that polarization-
insensitive fixed lenses (focal lengths f) are inserted in a 4 f configuration to eliminate the diffraction of the 
V-component. The strengths s1, s2, and s1 of the generalized lenses are modified to compensate for the added 
lenses. (c) Folded implementation of (b). The beam is reflected onto itself from L2, such that L1 and L3 are the 
same generalized lens and only one fixed lens is required.
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has been exploited in tomographically reconstructing the Wigner distribution of non-classical states of light46. 
We have implemented this strategy here in the spatial domain of a scalar field using monochromatic light, but the 
approach is readily extended to multiple degrees of freedom of the optical field by simply cascading the associated 
GDs34. This methodology is also applicable to quantum states of light, such as one-photon or even entangled 
two-photon states47 by replacing the dual delays in a phase-unlocked HOM interferometer48 with the appropriate 
GDs. Our approach can thus further increase the accessible dimensionality of the Hilbert space of single photons 
by at least an order of magnitude49,50.

The accessible dimension of the beam’s Hilbert space is ultimately limited by the spatial resolution of the SLM 
pixels and the phase-step resolution for each pixel, which limit the sampling resolution of the fractional-transform 
order. Improvements in SLM technology may allow for real-time modal analysis over large-dimensional Hilbert 
spaces. One can use instead amplitude-based spatial modulators which are considerably faster, resulting in 
real-time modal analysis, albeit at the price of reduction in signal throughput51. We have found however that the 
physical extent of the SLM (or the number of pixels) is the main factor that limits the fidelity of modal analysis (see 
Supplementary Information for a detailed study).

Many new questions are now open: What is the optimal implementation of a GD when only a closed subspace 
of the modal basis is of interest? What is the minimum number of SLMs required to implement a GD in an arbi-
trary modal basis? Moreover, it is usually the case that only a few modes are activated (such as in communications 
protocols) or contribute significant energy – so-called modal ‘sparsity’52. In these scenarios, uniformly sampling 
the GD order is not efficient. We have recently shown theoretically that optical interferometry can be modeled as 
a linear measurement problem and is hence subject to compressive sensing techniques that exploit the sparsity 
of the signal in some modal basis52. These findings can considerably reduce the number of measurements in the 
methodology presented here.

We have implemented here the GDs for the Hilbert spaces associated with HG and radial LG modes, the fFT 
and fHT, respectively. More generally, our approach indicates the potential utility of yet-to-be-discovered optical 

Figure 4. Modal analysis in the Hilbert space spanned by 1D Hermite-Gaussian modes using generalized optical 
interferometry. (a) The measured ‘delayed’ beam resulting from the input beam E(x) (which is to be analyzed into the 
contributions from HG modes) traversing the order-α GD (here the fFT), αE x( ; ) 2. Each vertical line plot represents 
the magnitude-squared of a 1D fFT αE x( ; ) 2 associated with a different order α. (b) The measured interferogram 
resulting from superposing the delayed beam from (a) with a reference, α+E x E x( ) ( ; ) 2. Each vertical line plot 
thus represents the magnitude-squared of the 1D spatial interferogram associated with a different order α. (c) The 
integrated interferogram ∫α α= +P dx E x E x( ) ( ) ( ; ) 2. This interferogram is now basis-neutral. (d) The modal 
weights |cn|2 revealed by taking the Fourier transform of the interferogram in (c). The columns are for different input 
beams corresponding to modes HG0 through HG3. The implemented beams only approximate the pure HG modes 
(except for HG0 which is exact), as shown in the insets in (d). The black mode profile in the inset is an exact HG mode 
while the orange plot is the approximate beam used in the experiment. The theory plots in (c) and (d) are those for the 
implemented approximate beams. See Supplementary Information for theory.
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fractional transforms and provides a roadmap for their discovery. Given any modal set of interest, a fractional 
transform may be constructed out of the outer product of these functions in the diagonal representation given in 
Eq. 1 – and this fractional transform ‘delays’ the beam in its associated Hilbert space. For example, one may form 
a fractional transform from a basis of OAM and Bessel functions for the analysis of beams emerging from optical 
fibers or circular waveguides.

Methods
Properties of a generalized delay. Consider a functional basis ψ x{ ( )}n  that is orthonormal 
∫ ψ ψ δ=⁎dx x x( ) ( )n m nm and complete ψ ψ ′ δ∑ = − ′⁎x x x x( ) ( ) ( )n n n . Using this set as a basis for a 1D finite-en-
ergy beam E(x) (in the space of square-integrable functions L2), we have ψ= ∑E x c x( ) ( )n n n , with modal coeffi-
cients ∫ ψ= ⁎c dx x E x( ) ( )n n . For convenience, we normalize the beam energy (the length of a vector in the  
Hilbert space L2): ∫ =dx E x( ) 12 ; consequently, ∑ =c 1n n

2 .
Consider a linear, unitary transformation between input and output planes identified by coordinates x′  and x, 

respectively. The transformation has a real, continuous order-parameter α that uniquely identifies the transfor-
mation ′ αΛ x x( , ; ). A field E(x) traversing this system is transformed according to Eq. (2), E(x) →  E(x; α). 
Unitarity implies that ∫ ∫ α=dx E x dx E x( ) ( ; )2 2 for all α and arbitrary E(x), which implies that

∫α α ″ α δ αΚ ′ ″ = Λ ′ Λ = ′ − ″ ∀ .⁎x x dx x x x x x x( , ; ) ( , ; ) ( , ; ) ( ), (4)

One can thus obtain the form of the GD transformation ′ αΛ x x( , ; ) in Eq. 1, which further entails that the set 
of transformations ′ αΛ x x( , ; ) forms over α a one-parameter group. Defining the group composition operation 
as the cascade of two transformations, ∫α β ′ ′ α βΛ ″ + = Λ Λ ′ ″x x dx x x x x( , ; ) ( , ; ) ( , ; ), which is closed on this 

Figure 5. Modal analysis in the Hilbert space spanned by radial Laguerre-Gaussian modes using 
generalized optical interferometry. (a–d) Same as (a–d) in Fig. 4 except that the GD operates in the space of 
radial LG modes. Note that in (a) and (b), the delayed beam and the interferogram are plotted with r and not 
x (0 ≤  r ≤  ∞ ). Insets show the radial intensity distribution of the beams. The columns are for different input 
beams corresponding to modes LG0 through LG2. The implemented beams only approximate the pure radial LG 
modes (except for LG0 which is exact), as shown in the insets in (d). The mode profile on the left in the inset is 
an exact LG mode while the plot on the right is the approximate beam used in the experiment. The theory plots 
in (c) and (d) are those for the implemented approximate beams. See Supplementary Information for theory.
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Figure 6. Modal analysis of beams comprising superimposed modes. (a–d) Same as (a–d) in Figs 4 and 5. 
The Input beams are the superpositions +H x H x( ) ( )0 1  (left column) and +H x iH x( ) ( )1 2  (right column). (e) 
Modal analysis of the beam θ θ+H x i H xcos ( ) sin ( )0 1 , while varying θ from 0 to π/2. Plotted are the 
coefficients |c0|2 (blue squares) and |c1|2 (red circles), corresponding to the contributions of the modes HG0 and 
HG1. Dashed curves are theoretical predictions, for |c0|2 and |c1|2 predicated on the generated approximate 
modes.
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set, we have the requisite properties for a group: (I) the set has an identity ′ δ ′Λ = −x x x x( , ; 0) ( ); (II) the group 
composition operator is associative; and (III) there exists a unique inverse for any transformation ′ αΛ x x( , ; ), 
namely ′ αΛ −x x( , ; ). The group is also obviously commutative. Finally, the property of the inverse and the uni-
tarity of Λ  together imply that

′ α ′ αΛ − = Λ .⁎x x x x( , ; ) ( , ; ) (5)

Implementation of the 1D fFT using SLMs. The 1D fFT is defined by Eq. 1 after substituting the 1D HG 
functions for ψ x( )n . Explicitly, the 1D fFT is given by the canonical transformation

α α π α α ′ α ′Λ ′ = − − +x x i i x xx x( , ; ) 1 cot exp{ (cot 2csc cot )}, (6)fFT
2 2

where x and ′x  are normalized and unitless. Several specific angular orders of the fFT are readily recognizable. At 
α =  0, the system is ′ δ ′Λ = −x x x x( , ; 0) ( )fFT , which is an imaging system without inversion or the identity 
operator; at α = π

2
, ′ π ′Λ = −π( )x x i xx, ; exp{ 2 }fFT 2

 is a Fourier transform system; and at α  =   π , 
′ π δ ′Λ = +x x x x( , ; ) ( )fFT , which is an imaging system with inversion.

The system in Fig. 3a consists of three cylindrical lenses (implemented by SLMs) of powers p1, p2, and p1 
(inverse focal lengths) separated by equal distances d, and can perform the 1D fFT of arbitrary order, without 
scaling or additional spatially varying phase, while using the minimal number of optical components40. By intro-
ducing a characteristic length scale σ (to be set shortly) to normalize x and ′x , the impulse response function of 
this system at a wavelength λ is

′ η πη πη ′
=

−








+ ′




− −

−












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
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


−
−


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π−h x x
p d

e e i x x p d
p d

i xx
p d

( , )
2

exp ( ) 1 1
2

exp 2
2

,
(7)

i i kd
1

2

3
4 2 2 2

1
2 2

where η = σ
λd

2
 is a unitless parameter that combines all the length scales in the system. Comparing Eq. 7 to Eq. 6, 

we identify the lens strengths p1 and p1 that are necessary to implement the fFT of angular order α:

η
α η α= − = − .p d p d1 1 cot
2
, 2 sin

(8)1 2

In the case of a polarization-selective SLM, the impulse response function for the H-component is Eq. 7 
whereas that for the V-component corresponds to free-space propagation for a distance 2d.

The modified system in Fig. 3b includes two identical lenses with focal lengths f in addition to the three SLMs 
implementing cylindrical lenses with strengths s1, s2, and s1, and all the separating distances are equal to f. The 
impulse response function for the V-component is δ ′+x x( ), corresponding to imaging with inversion (a 4f 
imaging system). For the H-component, the impulse response function is a result of all five optical components 
(three when the system is folded back on itself) is given by:

′ η πη πη ′
=






− ′ +





−
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s f

e e i x x s f
s f

i xx
s f

( , ) exp ( ) 1 exp 2 ,
(9)

i i kf
2

2

3
4 4 2 2

1
2 2

where η = σ
λf

2
 and we have introduced the transverse length scale σ as above. We identify s1 and s2 that implement 

the 1D fFT of order α

η
α η α= =s

f
s

f
1 cot

2
, sin

(10)1 2

This polarization interferometer thus achieves both goals: the H-component undergoes a 1D fFT whereas the 
V-component reference is imaged via a 4f system, both without introducing extra spatial phases or scaling.

Implementation of the radial fHT using SLMs. The 2D fFT between input plane ′ ′x y( , ) and output 
plane (x, y) is separable along the two Cartesian coordinates, such that

′ ′ α α ′ α ′ αΛ = Λ Λx y x y x x y y( , ; , ; , ) ( , ; ) ( , ; ), (11)xy x x x x y y

where ′ αΛ x x( , ; )x x  and ′ αΛ y y( , ; )y y  are 1D fFTs of order αx (along x) and αy (along y), respectively. These fFTs 
may be controllably accessed independently by adding the phase patterns for the two required crossed generalized 
cylindrical lenses to be implemented by the SLMs. The fHT corresponds to a symmetric 2D fFT34,38 α α α= =x y . 
In polar coordinates we have ′ ′ α α θ ′ θ′ αΛ → Λx y x y r r( , ; , ; , ) ( , ; , ; )xy . When restricted to azimuthally sym-
metric functions E(r, θ) =  E(r), Λ  itself becomes independent of θ and θ′ , ∫α ′ α= ΛE r E r r r rdr( ; ) ( ) ( , ; ) , where 
the purely radial transformation ′ αΛ r r( , ; ) is the fHT, which is thus given by ref. 33

′ α π α π ′ α π ′ αΛ = − + .r r i i r r J rr( , ; ) 2 (1 cot )exp{ ( )cot } (2 csc ) (12)2 2
0

Here ⋅J ( )0  is the zeroth-order Bessel function of the first kind.
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Experimental setup. The optical beam is derived from a laser diode at a wavelength of 808 nm that is spa-
tially filtered by coupling into a single-mode fiber at the operating wavelength (Thorlabs, FS-SN-4224) and colli-
mated using a fiber-integrated collimation package. This produces an approximate Gaussian beam whose size is 
controlled by a variable beam expander (Thorlabs, BE02-05-B) moving along with the collimation package along 
a rail mount to yield a Gaussian beam with a FWHM of 0.6 mm located at SLM0. The beam is polarized along H 
and is modulated by SLM0 to produce the desired beam. The field at SLM0 is imaged to SLM1 – through a beam 
splitter – via a 4f imaging system comprised of equal-focal-length lenses (f =  300 mm) and the polarization is 
rotated from H to 45° by a half-wave plate. All the SLMs are reflection-mode, polarization-sensitive Hamamatsu 
LCOS-SLM (X10468-02) that modulate H but not V. The angle of incidence on SLM1 is less than 10°, the reflected 
beam passes through a lens L1 (f =  500 mm) and is normally incident on SLM2 reflecting back through L1 to SLM1 
again. The plane of SLM1 is then imaged to the detector plane through the beam splitter and analyzed at + 45° 
polarization. The image of the modified interference beam is recorded by a CCD camera (The Imaging Source, 
DFK 72BUC02). The SLMs are computer-controlled to synchronize the display of the phases required to imple-
ment the fFT of desired order.
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