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Single-photon three-qubit quantum logic using
spatial light modulators
Kumel H. Kagalwala1, Giovanni Di Giuseppe 1,2, Ayman F. Abouraddy1 & Bahaa E.A. Saleh1

The information-carrying capacity of a single photon can be vastly expanded by exploiting its

multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can

be encoded per photon, to date only two-qubit single-photon quantum operations have been

realized. Here, we report an experimental demonstration of three-qubit single-photon,

linear, deterministic quantum gates that exploit photon polarization and the two-dimensional

spatial-parity-symmetry of the transverse single-photon field. These gates are

implemented using a polarization-sensitive spatial light modulator that provides a robust,

non-interferometric, versatile platform for implementing controlled unitary gates. Polarization

here represents the control qubit for either separable or entangling unitary operations on the

two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit

Greenberger–Horne–Zeilinger and W states, which is confirmed by tomographical

reconstruction of single-photon density matrices. This strategy provides access to a

wide range of three-qubit states and operations for use in few-qubit quantum information

processing protocols.
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Photonic implementations of quantum logic gates1–7 are
largely unaffected by the deleterious effects of decoherence
and can potentially integrate seamlessly with existing

technologies for secure quantum communication8. To
circumnavigate challenges to realizing nonlinearity-mediated
photon–photon entangling interactions9–13, Knill, Laflamme,
and Milburn (KLM) developed a quantum computing
protocol that is efficient and scalable—but probabilistic—using
only single-photon sources, linear optical elements,
projective measurements, and single-photon detectors14. In
contrast, single-photon quantum logic (SPQL) aims to exploit the
potentially large information-carrying capacity of a single
photon to offer deterministic computation—at the expense of an
exponential scale-up of resources with qubits. A quantum
circuit in which a single photon encodes n qubits requires an
interferometric network with 2n paths15, 16. To curtail this
exponential rise in complexity, a hybrid approach was proposed

in which the degrees of freedom (DoFs) of single photons are
entangled via quantum non-demolition measurements to carry
out computation in smaller, spatially separated sub-systems17.
However, this technique requires a single-photon cross-phase
modulation. Few-qubit SPQL obviates the need for single-photon
nonlinearities, but requires improvements in the generation and
manipulation of entangled states in large-dimensional Hilbert
spaces spanning all photonic DoFs—spatial, temporal, and
polarization18, 19. Along this vein, recent efforts have focused on
the spatial DoF—orbital angular momentum (OAM)20,
spatial modes21, 22, or multiple paths23–25—in conjunction with
polarization. To date, SPQL demonstrations have been limited to
two qubits and include controlled-NOT (CNOT) and SWAP
gates23, 24, implementation of the Deutsch algorithm26, quantum
key distribution (QKD) without a shared reference frame27,
mounting an attack on BB84 QKD28, and hyperentanglement-
assisted Bell-state analysis29.
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Fig. 1 Toolbox for single-photon one-qubit operations for polarization and spatial-parity. a Hilbert space of polarization showing a schematic representation
of the basis, the Poincaré sphere highlighting the Vj i; Hj if g, Dþj i; D�j if g, and Rþj i; R�j if g bases whose elements occupy antipodal positions; here
Dþj i ¼ 1ffiffi

2
p Hj i þ Vj ið Þ, D�j i ¼ 1ffiffi

2
p Hj i � Vj ið Þ, Rþj i ¼ 1ffiffi

2
p Hj i þ i Vj ið Þ, and R�j i ¼ 1ffiffi

2
p Hj i � i Vj ið Þ. The Pauli X and Z operators are implemented by a

half-wave plate (HWP) with the fast axis oriented at 45° and 0°, respectively; a rotation operator RP(θ) by a sequence of a quarter-wave plate (QWP), a
HWP, and a QWP, oriented at 0°, θ, and 0°, respectively; while a polarizing beam splitter (PBS) projects onto the Vj i; Hj if g basis. b Same as a for the
x-parity Hilbert space. We show representative even and odd modes and the Poincaré-sphere representation of different parity bases ej i; oj if g,
dþ
�� �

; d�j i� �
, and rþj i; r�j if g whose elements occupy antipodal positions; here dþ

�� � ¼ 1ffiffi
2

p ej i þ oj ið Þ, d�j i ¼ 1ffiffi
2

p ej i � oj ið Þ, rþj i ¼ 1ffiffi
2

p ej i þ i oj ið Þ, and
r�j i ¼ 1ffiffi

2
p ej i � i oj ið Þ. The parity X-operator (a parity flipper, PF) is implemented by a π phase-step along x; the parity Z (a spatial flipper, SF) by a Dove

prism or a parity prism; a parity rotator (PR) by a phase-step θ along x, which rotates the state on the major circle connecting the states ej i; oj i; rþj i; r�j if g;
and a modified MZI acts as a parity analyzer (PA) that projects onto the { ej i, oj i} basis. c Same as b for the y-parity Hilbert space. All the parity-altering
devices require a 90°-rotation around the propagation axis with respect to their x-parity counterparts
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A different approach to exploiting the photon spatial DoF
makes use of its spatial-parity symmetry—whether it is even or
odd under inversion—regardless of the specific transverse spatial
profile30–32. Implementing this scheme with entangled photon
pairs enabled the violation of Bell’s inequality in the
spatial domain exploiting Einstein–Podolsky–Rosen states30, 33.
In this approach, the parity symmetry of a single photon can
encode two qubits, one along each transverse coordinate, which
provides crucial advantages. First, because only the
internal transverse-parity symmetry is exploited, the need for
interferometric stability required in multipath realizations is
eliminated. Second, the Cartesian x- and y-coordinates of the
two-dimensional (2D) transverse field are treated symmetrically,
unlike the intrinsic asymmetry between the polar azimuthal and
radial coordinates used in OAM experiments. Therefore, the
same optical arrangement for manipulating the spatial-parity
symmetry along x (hereafter x-parity for brevity) can be
utilized for the y-parity after a rotation34, whereas
approaches for manipulating and analyzing radial
optical modes along with OAM modes are lacking (see refs. 35–39

for recent progress). Third, phase modulation of the single-
photon wavefront—imparted by a spatial light modulator (SLM)
—can rotate the qubits associated with the x- and y-parity
simultaneously, and can indeed implement non-separable
(entangling) rotations in their two-qubit Hilbert space34. These
advantages point to the utility of spatial-parity-symmetry as a
resource for few-qubit quantum gates40.

Here, we report an experimental demonstration of linear,
deterministic, two- and three-qubit quantum logic gates that
exploit the polarization and 2D spatial-parity-symmetry of
single photons. At the center of our experiment is a polarization-
selective SLM that modulates the phase of only one polarization
component of the single-photon wavefront40–42. Because such
an SLM introduces a coupling between the polarization
and spatial DoFs41, it can implement controlled unitary gates
predicated on the photon state of polarization40—a feature that
has not received sufficient attention to date. In this conception,
the photon polarization represents the “control” qubit, whereas
the x- and y-parity represent the “target” qubits. The versatility
of this strategy is brought to light by realizing a multiplicity
of quantum gates: two-qubit CNOT and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p
gates,

and three-qubit gates with separable or entangling controlled
transformations on the target qubits. Only the phase imparted by
the SLM is modified electrically—without moving parts—to

select which gate is implemented. We exploit these gates to
generate single-photon three-qubit maximally entangled
Greenberger–Horne–Zeilinger (GHZ) and W states43 from initial
generic, separable states. The performance of these logic gates is
characterized by determining their truth tables and through
quantum state tomography of the states produced when the gate
is interrogated. Spatial-parity is analyzed using a balanced
Mach–Zehnder interferometer (MZI) containing an optical
component that flips the spatial beam profile. In lieu of traditional
Dove prisms that introduce unavoidable parasitic coupling
between polarization and spatial rotation44, 45, we exploit a
custom-designed “parity prism” that is polarization neutral and
thus facilitates precise projections in the parity sub-space.

Our technique is a robust approach to the photonic
implementation of few-qubit quantum information processing
applications. Multiple SLMs may be cascaded to realize few-qubit
protocols, and potentially for implementing quantum
error-correction codes46. The wide array of three-qubit states
accessible via this technique may help improve the violations of
local realistic theories in experimental tests47 and enhance the
sensitivity of quantum metrology schemes48.

Results
Polarization and spatial parity qubits. We first introduce
the single-photon DoFs that will be exploited to encode
quantum information. A qubit can be realized in the polarization
of a single photon by associating the logical basis 0j i; 1j if g
with the physical basis Vj i; Hj if g, where Vj i and Hj i are
the vertical and horizontal linear polarization components,
respectively. We list relevant polarization unitary transformations
as a reference for their parity counterparts. The Pauli operators

X ¼ 0 1
1 0

� �
and Z ¼ 1 0

0 �1

� �
are each implemented by an

appropriately oriented half-wave plate (HWP); a polarization

rotation RP θð Þ ¼ cos θ2 i sin θ
2

i sin θ
2 cos θ2

� �
by a sequence of wave plates;

and projections by a polarizing beam splitter (PBS) (Fig. 1a).
A corresponding Hilbert space may be constructed for

x-parity30–33 spanned by the basis ej i; oj if g, where ej i and oj i
correspond to even- and odd-components of the photon field
distribution along x, respectively, and are depicted as antipodal
points on a parity-Poincaré sphere (Fig. 1b). Parity is a
particularly convenient embodiment of a qubit since it can be
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Fig. 2 Impact of a polarization-sensitive phase-only SLM on polarized single-photons. a Impact of a polarization-sensitive phase-only SLM on x-parity. The
SLM imparts a phase step π along x. When the polarization is horizontal Hj i, the SLM phase modulation results in a flip in the x-parity: exj i→ i oxj i and
oxj i→ i exj i. When the polarization is vertical Vj i, the x-parity is unchanged, regardless of the SLM phase: exj i→ exj i and oxj i→ oxj i. b Same as a applied to
y-parity. The SLMs in a and b can thus be viewed as two-qubit quantum logic gates where polarization is the control qubit and x- or y-parity is the target
qubit
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readily manipulated via simple linear optical components30, 32.
The parity X-operator is implemented by a phase plate that
imparts a π phase-step along x, which is thus a parity flipper:
ej i→ i oj i and oj i→ i ej i. This device multiplies the waveform
by a phase factor ei

π
2sgnðxÞ, where sgn(x)= 1 when x≥ 0, and

sgn(x)= −1 otherwise. The parity Z-operator is a spatial flipper
ψ(x)→ ψ(−x), which can be realized by a mirror, a Dove prism,
or a parity prism (introduced below), resulting in the
transformation: ej i→ ej i and oj i→ − oj i. An x-parity rotator R
(θ) that rotates parity by an angle θ around a major circle on the
Poincaré sphere is implemented by a phase plate introducing a
phase-step θ along x, an operation that multiplies the waveform

by a phase factor ei
θ
2sgnðxÞ. A parity analyzer, realized by a MZI

containing a spatial flipper in one arm, projects onto the parity
basis ej i; oj if g (Fig. 1b). The spatial flip is performed using a
“parity prism” in lieu of the traditional Dove prism. By virtue of
input and output facets that are normal to the incident beam, the
parity prism introduces crucial advantages for our measurements.
In contradistinction to a Dove prism, the parity prism is free of
polarization-dependent losses and of the parasitic coupling
between polarization and spatial rotation44, 45. All these x-parity
operations may be appropriated for the y-parity qubit by rotating
the components in physical space by 90° around the propagation
axis34 (Fig. 1c). Note that the parity prism can be rotated with
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high beam-pointing stability (Supplementary Note 1). The qubits
encoded in the x- and y-parity can be manipulated independently
by cascading optical components that impact only one transverse
coordinate.

Spatial light modulator as a two-qubit controlled-unitary gate.
At the heart of our strategy for constructing deterministic SPQL is
utilizing the polarization-selectivity of phase-only liquid-crystal-
based SLMs49. Such devices impart a spatially varying phase
factor eiφ(x, y) to only one polarization component of an
impinging vector optical field (assumed Hj i throughout), while
the orthogonal Vj i polarization component remains invariant. A
coupling between the polarization and spatial DoFs is
thus introduced41, 42, thereby entangling the associated
logical qubits40. The two-qubit four-dimensional Hilbert space
associated with polarization and x-parity is spanned by the
hybrid basis Vj i; Hj if g � ej i; oj if g ¼ Vej i; Voj i; Hej i; Hoj if g,
in correspondence with the logical basis 00j i; 01j i; 10j i; 11j if g.

We illustrate the impact of an SLM imparting a phase-step π
along x on the four basis states in Fig. 2a. When the polarization
is Vj i, the parity is invariant: Vej i→ Vej i and Voj i→ Voj i; when
the polarization is Hj i, the parity is flipped: Hej i→ i Hoj i and
Hoj i→ i Hej i. This action is consistent with a CNOT gate with
polarization and x-parity corresponding to the control and target
qubits, respectively. Similarly, a CNOT gate with y-parity playing
the role of the target qubit is realized when a phase-step π is
imparted by the SLM along y rather than x (Fig. 2b). In Fig. 3 we
illustrate the correspondence between the ideal truth table of a
CNOT gate (Fig. 3a, b) and the measured truth table produced by
the SLM implementation (Fig. 3c, d).

More generally, implementing a phase-step θ along x by an
SLM rotates the parity of only the Hj i polarization. The unitary
operator associated with the SLM action is represented by the
matrix

U2ðθÞ ¼

1 0 0 0

0 1 0 0

0 0 cos θ2 i sin θ
2

0 0 i sin θ
2 cos θ2

0
BBB@

1
CCCA; ð1Þ

corresponding to a single-parameter controlled-unitary gate,
where polarization and parity are the control and target qubits,
respectively; the subscript in U2(θ) refers to the number of
qubits involved in the gate operation. This optical realization of a
two-qubit quantum gate has several salutary features. The SLM is
a non-interferometric device, making the gate stable and
less prone to decoherence and noise. Moreover, the phase θ
may be varied in real-time electronically with no moving parts,
thus enabling access to a continuous family of two-qubit gates in
a single robust device. For instance, by setting θ= π we obtain a
CNOT gate, while θ ¼ π

2 results in a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p
gate. Such a gate is

an intermediate between the identity and CNOT, such that
applying the gate twice in succession produces a CNOT gate,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p ¼ CNOT. Furthermore, a single SLM enables
the manipulation of the x- and y-parity Hilbert spaces either
independently or jointly34, 40, therefore providing a versatile
platform for constructing three-qubit gates, as we demonstrate
below.

Experimental demonstration of two-qubit SPQL. We have
verified the operation of a variety of two-qubit SPQL
implemented with a SLM using the setup shown schematically in
Fig. 4. Utilizing an entangled two-photon source, we project
one photon onto a single spatial mode to herald the arrival of
a one-photon state at the SLM-based quantum gate, which is

followed by two-qubit quantum state tomography measurements
on the polarization-parity space. It can be shown that type-I
spontaneous parametric down-conversion (SPDC) produced
from a nonlinear crystal illuminated with a strong Hj i-polarized
laser whose spatial profile is separable in the x and y coordinates
and has even spatial parity is given by
Ψj i / V1V2j i � e1e2j i þ o1o2j if gx , where the subscripts 1 and 2
identify the signal and idler photons, respectively, and the state
of y-parity of the two photons has been traced out30–33.
By projecting the idler photon onto the e2j i mode via spatial
filtering, a single-photon in a generic separable state in
polarization-parity space Ψij i= Vej i is heralded, corresponding
to logical 00j i basis (Methods).

The quantum gate itself consists of a single linear optical
component: the polarization-selective SLM (PS-SLM in Fig. 4).
By implementing a phase-step θ on the SLM, we produce
a controlled-unitary gate that rotates the state of x-parity
conditioned on the polarization state (Eq. (1)). We test three
settings that result in distinct two-qubit quantum gates: θ= 0,
θ= π

2, and θ= π, corresponding to the identity gate, a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p
gate, and a CNOT gate, respectively. We interrogate these gates
using three logical states: 00j i prepared by our heralded single-
photon source, corresponding to the state Vej i in the physical
basis; 1ffiffi

2
p 0j i þ 1j if g � 0j i, obtained by first rotating the polariza-

tion by 45°: Vj i→ Dþj i= 1ffiffi
2

p Vj i þ Hj if g (the Hadamard gate H

in Fig. 5); and 10j i corresponding to the state Hej i, which is
prepared by rotating the polarization Vj i→ Hj i (the Pauli-X
operator in Fig. 5).

The measurement results are presented in Fig. 5 for the nine
different combinations of selected gate and input state. In each
setting, the predictions are borne out by reconstructing the
one-photon two-qubit density operator from quantum-state-
tomography measurements50, 51 in polarization and parity42, 52

(via SLM2 in Fig. 4; Supplementary Note 3). In the case of the
identity gate (θ= 0), the input states emerge with no change.
The measured density matrices therefore correspond to
ψ1j i ¼ Vej i Veh j, ψ2j i ¼ Dþej i Dþeh j, and ψ3j i ¼ Hej i Heh j.
When we set θ= π, we obtain a CNOT gate—a controlled Pauli
X-operator on the x-parity qubit. Therefore, the input state 00j i
emerges unaffected ψ1j i= 00j i, 10j i is changed to ψ3j i= 11j i,
while the input state 1ffiffi

2
p 0j i þ 1j if g � 0j i (a superposition of

the previous two states 00j i and 10j i) entangles polarization with
x-parity, producing the maximally entangled Bell state ψ2j i
= 1ffiffi

2
p 00j i þ 11j if g. Finally, setting θ= π

2, we obtain a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p

gate. The performance of these gates is quantified via their

fidelity53 defined as F ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp	 
� �2
, where “Tr” refers to

the trace of an operator, and ρ and σ are the measured and
expected density matrices, respectively, for the states produced
in the different configurations. For θ= 0, we obtain F= 0.9565±
0.0010, 0.8984± 0.0015, 0.9682± 0.0003 for the three input states
tested; for θ= π

2, we obtain F= 0.9581± 0.0008, 0.8851± 0.0018,
0.9274± 0.0009; and for θ= π, we obtain F= 0.9644± 0.0008,
0.8812± 0.0019, 0.8981± 0.0021.

Experimental demonstration of three-qubit SPQL. We proceed
to describe our results on constructing three-qubit SPQL, with
polarization as the control qubit and x- and y-parity as the target
qubits. Crucially, because operations on x- and y-parity commute,
they may be implemented simultaneously on the same SLM by
adding the corresponding phases. If a phase factor eiφ1ðxÞ is
required to implement the one-qubit x-parity gate U ðxÞ

1 and eiφ2ðyÞ
for the y-parity gate U ðyÞ

1 , then the phase factor ei φ1 xð Þþφ2ðyÞf g
corresponds to the two-qubit transformation U ðxÞ

1 � U ðyÞ
1 .

Furthermore, non-separable phase distributions, φ(x, y)≠ φ1(x)
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+ φ2(y) such that eiφ x;yð Þ≠ eiφ1 xð Þeiφ2ðyÞ, can entangle the qubits
associated with x- and y-parity40. Care must be exercised in
selecting φ(x, y) to guarantee that the parity state-space
remains closed under all such transformations. We have
shown theoretically that 2D phase distributions that are piecewise
constant in the four quadrants satisfy this requirement34.
Therefore, a polarization-selective SLM can implement a broad
range of three-qubit quantum gates with the appropriate selection
of the phases in its four quadrants.

Three-qubit states in the Hilbert space of polarization and xy-parity
are spanned by the basis Vj i; Hj if g � ej i; oj if gx � ej i; oj if gy ,
and we use a contracted notation: for example
Vj i � ej ix oj iy ¼ Veoj i—corresponding to 001j i in the logical
basis. The phase distribution imparted to the photon by the
polarization-sensitive SLM (PS-SLM in Fig. 4) rotates the two parity
qubits when the control qubit is Hj i. This operator is represented by
the matrix

U3 ¼
I4 04
04 Rxy

� �
ð2Þ

where I4 and 04 are the 4D identity and zero operators,

respectively, and Rxy is a unitary operator on the 4D space of
xy-parity40.

The three-qubit states utilized in testing such gates are prepared
by the heralded single-photon source shown in Fig. 4. When the
nonlinear crystal is illuminated by a Hj i-polarized laser whose
spatial profile is separable in x and y and has even-parity along
both, then it can be shown that the two-photon state produced is
Ψj i / V1V2j i � e1e2j i þ o1o2j if gx � e1e2j i þ o1o2j if gy , where
the subscripts 1 and 2 refer to the signal and idler photons,
respectively, and the kets are associated with the polarization,
x-parity, and y-parity subspaces34. By projecting the idler photon
onto a single (even) mode, the heralded photon has the reduced
one-photon state Ψij i= Veej i in the contracted notation,
corresponding to logical 000j i.

Six three-qubit quantum logic gates are implemented using the
SLM (Fig. 6). The operation of each gate is confirmed by
generating all eight three-qubit canonical states Veej i 000j ið Þ
through Hooj i 111j ið Þ, and then projecting the output state onto
this basis to determine the gate’s truth table. Generating the input
states requires switching the basis states of the subspaces
of polarization ( Vj i→ Hj i via HWP1), x-parity ( ej ix → oj ix)
and y-parity ( ej iy → oj iy) independently (via SLM1 in Fig. 4). For
example, starting from Veej i we prepare Heoj i by placing the
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Fig. 5 Two-qubit single-photon quantum logic gates. Characterization of three two-qubit quantum gates on the space of polarization and x-parity: a the
identity gate; b the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOT

p
gate; and c the CNOT gate. For each gate, we show the phase implemented on the PS-SLM (Fig. 4), and the real and imaginary

parts of the density matrix Re{ρ} and Im{ρ}, respectively, reconstructed from quantum-state-tomography measurements at the quantum gate output for
three different input states. The SLM implements a phase-step θ along x, a θ= 0, b θ= π

2, and c θ= π (top row) to create the desired gates. The three input
states Ψinj i are (ordered in the rows from top to bottom): (1) the initial separable generic state Vej i produced by the heralded source in Fig. 4; (2)
1ffiffi
2

p Hj i þ Vj if g � ej i obtained by rotating the polarization 45° (corresponding to the Hadamard gate H, a half-wave plate rotated 22.5°); and (3) Hej i
obtained by rotating the polarization Vj i→ Hj i (corresponding to the Pauli-X operator, a half-wave plate rotated 45°). On the leftmost column we show
schematics of the combined system for initial state preparation and quantum gate
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HWP and a π phase-step along y, and so on. The three-qubit
projections are carried out using a cascade of a PBS and a parity
analyzer with the appropriately configured parity prism placed in
one arm of a balanced MZI (Supplementary Note 4).

The results for the three-qubit gates are presented in Fig. 6. The
phases for the four quadrants implemented by the SLM start from
the top right quadrant and move in the counter-clockwise
direction. The gates include: unity gate (Fig. 6a) implemented
with zero-phase on the SLM; CNOTx gate on the x-parity qubit
utilizing a π phase-step along x (phases are π

2, −
π
2, −

π
2, and

π
2;

Fig. 6b); CNOTy gate on the y-parity qubit utilizing a π phase-step

along y (phases are π
2,

π
2, −

π
2, and −π

2; Fig. 6c); cascaded CNOTx and
CNOTy gates, or CNOTx � CNOTy , sharing the same control
qubit and utilizing the SLM phases π

2, −
π
2,

π
2, and −π

2 resulting from
adding the phases for the CNOTx and CNOTy gates and then
subtracting an unimportant global phase π

2 (Fig. 6d); cascaded
gates U ðxÞ

2 ðπÞ � U ðyÞ
2

π
2

� �
, corresponding to CNOTx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOTy

p
,

implemented using the phases 3π
4 , −

π
4, −

3π
4 , and

π
4 resulting from

adding the phases for the gates CNOTx and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOTy

p
(Fig. 6e);

and finally, a controlled joint rotation of the xy-parity
implemented using the non-separable phase distribution π

4, −
π
4,

π
4, and −π

4 (Fig. 6f). In the latter case, the entangling two-qubit
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Fig. 6 Quantum-circuit representation and the measurement of operators for three-qubit gates. For the quantum gate in each panel, we present
the quantum circuit, the 2D SLM phase required for implementing the gate, and the reconstructed transformation operator in the polarization-parity
Hilbert space. a The identity gate Ix � Iy ; b CNOTx � Iy ; c Ix � CNOTy ; d CNOTx � CNOTy ; e a rotation Rx(π) on the x-parity qubit and a rotation
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2

� �
on y-parity qubit, corresponding to the separable quantum gate CNOTx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNOTy

p
; and f a joint rotation Rxy π

2

� �
in the joint Hilbert space of x- and

y-parity
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transformation implemented on the xy-parity space (when
polarization is Hj i) is

Rxy ¼

1 0 0 i

0 1 i 0

0 i 1 0

i 0 0 1

0
BBB@

1
CCCA ð3Þ

Projections in polarization space are made using a polarization
analyzer, and in spatial-parity space using a modified MZI, which
acts as the parity analyzer. We have measured the operators, or
truth tables and then benchmark the performance of the gates
with their “inquisition”54, the overlap between the measured σm
and ideal σi matrices defined by σI ¼ Tr σmσTi

� �
=Tr σiσTi

� �
, where

“T” indicates the conjugate transpose. We find the inquisition to
be 0.9986, 0.9967, 0.9974, 0.9975, 0.9977, and 0.9989 (all with
average uncertainty of ±0.0010), for the gates depicted in Fig. 6a
through Fig. 6f, respectively.

Generation of single-photon three-qubit GHZ and W states.
Finally, as an application of the three-qubit quantum gates
described above, we implement entangling gates that convert a
generic separable state Veej i (logical 000j i) into entangled
states. It is well-known that there are two classes of entangled
three-qubit states that cannot be interconverted into each other
through local operations: GHZ states such as 1ffiffi

2
p 000j i þ 111j if g,

and W states such as 1ffiffi
3

p 001j i þ 010j i þ 100j if g. In our context

of single-photon three-qubit states, these two classes of
entanglement cannot be interconverted through operations that
affect any of the DoFs separately.

To prepare a GHZ state starting from the separable state Veej i,
we first rotate the polarization 45°, Vj i→ 1ffiffi

2
p Vj i þ Hj if g, and

then implement the three-qubit quantum gate shown in Fig. 6d.
This gate combines two two-qubit gates: a CNOT gate on x-parity
and a CNOT gate on y-parity—both controlled by the
polarization qubit. The SLM imparts alternating phases of π

2
and −π

2 in the four quadrants (Fig. 7a). Thus, when the
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Fig. 7 Producing entangled three-qubit states. a Implementation and quantum circuit for producing a GHZ state from an initially separable generic state. On
the right we plot the real and imaginary parts of the three-qubit density operator ρ reconstructed from quantum state tomography measurements. b Same
as a to produce a W state
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polarization is Hj i, the x-parity CNOT gate implements
the transformation ej i→ i oj i (Eq. (1) with θ set to π); and
similarly for the y-parity CNOT gate. Consequently, the resulting
three-qubit state evolution is Veej i→ 1ffiffi

2
p Veej i þ Heej if g→

1ffiffi
2

p Veej i � Hooj if g, corresponding to a maximally entangled

GHZ state. By reconstruction the three-qubit density matrix of
the generated state via quantum state tomography, the fidelity is
estimated to be 0.8207± 0.0027 (Fig. 7a).

To produce a three-qubit W state starting from the same
generic separable state Veej i, we rotate the polarization an angle
φW, where tanφW ¼ 1ffiffi

2
p ; Vj i ! 1ffiffi

3
p Vj i þ ffiffiffi

2
p

Hj i� �
. The SLM

imparts the phases π, π
2, 0, and −π

2 in the four quadrants. The
phase modulation is non-separable along x and y, and thus
imparts an entangling rotation in the space of x- and y-parity.
Specifically, when the polarization is Hj i, the parity is mapped
according to eej i→ 1ffiffi

2
p i eoj i � oej if g. Consequently, the resulting

three-qubit state evolution is Veej i→ 1ffiffi
3

p Veej i þ ffiffiffi
2

p
Heej i� �

→
1ffiffi
3

p Veej i þ i Heoj i � Hoej if g, corresponding to a maximally

entangled W state. The fidelity of the reconstructed W state
estimated through quantum state tomography is 0.8284± 0.0026
(Fig. 7b).

Discussion
In conclusion, we have experimentally demonstrated linear,
deterministic, single-photon, two- and three-qubit quantum
logic gates using polarization and spatial parity qubits that are
implemented by a single optical device, a polarization-selective
SLM. The average fidelity for two-qubit SPQL is 93%, whereas
that for three-qubit SPQL is 83%. The performance of these gates
is limited essentially by two factors: the quantization of the phase
implemented on the SLM and its diffraction efficiency, both of
which are expected to be reduced with advancements in SLM
technology. Another factor that reduces the fidelities of the
measured states is the alignment of the interferometers utilized in
parity analysis, which provide a baseline visibility of ~94%
and thus lead to an underestimation of the fidelities. This
imperfection can be obviated by implementing active control in
the interferometer.

The advantages of the spatial-parity-encoding scheme we
described in the introduction and demonstrated in our
experiments have all been confirmed for the case of two qubits
encoded in the 2D transverse spatial profile of single-photon
states in a Cartesian coordinate system. In alternative encoding
techniques, such as those associated with OAM states, a
higher-dimensionality Hilbert space is accessible in the azimuthal
DOF (in a polar coordinate system), by utilizing high-order
modes. A comparable approach can be exploited in our scheme,
where the 2D transverse plane is segmented into non-overlapping
square areas where the spatial parity qubits are encoded inde-
pendently. This would allow us to increase the number of qubits
per photon with the same SLM-based modulation scheme—at the
price, however, of increasing the complexity of the detection
system. Increasing the number of qubits per photon
can be exploited in few-qubit applications such as quantum
communications where the redundancy resulting from
embedding a logical state in a larger-dimension Hilbert space can
help combat decoherence.

In this work, we have shown how three qubits can be encoded
in the polarization and spatial parity DoFs of a single photon.
Instead of heralding the arrival of one photon from a pair of
entangled photons by detecting the second photon, the two
photons in the pair may both be exploited34. In this scenario, the
two-photon state can be used to encode six qubits, and each set of

three qubits (for each photon) is readily manipulated with an
SLM. The use of both photons opens up a host of interesting
possibilities, such as the creation of six-qubit cluster states,
production of exotic hyper-entangled states, and tests of quantum
nonlocality55–58.

Finally, this approach may also be applied to other DoFs, such
as OAM, to realize quantum gates in which the polarization qubit
acts as the control and the OAM qubit as the target. In contrast
with OAM states, the appealing features of spatial parity include
the non-necessity of truncation of Hilbert space via modal
filtering of photons using slits or pinholes, and the simplicity of
constructing operators in spatial-parity space. Multiple gates may
be readily cascaded, thereby paving the way to convenient
implementations of few-qubit quantum information processing
algorithms.

Methods
Experimental setup. We produce photon pairs by type-I collinear SPDC when an
Hj i-polarized monochromatic pump laser with an even spatial profile from a
diode laser (Coherent CUBE 405-50, 405 nm, 50 mW) impinges on a 1.5-mm-thick
β-barium-borate (BBO) crystal propagating at an angle of 28.3° from the crystal
axis. The pump is subsequently removed using a Glan-Thompson polarizer and a
10-nm-bandwidth interference filter centered at 810 nm. One of the two
Vj i-polarized photons heralds the arrival of the other by coupling through a
single-mode fiber (SMF) to a single-photon-sensitive avalanche photodiode, APD
(PerkinElmer SPCM-AQR). The heralded photons after the setup are collected
through a multimode fiber to another APD.

The setup divides into three stages: state preparation, control, and analysis.
Coupling the trigger photon into a SMF projects the heralded photon onto a single,
even-parity spatial mode, such that its state may be written as Ψj i= Hej i. This state
may be further modified using a sequence of a SLM (SLM1 to prepare the parity
state) and a HWP (to rotate the polarization). The state control is implemented
using the controlled-unitary quantum gate realized with a polarization sensitive
SLM (SLM2). In the case of x-parity, we use a step phase pattern (θ) on SLM2 along
x; similarly for y-parity. State analysis cascades a polarization projection (a HWP
and a PBS) followed by a parity projection (SLM3 and a MZI); see Supplementary
Notes 2 and 3 for the configurations used in the two-qubit and three-qubit SPQL
experiments, respectively.

See Supplementary Methods for details on data acquisition, SLM calibration,
and alignment protocols.

Three-qubit tomography in an alternate basis. A key step in the quantum
state tomography used in the main text is first finding the multi-DoF Stokes
parameters51, 52, 59, which are then used to estimate the density matrix42. The
actual settings for the combined polarization and spatial-parity projections are
directly related to intermediary parameters (denoted as Tj, j= 1…64), which are
then transformed into the Stokes parameters via:

T1

T2

T3

T4

:

:

:

:

T61

T62

T63

T64

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼

Tr τ1σ000f g Tr τ1σ001f g Tr τ1σ002f g Tr τ1σ003f g : : : : Tr τ1σ330f g Tr τ1σ331f g Tr τ1σ332f g Tr τ1σ333f g
Tr τ2σ000f g Tr τ2σ001f g Tr τ2σ002f g Tr τ2σ003f g : : : : Tr τ2σ330f g Tr τ2σ331f g Tr τ2σ332f g Tr τ2σ333f g
Tr τ3σ000f g Tr τ3σ001f g Tr τ3σ002f g Tr τ3σ003f g : : : : Tr τ3σ330f g Tr τ3σ331f g Tr τ3σ332f g Tr τ3σ333f g
Tr τ4σ000f g Tr τ4σ001f g Tr τ4σ002f g Tr τ4σ003f g : : : : Tr τ4σ330f g Tr τ4σ331f g Tr τ4σ332f g Tr τ4σ333f g

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : :

Tr τ61σ000f g Tr τ61σ001f g Tr τ61σ002f g Tr τ61σ003f g : : : : Tr τ61σ330f g Tr τ61σ331f g Tr τ61σ332f g Tr τ61σ333f g
Tr τ62σ000f g Tr τ62σ001f g Tr τ62σ002f g Tr τ62σ003f g : : : : Tr τ62σ330f g Tr τ62σ331f g Tr τ62σ332f g Tr τ62σ333f g
Tr τ63σ000f g Tr τ63σ001f g Tr τ63σ002f g Tr τ63σ003f g : : : : Tr τ63σ330f g Tr τ63σ331f g Tr τ63σ332f g Tr τ63σ333f g
Tr τ64σ000f g Tr τ64σ001f g Tr τ64σ002f g Tr τ64σ003f g : : : : Tr τ64σ330f g Tr τ64σ331f g Tr τ64σ332f g Tr τ64σ333f g

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

S000
S001
S002
S003
:

:

:

:

S330
S331
S332
S333

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ð4Þ

The operators τj, j= 1…64, are each separable in the subspaces of polarization,
x-parity, and y-parity, τj= AP ⊗ Bx ⊗ Cy. The operators τ01 through τ16 have the
explicit form (each having the same operator on the polarization subspace):

τ01 ¼ 1
2 Iþ Zf g � I� I; τ02 ¼ 1

2 Iþ Zf g � Z � I; τ03 ¼ 1
2 Iþ Zf g � Y � I;

τ04 ¼ 1
2 Iþ Zf g � Y � X

τ05 ¼ 1
2 Iþ Zf g � I� Z; τ06 ¼ 1

2 Iþ Zf g � I� Y; τ07 ¼ 1
2 Iþ Zf g � X � Y;

τ08 ¼ 1
2 Iþ Zf g � Z � Z

τ09 ¼ 1
2 Iþ Zf g � Z � Y; τ10 ¼ 1

2 Iþ Zf g � Y � Z; τ11 ¼ 1
2 Iþ Zf g � Y � Y;

τ12 ¼ 1
2 Iþ Zf g � X � I

τ13 ¼ 1
2 Iþ Zf g � I� X; τ14 ¼ 1

2 Iþ Zf g � X � X; τ15 ¼ 1
2 Iþ Zf g � Z � X;

τ16 ¼ 1
2 Iþ Zf g � X � Z

The operators τ17 through τ32 have the same form except that the polarization
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operator 1
2 Iþ Zf g is replaced by 1

2 I� Zf g; for operators τ33 through τ48 it is
replaced by Iþ X; and for operators τ33 through τ48 it is replaced by Iþ Y .

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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