
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tmop20

Download by: [University of Central Florida] Date: 15 June 2017, At: 13:08

Journal of Modern Optics

ISSN: 0950-0340 (Print) 1362-3044 (Online) Journal homepage: http://www.tandfonline.com/loi/tmop20

Attosecond pulse generation isolated with an
asymmetric polarization gating

Gao Chen, Eric Cunningham & Zenghu Chang

To cite this article: Gao Chen, Eric Cunningham & Zenghu Chang (2017) Attosecond pulse
generation isolated with an asymmetric polarization gating, Journal of Modern Optics, 64:10-11,
952-959, DOI: 10.1080/09500340.2017.1290833

To link to this article:  http://dx.doi.org/10.1080/09500340.2017.1290833

Published online: 16 Feb 2017.

Submit your article to this journal 

Article views: 63

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tmop20
http://www.tandfonline.com/loi/tmop20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09500340.2017.1290833
http://dx.doi.org/10.1080/09500340.2017.1290833
http://www.tandfonline.com/action/authorSubmission?journalCode=tmop20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tmop20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/09500340.2017.1290833
http://www.tandfonline.com/doi/mlt/10.1080/09500340.2017.1290833
http://crossmark.crossref.org/dialog/?doi=10.1080/09500340.2017.1290833&domain=pdf&date_stamp=2017-02-16
http://crossmark.crossref.org/dialog/?doi=10.1080/09500340.2017.1290833&domain=pdf&date_stamp=2017-02-16


JOURNAL OF MODERN OPTICS, 2017
VOL. 64, NOS. 10–11, 952–959
https://doi.org/10.1080/09500340.2017.1290833

Attosecond pulse generation isolated with an asymmetric polarization gating

Gao Chena,b, Eric Cunninghama , Zenghu Changa

aInstitute for the Frontier of Attosecond Science and Technology, Department of Physics, and CREOL, the College of Optics & Photonics,
University of Central Florida, Orlando, FL, USA; bSchool of Science, Changchun University of Science and Technology, Changchun, China

ABSTRACT
High harmonics generated using the polarization gating technique are simulated under the
strong-field approximation for the cases of equal and unequal ratios between the amplitudes of
the two counter-rotating pulses. The effect of the field asymmetry is observed on the high harmonic
yield and cut-off in the frequency domain and on the attosecond pulse duration and satellite peak
contrast in the time domain. The casewhere the strong pulse comes later ismore favourable in terms
of generating a higher cut-off and a shorter pulse duration. It is predicted that thin metal filters can
reduce the impact of satellite pulses while simultaneously reducing the pulse duration.
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1. Introduction

Isolated attosecond pulses are incomparable tools for
investigating the electronic behaviour of atoms and
molecules (1). One way to generate such pulses is a
method called polarization gating (PG) (2–7): by pass-
ing a linearly polarized femtosecond laser pulse through
two phase retarders, the polarization of the pulse can be
tailored such that the ellipticity varies with time. When
driving high harmonic generation (HHG) in a gas target
with such a pulse, the production of extreme ultraviolet
attosecond bursts can be isolated to a single event if the
femtosecond pulse’s ellipticity is carefully sculpted to be
nearly linear for only one-half of a laser cycle.

Even though the regions of high ellipticity do not
contribute to HHG, the laser cycles outside the nearly
linear ‘polarization gate’ nonetheless continue to ionize
the gas target. This imposes the primary limitation of
the PG technique: for increasing pulse durations or field
intensities, leading-edge ionization constrains the num-
ber of un-ionized atoms still available forHHGat the time
the polarization gate arrives. To avoid this depletion of
the gas target, it has been demonstrated previously that a
second harmonic field can be added to the PG field (‘dou-
ble optical gating’, or DOG) (8) and elliptically polarized
counter-rotating pulses can be used to form the PG field
(‘generalized double optical gating’, or GDOG) (9).

In the cases of PG, DOG and GDOG, the polariza-
tion gate is created by overlapping two counter-rotating
circularly or elliptically polarized pulses of equal magni-
tude. Recently, it was proposed that using two counter-
rotating pulses of unequal magnitude, the arrival time
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of the polarization gate can be moved forward in time
without any change to the width of the polarization gate
itself, thus limiting the number of laser cycles on the
leading edge of the pulse (10). Using the Ammosov–
Delone–Krainov (ADK)model (11), the ionization rate of
these ‘asymmetric’ gating fields was calculated, the results
suggesting a dramatic reduction in ionization compared
to the case of typical symmetric gating fields.

As the scope of Ref. (10) was limited to the study
of leading-edge ionization, these results do not provide
insight into the effect of field asymmetry on the spectral
and temporal structures of the high harmonic attosec-
ond bursts themselves. To demonstrate the viability of
asymmetric fields in forming a sufficiently discrimina-
tive polarization gate for isolating individual attosecond
pulses, this work compares simulated HHG driven by
symmetric and asymmetric gating fields. By choosing
simulation parameters in the low-intensity regime to ex-
clude the plasma-induced laser defocusing and phase
mismatch, the effect of the field asymmetry itself on the
generated high harmonic signal is thereby isolated. This
low-intensity regime is also importantwhenphasematch-
ing is achieved by balancing plasma effects with neutral
gas, which has become a useful phase matching scheme
particularly for mid-infrared-driven HHG (12). Using
the 3D strong-field approximation model and solving
the 3D wave propagation equation, the effect of field
asymmetry is analysed in terms of its impact on the high-
order harmonic cut-off andyield in the frequencydomain
and on the attosecond pulse duration and contrast in the
time domain.
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2. Definitions and simulation parameters

To generate a PG field, a linearly polarized pulse passes
through two birefringent plates – usually a multi-order
full-wave plate followed by a zero-order quarter-wave
plate – whose slow and fast axes are oriented at a fixed
angle of 45◦ from each other. The form of this field can
be written using the basis defined by the orthogonally
polarized driving field �Edrive (responsible for generating
high harmonics) and gating field �Egate (responsible for
suppressing high harmonics):

�EPG = �Edrive + �Egate = Edrive cos (ωt + φCE)ê1

+ Egate cos
(
ωt + π

2
+ φCE

)
ê2 (1)

where ω is the carrier frequency and φCE is the carrier
envelope phase. The pulse envelopes of the driving and
gating fields, Edrive and Egate respectively, are given by

Edrive = E0√
2

(
sin θ1 exp

⎡
⎣−2 ln 2

(
t + Td

2
τp

)2
⎤
⎦

+ cos θ1 exp

⎡
⎣−2 ln 2

(
t − Td

2
τp

)2
⎤
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Egate = E0√
2

(
sin θ1 exp
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⎣−2 ln 2

(
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2
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⎤
⎦

− cos θ1 exp
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⎣−2 ln 2

(
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2
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)2
⎤
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where E0 and τp are the electric field amplitude and
the pulse duration of the linearly polarized driving laser
pulse, respectively, before entering the first birefringent
plate and Td is the separation in time between the two
counter-rotating pulses. The angle θ1 refers to the angle
of the polarization direction of the original driving laser
pulse compared to the slow axis of the first birefringent
plate. The ratio of the magnitudes of the two counter-
rotating pulses can be controlled by the angle θ1 in the
following way: when θ1 = cot−1(1) = 45◦, the incoming
pulse is equally projected onto the slow and fast axes of
the first birefringent plate, and the magnitudes of the or-
dinary and extraordinary waves are equal (this is the case
of symmetric PG); when the input polarization is rotated
such that θ1 �= 45◦, the pulse is unequally projected onto
the slow and fast axes of the first birefringent plate, and
the magnitudes of the ordinary and extraordinary waves
are not equal (this is the case of asymmetric PG, or APG).
In both scenarios, the angle between the slowand fast axes
of the first and second birefringent plates remains fixed at
45◦, as this condition encapsulates the sharpest possible

ellipticity change around the polarization gate. This dif-
fers from previous work in which the angle between the
two birefringent plates was not held constant, resulting in
changes to the HHG spectrum attributable to alterations
in the width of the polarization gate itself (13, 14).

When the input polarization projects unequally onto
the axes of the first birefringent plate (θ1 �= 45◦), the
point in time at which the envelopes of the two counter-
rotating pulses are equal – i.e. the instant of purely linear
polarization defining the centre of the polarization gate
tc – changes according to

tc = τ 2p

Td

ln ( tan θ1)

4 ln 2
. (4)

Although the temporal position of the polarization gate
tc shifts as a function of the input polarization direction
θ1, thewidth of the polarization gate remains constant for
all choices of pulse asymmetry because the ellipticity of
each counter-rotating pulse is independent of its ampli-
tude. An example of the effect of the input polarization
direction θ1 on the pulse shape and polarization gate is
presented in Figure 1.

In the current exercise, near-infrared 800 nm input
pulses are simulated using a pulse duration of τp = 5.33 fs
and a pulse separation of Td = 5.33 fs. The angle θ1 is
varied between the values cot−1(2) = 26.6◦, cot−1(1) =
45◦ and cot−1(1/2) = 63.4◦, corresponding tofield ratios
of 2:1, 1:1 and 1:2, respectively; these angles are depicted
in Figure 2. In order to make a direct comparison of the
behaviour of the PG with different field ratios, the enve-
lope of the driving field at the centre of the polarization
gate is normalized in each case to Edrive(tc) = 0.14 a:u: =
7.2×108 V/cm (∼ 3.4×1014 W/cm2), which is chosen to
limit the role of the ionization level of the helium target
(< 10% depletion inside the polarization gate for all field
ratios). Due to the change in position of the polarization
gate with varying θ1, the carrier envelope phase is also
changed according to

φCE = π

2
− ω

τ 2p

Td

ln ( tan θ1)

4 ln 2
(5)

to ensure that the positions of the closest two carrier
wave extrema straddled the polarization gate in the same
way for all three cases. For the 3D wave propagation, the
simulation employs a 1mm-long helium gas cell, which
is centred 1.5mm after the laser focus. The assumed focal
spot size isw0 = 25µm,which corresponds to a Rayleigh
range of zR = 2.6 mm. Plasma effects are ignored in this
simulation, which is a valid assumption given the low
ionization probability; the density of the helium target
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Figure 1. The top, middle and bottom rows show the cases of θ1 = cot−1(1/2), cot−1(1) and cot−1(2), respectively. On the left, the
total field (red), gating field (blue), driving field (green) and polarization gate (magenta) are plotted as a function of time for all three
field ratios. On the right, the absolute field magnitude ||�EPG|| (red) and ellipticity (blue) are plotted as a function of time for all three field
ratios.

itself is taken to be held at a constant value of 1.3 ×
1018 cm−3.

The high-order harmonic spectrum obtained in a
macroscopic medium is determined by two processes:
a single-atom response and a three-dimensional non-
adiabatic propagation. For this simulation, the harmonic
spectrum from a single atom is first calculated using the
strong-field approximation model (15). Previous work
has shown that the intensity of the harmonic spectrum
along the y-direction is much lower than that along the
x-direction. Thus, the instantaneous dipole moment of

an atom in the x-direction is described in atomic units as

x(t) ≈ i
∫ t

−∞
dt ′
(

π

ε + i(t − t ′)/2

)3/2

× d∗
x
[�pst(t ′, t) − �A(t)

]
exp

[−iSst(�pst , t ′, t)
]

× �d [�pst(t ′, t) − �A(t ′)
] · �E(t ′)g(t) + C.C. (6)

where ε is a positive small number, �E(t) is the electric
field of the laser pulse and �A(t) is its associated vec-
tor potential. The ground-state amplitude is given as
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Figure 2. The orientation of the slow axes of the two birefringent plates required to produce APG pulses with field ratios of 2:1
(θ1 = cot−1(2) = 26.6◦, red), 1:1 (θ1 = cot−1(1) = 45◦, black) and 1:2 (θ1 = cot−1(1/2) = 63.4◦, blue). The electric field resulting
from such a setup is visible for each choice of θ1 in Figure 1.

g(t) = exp
(
− ∫ t

−∞ w(t ′′)dt ′′
)
, with the ionization rate

w(t ′′) calculated using the ADK model (11). The quasi-
classical action of the electron Sst is expressed as

Sst(�pst , t ′, t) = (t − t ′)Ip − 1
2
p2st(t

′, t)(t − t ′)

+ 1
2

∫ t

t′
A2(t ′′)dt ′′. (7)

Here, Ip is the ionization potential of the helium atom
chosen as the target gas, and �pst is the canonical momen-
tum of the electron corresponding to a stationary phase,
which can be given by

�pst(t ′, t) = 1
t − t ′

∫ t

t′
�A(t ′′)dt ′′. (8)

The harmonic spectrum for a single atom is then
obtained by Fourier transforming the dipole acceleration
�a(t) = ẍ(t).

Next, the harmonic field propagation in amacroscopic
medium is simulated by solving a three-dimensional
propagation equation (16). In our simulation, because
of the low ionization probability and the low density of
atoms in the medium, the effects of dispersion, the Kerr
non-linearity and plasma defocusing on the fundamental
laser field can be neglected. The fundamental laser field
is assumed to be a Gaussian beam in space. Its spatial and
temporal dependence can be expressed in an analytical
form (16).

For high harmonics, dispersion and absorption effects
from the medium depend linearly on gas pressure and
could be ignored under low pressure. The free-electron
dispersion is also neglected since the plasma frequency
is much smaller than the frequencies of high harmon-
ics. The propagation of harmonic field in the ionizing

medium is described by the equation

∇2Eh(r, z, t) − 1
c2

∂2Eh(r, z, t)
∂t2

= μ0
∂2Pnl(r, z, t)

∂t2
, (9)

where r is the transverse coordinate, z is the propagation
coordinate in the lab frame, c is the speed of light in
vacuum and μ0 is the permeability of free space. The
non-linear polarization of the medium in the laser pulse
is

Pnl(r, z, t) = [
n0 − ne(r, z, t)

]
x(r, z, t) (10)

Here,n0 is the neutral atomdensity (1.3×1018/cm3), and
the free-electron density is given by ne(r, z, t)
= n0

[
1 − g(t)

]
. The induced dipole moment x(r, z, t) is

calculatedwith Equation (6) for atoms inside themedium
under the influence of the fundamental laser field, which
gives the atomic response to the entire laser pulse. When
we transform the coordinate from the laboratory frame
into the moving frame (z′ = z and t ′ = t − z/c) and
employ the paraxial approximation, we obtain

∇2⊥Eh(r, z′, t ′) − 2
c

∂2Eh(r, z′, t ′)
∂z′∂t ′

= μ0
∂2Pnl(r, z′, t ′)

∂t ′2
.

(11)
By adopting the Fourier transform, the temporal deriva-
tive in this equation can be eliminated:

∇2⊥Eh(r, z′,ω) − 2iω
c

∂Ẽh(r, z′,ω)

∂z′
= −μ0ω

2P̃nl(r, z′,ω), (12)
Ẽh(r, z′,ω) = F̂

[
Eh(r, z′, t ′)

]
, P̃nl(r, z′,ω)

= F̂
[
Pnl(r, z′, t ′)

]
(13)

where �F is the Fourier transform operator acting on the
temporal coordinate. These equations are solved numer-
ically: Equation (6) is computed for each frequency in
a spatial grid with 600 points and 400 points in the r
and z directions, respectively, and then the single-atom
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dipole moments at the grid points are calculated and en-
tered into Equation 12, which is solved using the Crank–
Nicholson method.

Once the harmonic field is obtained at the exit face
(z′ = zout), the HHG spectrum at the macroscopic level
can be obtained by integration over the transverse direc-
tion (17):

Ih(ω) ∝
∫ ∞

0

∣∣Ẽh(r, zout ,ω)
∣∣2 2πr dr. (14)

The intensity of attosecond pulses can then be calculated
as

I(t) =
∫ ∞

0
2πr dr

∣∣∣∣
∫ ω2

ω1

Ẽh(r, zout ,ω)eiωtdω

∣∣∣∣
2
. (15)

3. Simulation results – frequency domain

The simulated single-atom and macroscopic harmonic
signals for the pulse parameters described above are plot-
ted inFigure 3. Even though the pulse envelope at the cen-
tre of the polarization gate is normalized, two differences
between the three field ratios are immediately apparent:
(1) the relative intensity and (2) the harmonic cut-off.
Both of these effects can be explained by examining the
relative character of the driving field near the polarization
gate in all three cases, as displayed in Figure 4. In the case
of θ1 = cot−1(2), the leading pulse is small while the
trailing pulse is large; therefore, the first field extremum
is smaller and the second field extremum is larger than
Edrive(tc). Conversely, in the case of θ1 = cot−1(1/2),
the leading pulse is large while the trailing pulse is small;
therefore, the first field extremum is larger and the second
field extremumis smaller thanEdrive(tc). In the symmetric
case of θ1 = cot−1(1), the leading pulse and the trailing
pulse are equal in magnitude; therefore, the first field
extremumand the second field extremumare both nearly
the same as Edrive(tc).

These differences alter the character of the HHG
process. In the first stage of the three-step model, the
intense field is responsible for electron ionization; with
all other parameters equal, a stronger ionization-inducing
field will therefore result in more freed electrons, which
will lead to more recombination events and higher har-
monic yield. In the second stage of the three-step model,
the intense field, now with opposite direction, is respon-
sible for electron acceleration; with all other parameters
equal, a stronger accelerating field will therefore result
in higher electron kinetic energies, which will lead to
higher harmonic cut-offs. This is why the case of θ1 =
cot−1(1/2) features the highest yield and the lowest cut-
off, while the case of θ1 = cot−1(2) features the lowest
yield and the highest cut-off. It is worthwhile to note

Figure 3. Single-atom (bottom) and 3D macroscopic (top)
harmonic spectra generated by PGfieldswith different field ratios.

Figure 4. Driving field extrema surrounding the polarization gate
for different field ratios. While the envelope of all three fields
(dotted lines) are normalized at the centre of thepolarizationgate,
the fields themselves (solid lines) differ in magnitude because of
the field asymmetry.

that a similar trade-off has been observed previously in
a simulation of high harmonics generated by two-colour
driving fields: as the phase difference between the fun-
damental and second harmonic beams was scanned, the
harmonic yield and the harmonic cut-off trended in op-
posite directions (18).

4. Simulation results – time domain

Figure 5 shows the macroscopic spectra from Figure 3
transformed into the time domain using the harmonics of
order 20 and higher. Compared to the symmetric case of
θ1 = cot−1(1) that yields a pulse duration of 158 as (44 as
transform limit), the case of θ1 = cot−1(1/2) expectedly
features a higher yield and longer pulse duration (169 as;
56 as transform limit), and the case of θ1 = cot−1(2)
unsurprisingly features a lower yield and shorter pulse
duration (151 as; 30 as transform limit). The temporal
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Figure 5. The temporal profile of the isolated attosecond pulses
corresponding to the macroscopic HHG spectra plotted in the top
panel in Figure 3.

displacement between the three attosecond pulsesmerely
reflects the difference in the position of the polarization
gates in each scenario.

It is important to note that while the amplitude of
the main pulse is more than two orders of magnitude
larger than the amplitude of the largest satellite pulse for
the symmetric case of θ1 = cot−1(1), this ratio is instead
closer to 10% for the case of θ1 = cot−1(2). This indicates
that even though the width of the polarization gate – and
thus the recombination efficiency – remains unchanged,
the use of field asymmetry may actually increase the
total electron recombination in regions of relatively high
ellipticity due to the greater number of electrons ionized
by the stronger electric fields on the outer edges of the
polarization gate.

To understand this effect, it is first noted that there is
not a reduction in satellite pulse contrast for the case of
θ1 = cot−1(1/2). Because the stronger laser cycle arrives
before the polarization gate, this cycle’s short-trajectory
electrons remain too far from the low-ellipticity region
to allow any significant electron recombination. Even
though this cycle’s long-trajectory electrons do fall close
to the early edge of the polarization gate, the photoe-
mission from these electrons is typically suppressed in
the macroscopic signal due to phase matching (19). As a
result, no strong satellite pulse is obvious for the case of
θ1 = cot−1(1/2) in Figure 5.

On the other hand, the stronger laser cycle arrives after
the polarization gate in the case of θ1 = cot−1(2). Now,
the recombination of this cycle’s short-trajectory elec-
trons occurs close enough to the late edge of the polariza-
tion gate that electron recombination is not suppressed as
completely. Since photoemission from the short-
trajectory electrons typically comprises the macroscopic
signal, a comparatively stronger satellite pulse is percep-
tible for the case of θ1 = cot−1(2) in Figure 5.

Figure 6. The temporal profile of 20 harmonic-wide ranges of
the macroscopic spectrum corresponding to θ1 = cot−1(2) in
the top panel of Figure 3 (red curve). Each range is centred at
the harmonic order specified at the right of each panel (H40, …,
H120). The satellite pulse is only apparent when selecting the
lowest order harmonic region.

To characterize this satellite pulse, Figure 6 plots the
temporal profile of 20 harmonic-wide segments of the
macroscopic spectrum (from Figure 3) for the case of
θ1 = cot−1(2), showing that the satellite pulse is com-
prised of only the lowest order harmonic photoemission
(t ∼ 1.75 fs in bottom panel). This is because typical
recombination events carry an intrinsic atto-chirp (19):
for short-trajectory electrons, the lowest order harmonics
are generated first and the cut-off harmonics are gener-
ated last (as also illustrated by the shift of the main peaks
in Figure 6). Referring to the case of θ1 = cot−1(2):
because the ellipticity is still rapidly increasing in the
region far from the centre of the polarization gate where
the satellite pulse is produced, the atto-chirp dictates that
the generation of cut-off harmonics in this region is far
less efficient than the lowest order harmonics which are
generated closer to (albeit still far removed from) the
polarization gate.

This analysis suggests that removing the lower energy
portion of the harmonic spectrum will improve the con-
trast ratio between the amplitudes of the primary and
satellite attosecond pulses. In a laboratory setting, this
filtering can be accomplished using thin metal filters,
which are already added to many HHG setups in order
to remove the residual energy from the near-infrared
driving laser. For this simulation, a zirconium filter was
used because of its spectral cut-off near 70 eV, which is
close to the 45th harmonic of the 800 nm driving laser.
Using the case of θ1 = cot−1(2), Figure 7 plots the
macroscopic spectrum from Figure 3 in gray, the filtered
macroscopic spectrum in red and the transmission curve
of the zirconium filter in blue.
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Figure 7. The effect of a 1400-nm-thick zirconium filter on the
macroscopic spectrum in the top panel of Figure 3 for the case of
θ1 = cot−1(2) (red curve).

Figure 8. The temporal profiles of the attosecond pulses
corresponding to the HHG spectra shown in Figure 7.

The thickness of the zirconium filter was chosen to
be 1400 nm. This thickness was specifically chosen to
provide an amount of material dispersion that matches
the intrinsic phase of the HHG as closely as possible. In
this way, the pulse contrast can be improved while si-
multaneously compressing the attosecond pulse to much
shorter temporal durations (20). Figure 8 demonstrates
the effect of the 1400-nm zirconium filter on the macro-
scopic spectrum when using θ1 = cot−1(2): the pulse
contrast improves by over three orders of magnitude,
while the pulse duration is compressed from 151 as to
59 as.

5. Conclusion

Previous work investigating polarization-based gating of
attosecond pulses implies that when the field ratio is
chosen such that the smaller pulse arrives first, supe-
rior ionization suppression allows the high harmonic
cut-off to be increased using high intensities; this work

furthermore suggests an additional enhancement of the
high harmonic cut-off compared to the symmetric case
because the field maximum on the trailing edge of the
polarization gate is relatively large. While satellite pulse
production is also predicted in this case where the larger
pulse comes second, this work demonstrates that the
satellite pulses are largely comprised of the lowest order
highharmonics because only the shortest short-trajectory
electrons can emit high harmonics before the quickly
increasing ellipticity at the edge of the polarization gate
renders theprocess too inefficient. This allows the satellite
pulses to be eliminated through spectral filtering, which is
already a part ofmany common isolated attosecond pulse
setups for filtering out residual low-energy photons from
the driving laser field. This supports the assertion that
asymmetric gating fields provide an experimentally vi-
able option for generating isolated attosecond pulses with
higher harmonic cut-offs and shorter pulse durations
than otherwise possible with symmetric gating fields. It is
expected that this technique may also be used with other
gating methods (e.g. DOG and GDOG for using multi-
cycle pulses) or with longer wavelength driving lasers for
increasing the high harmonic cut-off even further.
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