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Our temporally compressive imaging system reconstructs a high-speed image sequence from a single, coded snap-
shot. The reconstruction quality, similar to that of other compressive sensing systems, often depends on the structure
of the measurement, as well as the choice of regularization. In this paper, we report a compressive video system that
also captures the side information to aid in the reconstruction of high-speed scenes. The integration of the side
information not only improves the quality of reconstruction, but also reduces the dependence of the reconstruction
on regularization. We have implemented a system prototype that splits the field of view of a single camera into two
channels: one channel captures the coded, low-frame-rate measurement for high-speed video reconstruction, and the
other channel captures a direct measurement without coding as the side information. A joint reconstruction model is
developed to recover the high-speed videos from the two channels. By analyzing both the experimental and the
simulation results, the reconstructions with side information have demonstrated superior performances in terms
of both the peak signal-to-noise ratio and structural similarity. © 2017 Optical Society of America

OCIS codes: (100.0100) Image processing; (150.0150) Machine vision.
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1. INTRODUCTION

Inspired by theoretical developments in compressive sensing
[1], several compressive imaging systems in the time domain
have been conceived and implemented, aiming to extract
high-frame-rate videos from low-speed image sequences
[2–13]. In these systems, to recover the high-frame-rate video,
the measurements are encoded by a flutter shutter [2,3], a
physical mask [4–6], or a digital mirror array [7–10] whose
pattern varies at a rate faster than the frame rate of the camera.
This technique has been extended to microscopy imaging
[11–13]. Video compressive sensing based on the spatial-
multiplexing camera has also been investigated [14,15].
Various reconstruction algorithms [16–23] have been proposed
to solve the inversion problem, and the accuracy of the
reconstruction relies heavily on the coded measurement. As the
reconstruction extracts both the spatial and temporal information
from a single measurement, the quality of the reconstruction
would be compromised if the incorrect regularization is adopted.
Towards the goal of improving the reconstruction quality and
reducing the dependency on regularization, in this work, we de-
signed a compressive temporal imaging system that includes side
information (SI) [24–27] in the measurement: in addition to the
temporal-spatial coded measurement, we simultaneously capture
another measurement without coding by the same camera. The SI
is a blurred version of a fast scene, i.e., a temporal summation of
the high-speed video frames.

SI-aided compressive sensing has recently been investigated
in both theory [24,25] and applications [26,27]. In this paper,
we propose to use the simple blurry image as the SI for video
compressive sensing. The setup is simple, and both cameras
used in the system could be off-the-shelf low-speed cameras
[4,5]. This SI-aided system improves the reconstruction results
significantly while maintaining the advantages of video com-
pressive sensing cameras [4–6].

This paper makes the following contributions: (i) a video
compressive imaging system aided by capturing a low-speed
image sequence as the SI. Specifically, we have implemented
a system prototype that captures two measurements, one coded
measurement and the other without any coding, by a single
camera at a low frame rate. (ii) A joint video reconstruction
framework is developed, where the low-speed image is used
as the SI to enhance the quality of the reconstructed video
frames. We compared the reconstruction with some well-
known reconstruction algorithms at different compression
ratios, and our results demonstrated superior performances
in terms of both the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [28].

2. IMAGING SYSTEM AND FORWARD MODEL

Figure 1 depicts the schematic of the SI-aided imaging concept.
Two measurements are captured for the same high-speed scene.
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The first measurement is captured using the coded aperture in
the imaging space. The high-speed video frames are encoded
with different shifting variants of the same physical mask
[4,5]. On the other hand, we use the same camera to capture
a low-speed uncoded image, which could be blurry due to the
motion of the scene. Our system would use the captured SI to
improve the reconstruction quality. It is worth noting that this
SI can also work with other video compressive sensing setups,
for example, using a digital mirror array [7–10] for spatial
encoding.

A. Forward Model
The high-speed scene can be modeled as a three-dimensional
function f �x; y; t�. Let h�1��x; y; t� denote the mask imposed
on the scene on the first sensing channel at time t. Assuming
the integration time of the camera is T , the first measurement
can be expressed as

g �1��x; y� �
Z

T

0

f �x; y; t�h�1��x; y; t�dt: (1)

As the second measurement is not modulated during the
integration time, we have

g�2��x; y� �
Z

T

0

f �x; y; t�dt : (2)

Since the mask is moving continuously, each high-speed
frame is modulated by a different pattern [4,5]. The forward
model is depicted in Fig. 2.

B. System Setup
The optical system mismatches between the channels and cam-
era synchronization are the main challenges for the system im-
plementation. We designed a system that uses the same
detector to capture both the coded measurement channel
and the SI channel. The system setup is shown in Fig. 3(a).

The system places a beam splitter (BS1) to separate the same
scene into two channels. The camera lens (Nikon, 18–35 mm)
is used as the objective lens for both channels. The intermediate

image in the main channel is modulated by a binary random
mask (HTA, Photomask) driven by a piezo-actuator (PI,
P-840). The relay system in the main path consists of two
lenses: L1 (Nikon, 4 × f � 50 mm) and L2 (Newport,
f � 200 mm). In the SI path, L3 (Newport, f �
50.2 mm) and L4 (Newport, f � 200 mm) are used to match
the optics used in the main path. The images from the two
paths are merged on the same detector (AVT, G-145B) through
the second beam splitter (BS2). A slight tilt of the mirror in the
SI path separates the measurements. The separation of the two
channels is approximately 550 pixels on the camera. The
f -numbers of the two paths are both 5. The camera and
the piezo-actuator are synchronized and triggered by a digital
acquisition board (NI, USB6353). A 5 mm × 6 mm piece of
black cardboard with a white letter “U ” serving as the object
is translated at 5 mm∕s by a motor-driven actuator (Newport,
LTA—HS). Figure 3(b) shows a photo of the system.

It is worth noting that our design shown in Fig. 3 is an ex-
ample of our idea of using SI to boost the video reconstruction
quality. In this design, we split the CCD into two parts in order
to capture the main measurement and SI simultaneously. This
is achieved by the extra hardware (mirrors and lenses) and field-
of-view sacrifice. Other designs of SI and hardware implemen-
tations are discussed in Section 3.B.

To construct the forward model, we measure the transmis-
sion function of the mask by placing it on a white calibration
background. The images of the mask at 4 different steps are
shown in Fig. 3(c).

3. RECONSTRUCTION

We discretize the high-speed frames f , masks h�1�, and mea-
surements g �1�, g �2�. Considering that there are NT high-speed

Fig. 1. Schematic of the compressive video sensing with SI.

Fig. 2. Forward model of the imaging system. The left side shows
two measurements (coded image and blurry image), and the fast scene
is shown on the right.

Fig. 3. System setup. (a) The schematic of the prototype: the inter-
mediate image by the camera lens is split by a beam splitter (BS1) into
two intermediate images. One path is modulated by a high-speed mask
and relayed to the camera; the other path is directly imaged to the
camera. Two paths are combined by another beam splitter (BS2).
(b) A photo of the prototype. (c) The mask at 4 locations, recorded
on the same area of the detector.
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frames inside the integration time T , we denote the kth,
k � 1;…; N T discretized frame as F k ∈ Rnx×ny , which has
nx × ny pixels. Similarly, H �1�

k is the kth mask pattern. For each
pixel �i; j�; i � 1;…; nx ; j � 1;…; ny, we have

g �1�i;j �
XNT

k�1

h�1�i;j;kf i;j;k; (3)

g �2�i;j �
XNT

k�1

f i;j;k: (4)

Let f k be the vectorized form of F k. The vectorized form of
the first measurement can be expressed as

g �1� � H �1�f ; (5)

f � � f 1 f 2 … f 3 �T ; (6)

where H �1� is the sensing matrix of the first measurement.
Let h�1�k denote the kth vectorized mask, and H �1� can be
expressed as

H �1� � �Diag�h�1�1 �Diag�h�1�2 �;…;Diag�h�1�NT
��; (7)

where Diag�h�1�k � denotes a diagonal matrix whose diagonal
elements are composed of the vector h�1�k . Similarly,

g �2� � �I ; I ;…; I �f ; (8)

where I denotes the identity matrix with dimensions
�nxny� × �nxny�. We define H �2� � �I ; I ;…; I �, and concat-
enate both measurements as follows:

g � Hf ; (9)

g �
�
g �1�

g �2�

�
; H �

�
H �1�

αH �2�

�
; (10)

where α is a constant to scale the measurements to the same
illumination level.

The reconstruction problem can be formulated as

f̂ � argf min kg −Hf k22 � τ R�f �: (11)

R�f � denotes the regularizer, and it can be used to impose the
sparsity of the signal on the basis of wavelet and the discrete
cosine transformation (DCT) [4,5] or the total variation
(TV) operator [11,17,22]. The regularizer penalizes reconstruc-
tions that do not conform to the characteristics of the estimated
f . τ is the Lagrange parameter that balances the measurement
error [the first term in Eq. (11)] and the regularizer.

Without the SI g �2�, the problem reduces to the typical tem-
poral compressive video problem [4,5],

f̂ � argf min kg �1� −H �1�f k22 � τR�f �: (12)

A. Total Variation Regularization
Wavelet plus DCT priors have demonstrated excellent perfor-
mance in video compressive sensing inversion problems
[4,5,29], which usually need specific spatial sizes of the video
for the algorithms to be efficient. The TV-based algorithms
[11,17,22,30] do not have this limitation and can be used
in any spatial size of video. Furthermore, the generalized
alternating projection (GAP) [16] -based TV algorithm has

demonstrated a superior performance to other algorithms also
using TV regularizers [17], especially in video and hyperspec-
tral compressive sensing inversion problems. When the TV
method is used, the regularizer in Eq. (10) will be

R�f � �
XNT

k�1

Xnx ;ny
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f i�1;j;k − f i;j;k�2 � �f i;j�1;k − f i;j;k�2

q
:

(13)

Let D denote the pixel-wise differentiation operator, and
z � Df . The developed GAP-TV is an iteration algorithm.
For tth-iteration, introducing the intermediate variables w,
v, the updated equations for GAP-TV consist of the following
steps:

wt�1 � f t � μHT �HHT �−1�g −Hf t�; (14)

vt�1 � wt�1 −DT zt ; (15)

f t�1 � clip

�
zt �

1

β
Dvt�1;

γ

2

�
; (16)

where the clipping function is defined as

clip�b; P�≔
�

b jbj ≤ P
P sign�b� jbj > P ; (17)

and β; γ are the parameters used in the clipping function.
μ ∈ �0; 2� is the step size [31]. After initializing z0 � 0,
f 0 � 0, we run Eqs. (14)–(16) iteratively until the termination
criteria are satisfied.

It is worth noting that in Eq. (13), we need to compute the
inverse of HH T . Fortunately, both H �2�H �2�T and H �1�H �1�T

are diagonal matrices:

H �1�H �1�T � Diag�c21; c22;…; c2nxny �; (18)

H �2�H �2�T � NT I nxny : (19)

We have

�HH T �−1 �
�
H �1�H �1�T αH �1�H �2�T

αH �2�H �1�T α2H �2�H �2�T

�
−1

�
�
B1 B2

B3 B4

�
; (20)

where

B1 � �H �1�H �1�T −H �1�H �2�T �H �2�H �2�T �−1H �2�H �1�T �−1;
B4 � �α2H �2�H �2�T

−α2H �2�H �1�T �H �1�H �1�T �−1H �1�H �2�T �−1;
B2 � −α�H �1�H �1�T �−1H �1�H �2�TB4;

B3 � −α−1�H �2�H �2�T �−1H �2�H �1�TB1:

As fB1;B2;B3;B4g are all diagonal matrices and can be pre-
computed and stored, the inverse of HH T can be obtained in
closed form. Therefore, the GAP-TV algorithm is efficient for
our applications of video compressive sensing with SI, and it is
solely composed of Eqs. (14)–(16). As Eqs. (15) and (16) can
be recognized as the TV-denoising approach, other algorithms,
such as IST [32] and TwIST [30], can also be used to update
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w in Eq. (14), leading to IST-TV and TwIST-TV. Other TV-
based denoising algorithms can be used [30] as well.

B. OTHER TYPES OF SIDE INFORMATION

We have developed a prototype and algorithms for video com-
pressive sensing with SI. We have divided the CCD into two
sections in our design shown in Fig. 3, where we aim to utilize
a single CCD to capture both the main measurement and the
side information. However, it is not necessary to do so, as we can
easily replace the two mirrors in Fig. 3 with two cameras.
Though extra effort is required for synchronization between
these two cameras, it will mitigate the large size problem of the
CCD and the cost of the focal plane array (FPA) beyond-visible
bandwidth.

While the proposed SI is a blurred image of the high-speed
scene, other types of SI can also be used. We further consider the
following two cases: (1) the SI is an independent coded measure-
ment of the main channel, i.e., two independent coding patterns
are imposed on the 2 channels at the same time, and (2) the SI is
a coded image but coded by a flutter shutter [2]. The first case
can be considered that we have 2 independent measurements for
the same high-speed scene. As the SI channel also needs a mecha-
nism to encode the scene, the cost and power of the system will
be increased. In the second case, the SI is the summarization of
the high-speed scene when the shutter is open; therefore, it is
partial information of our proposed SI in Section 2.
However, this regime needs the shutter of the SI channel to
be operated faster than the camera, and this would increase
the cost of the entire imaging system as well. We verify the fea-
sibility of these two kinds of SI and compare the performance
with the proposed one via a simulation in Section 4.

From the algorithmic perspective, the only change using
these two different kinds of SI in the forward model is H �2�

in Eq. (10). As H �2�H �2�T is still a diagonal matrix, a slight
change is required to perform a reconstruction using these
two types of SI.

C. COMPARISON WITH OTHER
RECONSTRUCTION ALGORITHMS

The reconstruction algorithms proposed above do not consider
using other training data that have been used in the dictionary
learning [7,23,33], GMM [18,19,34,35], and deep learning
[23] -based reconstruction algorithms. These learning-based
algorithms have achieved excellent reconstruction results.
However, the quality of the reconstructed videos relies on
the training data. This paper aims to show that we can get im-
proved reconstruction results with low-cost SI. The TV-based
algorithms developed above only impose piecewise smooth pri-
ors to the video frames. The following simulation demonstrates
the enhanced performance introduced by the SI. We have also
checked that other algorithms, especially the GMM-based
algorithms, will also be improved by using SI. Since a compari-
son of various reconstruction algorithms and priors is out of the
scope of this paper, in the following experimental results, we
only report the results using TV-based reconstruction algo-
rithms. However, the observation is ready to be generalized into
other reconstruction regimes.

4. SIMULATION RESULTS

In this section, we conduct simulation to verify the hardware prin-
ciple and the proposed reconstruction algorithm. We randomly
generate the binary mask {0, 1} with equal probability [18,19].
High-speed videos are synthesized or downloaded from some
datasets as used in Ref. [18]. Different compression rates NT
are used to generate the measurements fg �1�; g �2�g, where g �1�

is the summation of the coded high-speed video frames and
g �2� is just the summation of these frames. With these measure-
ments as input, we run the algorithms to get the reconstructed
video frames. The PSNR and SSIM are employed as metrics
to evaluate the quality of reconstructed videos. The SSIM mea-
sures the similarity between images and is designed to improve on
traditional metrics, such as PSNR and mean squared error (MSE)
which have shown to be inconsistent with human visual percep-
tion [28]. In all the reconstruction simulations, the regularization
parameter was adjusted to provide the optimal results.

We first test the proposed imaging system and
reconstruction algorithms with a synthesized video, as shown
in Fig. 4. Each video frame is composed of two parts: the
top part is a rotating fan with “UCF,” and the bottom part
is a still panel with “BELL.” The video frame is of spatial size
192 × 192. The two generated measurements are also shown in
Fig. 4. Reconstructed video frames using different algorithms
are shown on the right side of Fig. 4, and the PSNR and SSIM
are summarized in Fig. 5. We test both NT � 4 and
NT � 10. It can be observed from Fig. 5 that for all three
algorithms, the reconstructed videos with SI have higher
PSNRs (about 2 dB) and SSIMs (about 0.02) than the recon-
structed videos without SI, which is in agreement with our
analysis. Furthermore, we notice that the GAP-TV algorithm
with SI always performs best in terms of both PSNR and SSIM.
In particular, the GAP-TV with SI has a PSNR that is improved
by ∼7 dB when NT � 4 and ∼3.75 dB when NT � 10.

Next, we perform the simulations on the videos used in
[18], namely, the “Traffic,” “Train,” and “Dunk” videos.
We use NT � 8 for all three of these videos. The spatial sizes
of “Traffic” and “Train” are 256 × 256, while the “Dunk” video
has a spatial size of 512 × 512. The PSNRs and SSIMs of the
reconstructed videos are summarized in Fig. 6. Similar to the
“BELL-UCF” video, the PSNR and SSIM have been improved
using SI for all the algorithms. In particular, TwIST-TV has
been improved more than 9 dB in terms of the PSNR for

Fig. 4. Measurements and reconstructed video frames with different
algorithms for synthesized “BELL-UCF” video with NT � 4 com-
pared with the ground truth. Notice the quality improvement with
SI inside the red rectangles.
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the “Train” video. Example reconstructed video frames of the
“Traffic” video are shown in Fig. 7. Again, GAP-TV with SI
provides the best reconstruction, i.e., providing details as well as
the precise motions of the cars. Similar cases exist in the other
videos. Notice the vertical shapes (red rectangles in Fig. 7)
inside the video frames; all the reconstructed frames with SI
provide more details than the results without SI.

We now compare the performance of our proposed SI with
the other types of SI described in Section 3.B, namely the coded
SI, where the second channel is independently modulated.

Since the flutter-shutter SI is solely partial information of
our proposed SI, it consistently produced worse reconstruction
results. We thus only show the results of proposed SI and
coded SI in Figs. 8 and 9, where we use the “Traffic” video
as an example, and GAP-TV is employed to perform the
reconstruction. It can be seen that, though the coded SI
(and flutter-shutter SI) are more complicated than the proposed
SI, their results are not as good as those of our proposed SI. We
suspect that the proposed SI provides complementary informa-
tion to the main measurement, which is designed to capture the
motion, while the proposed SI is essential for still images.

We further investigate how the SI will help the reconstruction
in a high compression case, for example, NT � 16 in Fig. 8,
where we demonstrated the results of the “Traffic” video with
the proposed SI and coded SI. It can be seen that without
SI, the reconstructed video frames have severe artifacts. By con-
trast, when the SI is utilized in the reconstruction, the
reconstruction quality improved significantly. Specifically, the
proposed SI increases the PSNR by 7 dB (Fig. 8 and the far right
part of Fig. 9), 1 dB better than the coded SI. This again con-
firmed that complementarity is important for SI. The coded SI,
though increasing the measurement number, does not provide
more information about the still image and therefore would
not perform as well as our proposed SI for the entire video.

5. EXPERIMENTAL RESULTS

We applied the imaging system prototype described in
Section 2.B to capture a high-speed scene and validate our

Fig. 5. PSNR and SSIM of reconstructed video frames with
different algorithms for the synthesized “BELL-UCF” video with
NT � f4; 10g.

Fig. 6. Reconstructed PSNR and SSIM of “Traffic,” “Train,” and
“Dunk” video for NT � 8.

Fig. 7. Measurements and reconstructed frames with various algo-
rithms for “Traffic” video with NT � 8.

Fig. 8. Selected reconstructed video frames of the “Traffic” video with
NT � 16 using different types of SI. Frames 4, 8, 12, and 16 are plot-
ted for visualization. The PSNR and SSIM are shown in Fig. 9.

Fig. 9. PSNR and SSIM of reconstructed “Traffic” video with
NT � 8, 16 using the proposed SI and the coded SI.
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reconstruction algorithm. We have reconstructed 4 frames
from a single snapshot of both the coded measurement and
the SI. The scene is a “U ” on a panel (top left in Fig. 10)
shifting from left to right. The measurement captured by
our camera is shown in the bottom left part of Fig. 10. The
reconstruction results with and without SI are shown in the
right part of Fig. 10. Since the ground truth is not available
for this real video, we evaluate it by visual perception. It can
be observed that the reconstruction with SI is improved, with
fewer visible speckle artifacts.

To further verify the performance of the SI at high-speed
motion, we built another hardware using a digital mirror device
[7,8] to encode the main channel. We capture a high-speed
scene in Fig. 11, where a “U ” is on a panel spinning in the
anti-clockwise direction (top left in Fig. 11). It can be seen from
the measurements that the scene is blurred, and we cannot
identify the motion. From the reconstructed 10 frames in
the right part of Fig. 11, we can clearly identify the motion.
Furthermore, the SI information has improved the results sig-
nificantly, again, on the edge of the letter and the panel. The
camera is working at 60 fps and, thus, the reconstructed video is
at a speed of 600 fps.

6. DISCUSSION

Both the experiments and simulation showed superior
reconstruction results with the SI. Even though the SI does

not have a high resolution in the temporal domain, it amounts
to adding extra constraints in the spatial domain, especially for
the intensity, which was not directly available from the sparse
measurement. We use a graphical tool, the so-called L-curve, to
further analyze the relation between the SI and the regulariza-
tion. The L-curve is a plot of the regularization norm, kfkTV , of
the regularized solution versus the corresponding residual norm
kg−Hf k2 for all valid Lagrange coefficients, as shown in
Fig. 12. It displays the compromise between the minimization
of the regularization error and the reconstruction error, which is
at the heart of any regularization method [36]. When very little
regularization is introduced, the error is dominated by the per-
turbation error, which corresponds to the uppermost part of the
L-curve, above the middle corner. When a large amount of
regularization is introduced, most filter factors are small, and
the error is dominated by the regularization error, which cor-
responds to the rightmost part of the L-curve. In between, there
is a region where both contribute comparably, and this region
defines the L-shaped corner. We plot the L-curve for the sit-
uations with and without SI, with Lagrange coefficient varying
from 10−4 to 102. From Fig. 11, we can observe that at the
“under-smoothed” region (above the middle corner of the
L-curve), the residual norm of the reconstruction with SI is
greater than the one without SI, because the reconstruction
with SI has two measurement channels. It is worth noting that
the location of the corner of the L-curve is often used as an
approximation to the optimal regularization parameter. The
optimized Lagrange coefficient is in the order of 10−3 with
SI, compared with 10−2 for the single coded measurement.
This indicates that with the SI, the dependence of the
reconstruction on the regularization is reduced. More analyses
can be found in [25].

In the aspect of system implementation, although using a
single aperture can minimize the difference between two chan-
nels, small differences still exist. The magnification of the two
relay paths becomes obvious at the pixel level. The magnifica-
tion difference indicates the sensing matrix of the blurry path is
not an identity matrix. In our experiment, we calibrate the

Fig. 10. Experimental scene (top left), measurement (bottom left),
and reconstructed frames (right) with NT � 4. It can be seen the SI
improves the results significantly, especially at the edges of the letter.

Fig. 11. Experimental object (top left), measurements (bottom left),
and reconstructed frames (right) with a compressed rate of NT � 10.
The reconstruction with SI (top right) is compared with the
reconstruction without SI (bottom right).

Fig. 12. L-curve of the “BELL-UCF” video with and without
using SI.
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magnification difference with a checkerboard as the object. The
numerical aperture of the lens and the aberrations of the two
channels also have slight differences. In the setup, considering
the expense of the system, we used optics with a lower resolu-
tion in the main path so the aberrations of the mask would be
minimized.

7. CONCLUSION

We have reported a video compressive sensing system that cap-
tures high-speed videos at a low frame rate. Two measurements
are captured simultaneously in one snapshot: one measurement
is a coded compressive measurement, and the other is a simple
low-speed image that is the summation of the high-speed scene.
The second measurement is easy to obtain, serving as the SI in
our system to aid reconstruction. A joint reconstruction algo-
rithm is developed to recover high-speed videos from these
measurements. The simulation and experimental results have
demonstrated improved performances of the reconstructed
video with the SI.

Recently, we also investigated the scenario where the two
measurements are measuring the scene from different perspec-
tives, which could provide the range information [37–40] and
polarization [41] of the scene and has potential in high-speed
stereo imaging applications [42]. A similar idea can also be used
in other bandwidth imaging systems, e.g., x rays [43–46].
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