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ABSTRACT   

A simple, interferometric force sensor based on a multicore optical fiber (MCF) that operates in reflection mode is 
presented. The device consists of a short segment of MCF inserted at the distal end of a conventional single mode optical 
fiber (SMF). To demonstrate the concept we used a mechanical piece with grooves to press the MCF. In this way the 
external force on the MCF is converted in localized pressure on the fiber which causes attenuation losses to the 
interfering modes and makes the interference pattern to shrink. The changes experienced by the interference pattern can 
be easily monitored. The sensor here proposed is highly sensitive since it can resolve forces down to 0.01 N.       
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1. INTRODUCTION  
Force sensors are important in a number of applications of scientific and technological relevance. In robotics, for 
example, force sensors can provide tactile or touch information while in automobiles, or in industrial equipment, they 
can be used for safety purposes. Ideally, a force sensor must be accurate, reliable, and as simple as possible (hence cost 
effective), and due to the trend to miniaturization force sensors must have miniature or microscopic dimensions. In 
addition, force sensors must be easily embedded inside instruments, devices or mechanical pieces. Electronic force 
sensors based on load cells deliver most of the aforementioned requirements [1]. However, they are not suitable for all 
type of applications, particularly in those with electromagnetic interference or in those that require remote interrogation.  

As an alternative to well-established electronic force sensors, the optical fiber sensor community has long been 
striving to devise high performance force sensor for niche applications and for those where electronic ones are not 
recommended. Optical fibers have a number of well-known advantages to devise force (and many other) sensors. So far, 
fiber optic force sensors in different platforms have been proposed. Fiber Bragg gratings (FBGs) have been used in 
different configurations for force sensing [2-5]. The disadvantage of force sensors based on FBGs is the high cost of its 
interrogation as a high resolution spectrometer is required to decode the shift of the Bragg wavelength. In addition, FBGs 
are sensitive to strain and temperature, thus, additional gratings or reference sensors are required. A cost effective 
alternative is to use a filter and a power meter to decode the applied force on the FBG, however, the measuring range is 
limited [5]. Intensity-based fiber optic force sensors have also been demonstrated [6,7]. The disadvantage of these 
sensors is the critical alignment of the components or the modest force sensitivity. Interferometers have also been 
demonstrated for force sensing [8-11]. In most cases, interferometric force sensors present challenges in terms of 
complexity, manufacturability, or reproducibility that may limit their applications.  

Here, we report on a simple interferometric force sensor based on multicore optical fiber (MCF) that operates in 
reflection mode. The sensor consists of a short segment of MCF inserted in standard single mode optical fiber (SMF), 
see Fig. 1.To do so, we join the MCF and the SMF by means of the well-established fusion splicing technique. This 
technique allows the fabrication of cost-effective, robust and stable devices. In our configuration light passes twice the 
MCF. The MCF that was used to build our sensor consists of seven strongly coupled cores; all with diameter of 11 μm. 
see Fig. 1. One of the cores is located at the geometrical center of the MCF which simplifies the splicing with 
conventional single mode optical fiber. Our devices can resolve forces down to 0.01 N (1.01 grams).  
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Fig. 3. (Left) Observed reflection spectra of an interferometer built with 7 cm of MCF at different forces on the MCF. As the force 
increases the interference pattern shrinks and shifts to shorter wavelengths. (Right) Absolute maximum of the reflection spectrum as a 
function of force on the MCF. The plot in the inset shows the evolution of the absolute maximum of the reflection spectrum as a 
function of time at different forces. 
 
 

3. RESULTS AND DISCUSSION  
The physical origin of the interference pattern shown in Fig. 3 is the difference in the propagation constants (Δ ) of the 
two excited supermodes in the MCF. The wavelength dependence of Δ  causes the MCF to act similarly to a directional 
coupler. The period of the interference pattern depends primarily on the length of MCF while the modulation depth is 
highly dependent on geometry of the MCF [12-14].  

 To demonstrate the use of our interferometer for force sensing we applied force on the MCF with two metal 
plates, one with grooves and the other was flat, see Fig. 2. The width of each groove of the serrated piece was 1 mm and 
the separation between grooves was 7.5 mm. A short segment of SMF was used as a supporting fiber. The MCF and the 
SMF were placed as shown in Fig. 2(b). It is important to point out that the MCF and the SMF were coated with polymer 
and that the serrated mechanical piece pressed both fibers on 5 points.  

We placed aluminum blocks of 24.5 (±0.1) grams on the mechanical piece and waited 20 minutes before putting a 
following block on the previous one as this was the time to reach stable reflections. We believe that this is due to the 
properties of the polymer that protects the optical fibers. It can be noted from Fig 3 that as the weight (force) on the MCF 
increases the amplitude of the interference pattern decreases. When the force on the MCF was greater than 1 N a shift of 
the interference pattern was also observed.  

The changes experienced by the interference pattern can be easy detected. It can be noted from Fig. 3 that the 
fringe contrast (expressed in dB), i.e., the difference between the maxima and minima of the interference pattern, 
changes. Note also that the local and the absolute maxima of the pattern change too. In the right-hand plot of Fig. 3 we 
show the peak value of the highest peak of the reflection spectrum (absolute maximum) as a function of force on the 
MCF. The calibration curve (peak reflection versus force) that was obtained was fitted with the following equation:      
Rm = 1-0.5263F + 0.0874F2, where Rm is the maximum of the reflected spectrum and F is the applied force on the MCF. 
To compensate minute power fluctuations of the optical source or losses in the lead-in SMF which can be misinterpreted 
as minute force changes on the MCF, a reference power meter can be used. A more powerful method to quantify force 
on the MCF is by means of the fast Fourier transform (FFT) which is calculated from the reflection spectra. The FFT 
is immune to power fluctuations or losses in the SMF, and also to temperature [11]. Such results will be presented during 
the conference. 

To understand the behavior of our device we shown in Fig. 2 the forces that act on the MCF. An external force 
(F0) applied perpendicular to the MCF axis will induce stress on the fiber. Stress is defined as F0/A, where A is the area 
of the MCF that experiences the external force [15,16]. As a consequence, the MCF experiences transversal and axial 
strain. Stress and strain on the MCF modify the intensity and propagation constant of the supermodes, as a consequence 
the interference pattern shrinks and shifts.  
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4. CONCLUSIONS 
In conclusion, we have reported on a simple force sensor based on a seven coupled cores optical fiber fusion 
spliced with conventional single mode fiber. Our device operates in reflection mode. The main features of the 
sensor here reported are: i) simple fabrication process as only a pair of fusion splices is required to build the 
interferometer. This simplicity may allow the fabrication of cost-effective interferometric force sensors. ii) 
Simple interrogation as a low-power LEDs and a low-cost optical spectrum analyzer are sufficient to analyze 
the reflected light. ii) High sensitivity, as our device is based on interferometry, one of the most sensitive 
optical detection methods. The force sensors based on the interferometer here proposed can be inserted into 
fiber optic catheters and therefore may be suitable for medical applications. 
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