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due to the absorptive pigment -CFs). Therefore after introducing 
the polarization and color recycling, we can obtain the optical 
gain factor G as: 

1

2 31
1

2 6

T
G

R R
T


    

 (2) 

Let us assume the recycle efficiency T=0.9 and use the 
reflection/transmission spectra shown in Fig. 2 to calculate the 
gain spectra for our polarizing CFs. As Fig. 5(a) plots, each 
polarizing CF can provide a large optical gain (220-300%) at its 
peak transmission wavelength. Fig. 5(b) further compares the 
LCD output spectrum with and without light recycling. It is 
evident that the light intensity of all three colors is almost 
tripled. Moreover, the output spectrum still maintains excellent 
color purity after recycling, and covers ~132% AdobeRGB in 
CIE 1976 color space. Light efficiency can be enhanced without 
sacrificing color performance. 

 
Figure 5. (a) Simulated optical gain for RGB grating color 
filters. (b) Backlight output intensity with and without 
recycling. 

4. Conclusion 

We proposed an LCD system that can simultaneously recycle 
backlight according to its color and polarization. To the best of 
our knowledge, this is the first time that such concept is 
proposed. A novel polarizing CF is also designed and it exhibits 
several advantages: high transmittance (>90%), low absorption 
loss (~3.3%), high extinction ratio (>10,000:1) and large angular 
tolerance (up to ±50˚). Combined with directional backlight 
design, the proposed LCD system can achieve ~3X system 
efficiency enhancement, as well as high ambient contrast ratio 
and wide view. Our approach opens a new door for ultra-low 
power LCD without applying complicated field sequential color 
technique.  
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