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Abstract: 

We report a compact, yet high ambient contrast ratio 
augmented reality system by incorporating a tunable 
transmittance liquid crystal cell and a thin reflective polarizer. 
Moreover, if we replace the reflective polarizer with a 
functional reflective polarizer, the system would benefit those 
users with color vision deficiency. 
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1. Introduction 

In an optical see-through augmented reality (AR) system, 
polarization management is of vital importance to improve the 
brightness and contrast ratio [1]. The key component of 
polarization management is the polarizing beam splitter (PBS), 
which makes the whole system bulky and heavy [2-4]. 
Meanwhile, even with PBS, it is still challenging to improve the 
contrast ratio of the system when the ambient light is strong.  

In this paper, we propose an AR system [5] combining a tunable 
transmittance liquid crystal film [6] with a reflective polarizer to 
replace the PBS. Moreover, if we replace the reflective polarizer 
with our specially designed functional reflective polarizer [4], 
the system can even help those users with color vision 
deficiency (CVD) [6]. Our approach works well as long as the 
light from the display is polarized. Its application can extend to 
vehicular head-up displays (HUDs). 

2. The AR system 

The device structure of the AR system is shown in Fig. 1. The 
tunable transmittance LC film is laminated on the front surface, 
while the reflective polarizer/functional reflective polarizer is 
laminated on the back surface of the eyeglass.  

 
Figure 1. Structure of the proposed AR system 

 

The electrically tunable-transmittance LC film works together 
with a light sensor so that the LC film is clear at low ambient light 
conditions and gets darker as the ambient light intensity increases, 

thus ensuring a high ambient contrast ratio (ACR) under all 
conditions. The performance of the tunable transmittance LC film 
will be discussed in Sec. 3. The reflective polarizer, also known as 
dual brightness enhancement film (DBEF) [2,3], works the same 
way as the PBS by reflecting one polarization while transmitting 
the other. The main advantages of the reflective polarizer are 
twofold: its size can be much larger yet thinner, and its weight 
much lighter than those of PBS. Moreover, if we replace the 
reflective polarizer with our specially designed functional 
reflective polarizer, such system can help people with CVD, more 
precisely people with anomalous trichromacy [7, 8]. The design 
and performance of the functional reflective polarizer will be 
shown in Sec. 4. Besides AR systems, our proposed two films can 
also be laminated onto the car windshield for high ACR vehicular 
displays. In this case, both films can be laminated on the inner 
surface of the windshield. 

3. Tunable transmittance LC film 

A tunable transmittance system is desirable for applications where 
the ambient light is strong, for example, outdoor displays, energy 
efficient windows and car windshields. Several approaches have 
been developed to achieve tunable transmittance. The most mature 
one is the photochromic materials [9] used in transition glasses. 
However, besides their exceptional performance, transition glasses 
often suffer from sluggish response time [9]. For our voltage-
driven tunable transmittance LC films, it is powered by 
AlphaMicron’s e-Tint technology [10] based on guest-host LC in 
a chiral-homeotropic cell [11]. In this approach, the LC host 
(Δε<0) is doped with ~3% black dichroic dyes and a small amount 
of chiral agent. The working principle of the guest-host LC cell is 
illustrated in Fig. 2(a)-(b). At V=0, the LC directors and dichroic 
dyes are homeotropically aligned and the absorption loss of the 
incident white light is minimal. Thus, the LC cell is highly 
transparent. Once the voltage exceeds a threshold, the LC 
directors and dichroic dyes are reoriented by the electric field to 
form a 180° super twisted nematic (STN) mode [11] because of 
the doped chiral agent. Such an 180° STN guest-host structure 
absorbs the incident light strongly and the effect is insensitive to 
the polarization of the incident white light. The detailed 
mechanisms of such a chiral-homeotropic cell (without dyes) has 
been described in Ref. [11]. 

 
Figure 2. Working principle of the tunable transmittance 

LC film at (a) bright state and (b) dark state. 
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