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Figure 2. Angular luminance distribution for LCD 
backlight (a) with two crossed prism films and (b) 
without prism films. 

Then we incorporated this backlight into the whole LCD 
system to evaluate the output angular luminance distribution. In 
our calculations, patterned vertical alignment (PVA) LCD [9-11] 
was employed as an example and the device parameters are 
listed as follows: electrode width w = 42 m, electrode gap g = 6 
m, and cell gap d = 3.47 m. The LC material is ZOC-7003 
with Δ = 4.4 and Δn = 0.103 at =550nm. One positive A-
plate and one negative C-plate are used as compensation films. 

 Figure 3 shows the viewing angle dependent luminance for 
OLED, conventional LCD, and proposed LCD. As expected, 
OLED exhibits much wider luminance distribution than 
conventional LCD. For example, the luminance of OLED 
decreases about 35% at 60º, but for conventional LCD it drops 
nearly 70% [12]. It makes a big difference for different viewers 
at normal and oblique angles. However, the proposed LCD has 
overcome this drawback, showing OLED-like performance.  

 
Figure 3. Viewing angle dependent luminance for 
OLED, conventional LCD, and proposed LCD. 

2.2 Large color gamut 

Public displays with vivid colors are more attractive. Briefly 
speaking, light source and color filters are two dominant factors for 
the final color performance of an LCD. Currently, WLED is 
commonly used as LCD backlight due to its high efficiency and low 
cost. Moreover, the transmittance of RGB color filters partially 
overlap in the blue-green and green-red bands. As a result, the purity 
of each color is deteriorated greatly, leading to decreased color 
gamut. To overcome this issue, quantum dot (QD) technology is 
emerging. The unique property of these nanoparticles is their narrow 
emission bandwidth; a typical FWHM is around 25nm, which is 
highly preferred to get saturated colors.  

 
Figure 4. Spectrum for quantum dot-based 
backlight and R/G/B color filters. 

In practical applications, QD chip, QD rail, and QD film have 
been considered [13, 14]. Each approach has its own merits and 
demerits. Here, we choose the film type (i.e. QDEF) [Fig. 1(b)] 
for the backlight system and remove the prism films. Figure 4 
depicts the emission spectra of the QDs and RGB color filters. 
The central wavelengths for green and red QD emissions are 535 
nm and 643 nm, respectively.  

Figure 5 shows the color gamut for OLED and proposed QD-
LCD. As depicted in Fig. 5, QD-LCD can cover 90.2% Rec. 
2020 in CIE 1931 color space [15], while for OLED this value is 
only 76.4%. QD-LCD shows more vivid colors than OLED. 

 
Figure 5. Color gamut for OLED and QD-LCD in 
CIE 1931 color space. 

Another issue for public displays is sunlight readability. As the 
ambient light flux increases, the displayed image could be washed 
out [16]. Figure 6(a) depicts the color gamut of QD-enhanced MVA 
LCD under different ambient light levels. Although the color gamut 
is reduced from 90% to 70% as the ambient light intensity increases 
from 0 lux to 2000 lux, it still covers most part of Rec. 2020 and is 
much better than OLED, as Fig. 6(b) depicts. If we keep increasing 
the ambient light to 10000 lux or higher (direct sunlight), the color 
gamut shrinks further, but QD-LCD still covers a portion of Rec. 
2020 color space. Moreover, according to a psychophysical 
phenomenon called Helmholtz-Kohlrausch effect, a highly saturated 
color appears to be brighter than that with lower saturation, even 
they have the same luminance [15, 17]. QDs provide saturated light 
emission and therefore their colors remain more discernable under 
sunlight.  
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Table 1. Calculated gray-to-gray response time of 
our MVA cell (unit: ms) 

  Rise time (ms) 

Decay 
time 
(ms) 

 1 2 3 4 5 6 7 8 

1  1.1 1.2 1.4 1.6 1.9 2.2 2.8 

2 5.0  0.4 0.7 1.0 1.3 1.7 2.4 

3 5.2 1.4  0.4 0.6 1.0 1.3 2.2 

4 5.4 2.3 0.9  0.3 0.6 1.1 1.9 

5 5.7 2.9 1.6 0.7  0.4 0.8 1.9 

6 6.0 3.6 2.4 1.4 0.6  0.4 1.7 

7 6.4 4.3 3.1 2.1 1.4 0.7  1.6 

8 7.2 5.2 4.2 3.3 2.7 1.9 1.3  

4. Conclusion 

We proposed to replace the prism films with a QDEF in the 
LCD backlight unit to widen the viewing angle and improve the 
image quality at high ambient light environments. Also, by 
employing an ultra-low viscosity LC mixture, fast response is 
obtained even at extreme temperatures, e.g. -30oC. These 
properties are highly favorable for public displays.  
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