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ABSTRACT  

Many applications rely on the ultra-precise timing of optical signals through fiber, such as fiber interferometers, large 
telescope arrays, in phase arrayed antennae, optical metrology, and precision navigation and tracking. Environmental 
changes, specifically those caused by temperature fluctuations, lead to variations in the propagation delay of optical 
signals and thereby decrease the accuracy of the system’s timing. 
 
The cause of these variations in delay is the change in the glass properties of the optical fiber with temperature. Both the 
refractive index of the glass and the length of the fiber are dependent on the ambient temperature. Traditional optical 
fiber suffers from a delay sensitivity of 39 ps/km/K. We are reducing the temperature sensitivity of the fiber delay 
through the application of a novel design of optical fiber, Anti-Resonant Hollow Core Fiber. The major improvement in 
the thermal sensitivity of this fiber comes from the fact that the light is guided in an air core, with very little overlap into 
the glass structure. This drastically reduces the impact that the thermally sensitive glass properties have on the 
propagation time of the optical signal. Additionally, hollow core fiber is inherently radiation insensitive, due to the light 
guidance in air, making it suitable for space applications. 
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1. INTRODUCTION  

Traditional optical fiber suffers from timing instabilities caused by thermal fluctuations. For applications requiring high 
precision, such as optical metrology or large telescope arrays, these thermal fluctuations can severely affect their 
accuracy. 
 
Current mitigation methods for reducing this delay include the use of active stabilization using the backward propagating 
signal or an additional fiber loop. However, these methods add significant cost and complication to the system1. Another 
common method of mitigating thermal sensitivity of optical fiber is through the use of a specialty coating which 
counteracts the length change effect. These coatings are made from a liquid crystal polymer with a negative thermal 
expansion coefficient, and have been shown to reduce the delay sensitivity from 39 ps/km/K to 3.7 ps/km/K, but are only 
functional up to a temperature of 100°C. 
 
An alternative solution for reducing the temperature sensitivity of optical fiber is using hollow core fiber. Hollow core 
fibers (HCF) are optical fibers that guide light in an air core, as opposed to a solid material, such as glass. Eliminating 
the glass from the core of the fiber greatly reduces the effect of temperature on the propagation of the light in the fiber, 
due to nearly eliminating the effect of the glass refractive index changing with temperature. 
 
There are several different types of HCF which operate on different guiding principles. Instead of total internal 
reflection, some HCF types use alternate guiding mechanisms such as the anti-resonant2–6 or photonic bandgap effects7,8.  
It has been shown that photonic bandgap hollow core fiber (PBGHCF) can significantly reduce the sensitivity without 
using special coatings 9,10. A reduction in thermal sensitivity has been verified in application within a fiber gyroscope 
using a PBGHCF11.  
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HCF also has several other benefits over traditional solid core fibers. Due to guiding light in an air core, the nonlinear 
coefficients are extremely low, making them suitable for high power applications12. Also, the propagation speed is close 
to the speed of light, decreasing latency of data transmission rates13. Additionally, the absorption of silica is greatly 
reduced, allowing transmission of mid-infrared light14,15. Finally, the hollow core leads to a much higher radiation 
insensitivity than standard optical fiber16. 

2. THEORY  

Anti-resonant hollow core fibers (ARHCF) are quickly gaining attention for their excellent guiding properties, such as 
low loss and wide transmission windows5. ARHCF has much wider bandwidth, and simpler fabrication than PBGHCF. 
Additionally, even less of the core light overlaps with the glass structure of the fiber, potentially lowering the thermal 
sensitivity from the refractive index change even further than PBGHCF.  
 
Various ARHCF designs have been investigated in both simulation and experiment in an attempt to reduce the overall 
attenuation and bend-induced losses as well as to shift the resonance wavelengths and provide customized ranges of high 
transmission 2–4,6,17,18.  
 
ARHCFs achieve low propagation losses due to the strong suppression of coupling between the core modes and cladding 
modes5. Only around specific resonance wavelengths, strong coupling to outside modes leads to significant propagation 
losses of the core modes. These wavelengths are determined by the thickness of the silica boundaries, shown in Eqn. 1: 
௠ߣ  = ଶ௧௠ √݊ଶ − 1            (1) 

where λm is the resonance wavelength, t is the silica thickness, m is the order of the resonance, and n is the index of 
refraction of the silica. Figure 1 shows a scanning electron microscope (SEM) image of the ARHCF used in the 
following experiment. It consists of eight non-touching rings, each about 16 μm in diameter with a thickness of 300 nm, 
and an air core with a diameter of 34 μm. The outer diameter of the fiber is 135 µm, which allows it to be directly spliced 
with standard optical fibers. 
 

 
Fig. 1. SEM image of the facet of the ARHCF used in this experiment. 
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Fig. 3. Simulated transmission spectrum of the ARHCF, showing a resonance at 600 nm and low loss over a large bandwidth of 
wavelengths. 

3. EXPERIMENT  

In order to test the thermal sensitivity of the ARHCF, two all-fiber Mach-Zehnder interferometers were setup, and are 
shown in Fig. 4. The light source used was a narrowband laser operating around 1550 nm, and was split using a 50/50 
fiber coupler in order to be able to monitor both interferometers simultaneously. One interferometer had 3.5 m of 
ARHCF spliced into one arm, and the other had 2.4 m of SMF spliced into one arm. These lengths were chosen so that 
the propagation lengths of the fibers were equal when factoring in the effective indices of refraction. The second arm of 
both interferometers contained only a short length of SMF coming from the 50/50 couplers. After the recombination of 
the interferometer arms again using fiber couplers, the signals were sent to two detectors connected to an oscilloscope. 
The portion of the interferometers containing the extra lengths of ARHCF and SMF from the first arm, as well as the 
short lengths of SMF of the second arm, were placed in an oven, with all 50/50 couplers outside of the chamber. 
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Fig. 4. Schematic of interferometer testing setup. 
 

The oven was raised to a temperature of 50°C and held until stable. The oven door was then opened in order to quickly 
cool the chamber, as the signal from the detectors was monitored on the oscilloscope. An example plot of the 
interferometer signals is shown in Fig. 5. Clearly, the SMF output has a significantly faster delay change with 
temperature than the ARHCF. From this plot, the calculated improvement in temperature sensitivity gained through 
using the ARHCF is approximately a factor of 4. This agrees with the values measured by Dangui et. al which ranged 
from 3.6 to 5.3 depending on the PBGHCF10.  
 

Fig. 5. Measured interferometer outputs of the SMF and ARHCF while the oven temperature decreased. 
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4. CONCLUSION 

We have proposed the use of ARHCF for high precision timing applications, due to its lowered temperature sensitivity 
from standard SMF. While this has been proven with other types of hollow core fiber, we believe this is the first proof of 
concept for using anti-resonant hollow core fiber for increased temperature stability. Due to its simpler structure, and 
therefore less expensive fabrication, as well as its extremely large available bandwidth, the ARHCF may be preferable to 
PBGHCF for applications requiring high levels of temperature stability. Further work needs to be done in order to more 
robustly quantify the improvement factor, as well as to optimize the ARHCF structure design in order to decrease the 
thermal sensitivity as much as possible. It has recently been shown that through careful design, the thermal sensitivity of 
PBGHCF can be reduced to almost zero21. A similar expansion coefficient cancelling design may also be possible for 
ARHCF. 
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