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Lattice topology dictates photon 
statistics
H. Esat Kondakci  , Ayman F. Abouraddy & Bahaa E. A. Saleh

Propagation of coherent light through a disordered network is accompanied by randomization and 
possible conversion into thermal light. Here, we show that network topology plays a decisive role 
in determining the statistics of the emerging field if the underlying lattice is endowed with chiral 
symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed 
eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear 
and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics 
in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear 
lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics 
from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real 
and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave 
along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby 
producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an 
arrangement and the statistics become sub-thermal.

Topology, the study of those properties of geometric objects that remain invariant under continuous transforma-
tions such as bending or stretching (homeomorphisms1 in general), has recently entered optics in several guises. 
First, the development of topological insulators in condensed matter physics2 has inspired the exploration of 
analogous concepts in the topology of photonic bands in carefully constructed optical structures3–8, which offer 
intriguing possibilities such as one-way propagation and self-healing edge states9. In an altogether different vein, 
topological features of the three-dimensional distribution of the optical field in physical space have been inves-
tigated, such as the knottedness of scalar wavefronts10–13 and the emergence of non-trivial topological structure 
in tightly focused vector fields14. A lesser-studied impact of topology on optics, however, is that resulting from 
the interaction of light with a photonic structure that itself features non-trivial topology. An early prescient study 
examined optical scattering off knotted configurations to discern the underlying topology15.

Here, we investigate the distinguishing features of bound optical fields propagating along disordered 
one-dimensional (1D) lattices having distinct underlying topologies–the line and the ring (Fig. 1a). At first 
sight, it appears that topology should have no impact on the field confined to such a structure and–moreover–
that any non-trivial topological signatures displayed by the field are likely to be obscured as a result of disor-
der. Surprisingly, we find that the lattice topology plays a decisive role in determining both the circularity of 
the field quadratures and the photon statistics when a particular disorder-immune lattice symmetry is satis-
fied–so-called ‘chiral symmetry’16–19. The physical platform we examine is an array of parallel waveguides with 
nearest-neighbor-only evanescent coupling20, and we investigate the optical statistics when coherent light excites 
a single site21–27; but the results can be readily extended to other photonic realizations.

Specifically, we show that the photon statistics produced by a disordered ring lattice with propagating chiral 
lattice-mode pairs is sensitive to its parity, while linear lattices featuring the same disorder lack this striking 
characteristic. The traditional concept of periodic boundary conditions–introduced by Max Born28 –enforces the 
notion of self-consistency around a ring. In the case of the disordered ring lattices examined here, the delineation 
of the field into real and imaginary quadratures occupying alternating sites as a result of chiral symmetry brings 
about a new self-consistency condition: the complete braiding of the two strands representing the field quadra-
tures. Successful braiding is incommensurate with an odd-sited ring lattice and can only be realized on even-sited 
ring lattices. The photon statistics associated with satisfying this boundary condition are markedly different from 
those produced in lattices where it is not. Indeed, super-thermal photon statistics are produced by an even-sited 
ring lattice, and removing or adding a single site from the lattice results in an abrupt change to sub-thermal 
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photon statistics. In linear lattices, these distinctions are entirely absent and the free boundary conditions at the 
edges of this topology nullify any impact of the lattice parity.

The characteristics of light emerging from such 1D disordered lattices differ from thermal light. The ubiq-
uity of thermal statistics in optics is a consequence of the assumptions underlying the Central Limit Theorem29 
being readily satisfied under generally common conditions; for example, coherent light scattered from a ran-
dom surface, or diffused through a disordered medium, acquires thermal statistics upon ensemble averaging30. 
Nevertheless, there are situations for which light exhibits non-Gaussian and/or non-circular statistics:31–34 the 
quadratures can be Gaussian but not circularly symmetric resulting in Gaussian but non-thermal light35, 36; 
one of the quadratures may be altogether extinguished, resulting in a field having random amplitude but deter-
ministic phase31, 32; or the complex field may be circularly symmetric with two identical and independent but 
non-Gaussian quadratures33, 34. We show that all these scenarios are spanned by light emerging from disordered 
1D lattices in different topologies that support chiral-symmetric mode pairs.

Results
Lattice model. We consider coupled identical waveguides with nearest-neighbor-only interactions arranged 
on two different lattice topologies: the linear lattice and the closed ring lattice (Fig. 1a), the former of which has 
been studied extensively23–27, 37–49. The complex envelope = A zA { ( )}x x of a coherent monochromatic field at 
lattice site x evolves according to the matrix equation20 + =ˆi zA HAd /d 0, where Ĥ is the coupling matrix or the 
system’s Hamiltonian (Methods) and z is the axial position. We introduce disorder into the lattice by randomizing 
the waveguide couplings, which may be achieved by varying their separation–so-called off-diagonal disorder50. 
We assume random coupling coefficients described by a uniform probability distribution with mean C  and half-
width ∆C. The coupling coefficients are reported in units of C  such that ≤ ∆ ≤C0 1, and the axial position z is 
in units of the coupling length = C1/ . All the computational results presented throughout in this work are 
produced using the matrix equation given above with the corresponding Hamiltonian model and solving the 
eigenvalue problem (see Methods for different types of Hamiltonians). For each case, ensembles of 105 realiza-
tions are produced for statistical averaging and we assume a single lattice site at x = 0 is coherently excited.

The field is best described in terms of the eigenvectors ϕ x{ ( )}n x  and corresponding eigenvalues bn of Ĥ, 
ϕ ϕ=ˆ x b xH ( ) ( )n n n , which are all real-valued since Ĥ is real and symmetric. If the array is excited at z = 0 by a field 

ϕ= = ∑A c xA(0) { (0)} ( )x n n n , where cn is the excitation amplitude of the nth mode, then ϕ= ∑A z c x e( ) ( )x n n n
ib zn  

Figure 1. Propagation of light along disordered coupled waveguides arranged on different 1D lattice topologies. 
(a) Evolution of the intensity along single realizations of 1D disordered linear and ring photonic lattices. 
The black arrow indicates the single waveguide excited at the input. (b) The coupling matrix associated with 
linear or even-sited ring lattices with off-diagonal disorder can be rearranged into block off-diagonal form. 
(c) Probability density function of the complex field produced by the lattices in (b). The field has only one 
quadrature component, either real or imaginary. (d) The probability distribution of the amplitude is half 
bell-shaped and the phase distribution is discrete. (e–g) Similar to (b–d) for odd-sited ring lattices. (e) The 
coupling matrix cannot be rearranged into block off-diagonal form, (f) the probability distribution of the field is 
circularly symmetric in the complex plane resulting in (g) a Rayleigh-like amplitude distribution and a uniform 
phase distribution.
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and intensity =I z A z( ) ( )x x
2. Such a phasor sum leads one to expect that light emerges at the output with ther-

mal statistics and circular symmetry since b{ }n , ϕ x{ ( )}n , and c{ }n  are all random variables in the probability space of 
the statistical ensemble. Thermal light is characterized by a complex optical field whose real and imaginary quad-
rature components are statistically independent and identically distributed Gaussian random variables. The field 
statistics thus exhibit circular symmetry in the complex plane30 and the field amplitude is Rayleigh-distributed 
with a uniform phase distribution, resulting in an intensity I  that is exponentially distributed with normalized 
variance =I IVar( )/ 12 ; Fig. 1f,g. We proceed to show that, surprisingly, thermal statistics are not necessarily 
produced upon traversing a disordered lattice of coupled waveguides.

Linear lattices with off-diagonal disorder display a disorder-immune symmetry since Ĥ can be rearranged in 
a block off-diagonal form (Fig. 1b)–so-called ‘chiral symmetry’19. In this case, the eigenvalues and eigenvectors of 
Ĥ come in skew-symmetric pairs, = −−b bn n and ϕ ϕ= −− x x( ) ( 1) ( )n

x
n , in every realization–not only on average–

and for every lattice disorder level ∆C, such that the output field for unit input excitation at x = 0 is

∑

∑

ϕ ϕ

ϕ ϕ
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where the lattice size is = +M N2 1 and = − …n N N, , . The complex envelope A z( )x  thus alternates between 
real and imaginary values at even- and odd-indexed waveguides, respectively. Because only one quadrature sur-
vives at any lattice site, the phase takes on only discrete values, 0 or π π±( /2) at even-indexed (odd-indexed) sites; 
see Methods. Consequently, the emerging light in general is non-thermal. For example, once the steady state is 
reached in the low-disorder limit, one field quadrature is approximately Gaussian and the intensity has a 
chi-square probability distribution with one degree of freedom51 π= −P I I I I I( ) exp( /2 )/(2 )1/2 characterized 
by a normalized variance =I IVar( )/ 22  (Fig. 1c,d). Furthermore, associated with the topology-dependent cir-
cularity of the field quadratures is a concomitant dependence of the photon statistics on lattice topology. For this 
purpose, we take the normalized intensity correlation, = = +g I I I I/ Var( )/ 1(2) 2 2 2 , which is a standard 
descriptor for the field randomness; ⋅  denotes ensemble averaging and, by convention, < <g1 2(2)  corresponds 
to sub-thermal statistics and >g 2(2)  corresponds to super-thermal statistics.

In addition, any classical field can be described in terms of photon-number statistics. The transformation from 
intensity statistics to photon-number distribution can be obtained via Mandel’s formula given by

∫
µ

= µ∞ −n
n

e I IP( )
!

P( )d ,
(2)

n

ph
0 ph

ph

where nph is the photon number and µ = nph  is the average photon number proportional to the intensity52. In 
this case, the normalized intensity correlation becomes = 〈 − 〉 〈 〉g n n n( 1) /(2)

ph ph ph
2 and is related to Mandel’s 

Q-parameter via = 〈 〉 − = 〈 〉 −Q n n n gVar( )/ 1 ( 1)ph ph ph
(2)  [refs 27 and 49]. In the context of photon statistics, 

super-thermal and sub-thermal statistics refer to bunched and anti-bunched arrivals of photons, respectively51.

From linear to ring topology. Equation (1) provides a hint for the impact of lattice topology on the field 
circularity and photon statistics. The field at any axial position along a linear waveguide array endowed with chiral 
symmetry can be viewed as a result of braiding two different strands occupying adjacent sites from one end of the 
lattice to the other: a ‘real’ strand on even-indexed sites and an ‘imaginary’ strand on odd-indexed sites; Fig. 2a,b. 
The free boundaries of the linear array make this braiding insensitive to the number of sites on the lattice. Folding 
a linear lattice into a ring gives rise to two scenarios that depend decisively on the ring-parity–whether it has 

Figure 2. Braiding of the real and imaginary field components around linear and ring lattices endowed with 
chiral symmetry. (a,b) Braiding the real and imaginary field components along linear lattices is insensitive to 
the lattice parity–whether (a) even-sited or (b) odd-sited–due to the free lattice boundaries. (c) Braiding is 
complete around an even-sited ring lattice. (d) Braiding cannot be completed around an odd-sited ring lattice. 
Incommensurability breaks the chiral symmetry.



www.nature.com/scientificreports/

4Scientific REPORTS | 7: 8948  | DOI:10.1038/s41598-017-09236-8

an even or odd number of sites. If the ring lattice is even-sited, the real and imaginary strands form two closed 
braided rings (Fig. 2c), which preserves the chiral symmetry. The emerging light thus remains non-circular as in 
its linear counterpart. On the other hand, if the ring is odd-sited, the lattice structure is incommensurate with 
closed braided real and imaginary strands (Fig. 2d). Here, chiral symmetry is in fact broken, and the field may 
emerge with circular symmetry.

We are thus led to a remarkable prediction: the circularity of the field quadratures and the photon statistics 
of light emerging from a disordered ring-lattice is sensitive to the ring’s parity. In the steady state, this can entail a 
dramatic change in the normalized variance by simply adding or removing a single waveguide from the ring, in 
contradistinction to the insensitivity of the optical statistics in a disordered linear lattice to its parity.

Simulations of linear and ring lattices when excited from a single site confirm these predictions. An example 
of the statistics produced by a disordered linear lattice with chiral-symmetric mode pairs is provided in Fig. 3a–d. 
One field quadrature has a bell-shaped probability distribution while the other is deterministic. Consequently, the 
probability distribution for the phase ϕ is discrete and the field is not circularly symmetric. In the case of a disor-
dered linear lattice lacking chiral-symmetric mode pairs, e.g. so called ‘diagonal disorder’ (Methods), the field 
quadratures have identical distributions and the phase ϕ is uniformly distributed over the range [0, 2π], so that 
the field phasor is indeed circularly symmetric (Fig. 3e–h).

In ring lattices with off-diagonal disorder, the field statistics depend crucially on the ring parity. When the ring 
is even-sited (here, the number of sites is Nt = 24), the field quadratures are braided around the ring (Fig. 2c) and 
the simulations confirm our prediction that the discrete phase distribution–observed in the corresponding linear 
lattice–is maintained (compare Figs 4a–d to 3a–d). However, when the ring is odd-sited (Nt = 23), the distribution 

Figure 3. Probability distributions of the field quadratures, amplitude, and phase in linear disordered lattices. 
(a–d) Probability distributions of the (a) real quadrature, (b) imaginary quadrature, (c) amplitude, and (d) 
phase of the complex optical field at different output sites x after propagating through a photonic lattice with off-
diagonal disorder. The real (imaginary) quadrature vanishes on the odd (even) sites, and the phase takes binary 
values with equal probability: 0 or π π±( /2) at even (odd) positions. (e–h) Same as in (a–d) for a lattice with 
diagonal disorder. The field is circularly symmetric, resulting in a uniform phase distribution. We use 
throughout ensembles of 105 realizations and a single lattice site ( =x 0) is excited.

Figure 4. Probability distributions of the field quadratures, amplitude, and phase in ring lattices with off-
diagonal disorder. (a–d) Probability distributions of the (a) real quadrature, (b) imaginary quadrature, (c) 
amplitude, and (d) phase of the complex optical field at different output sites x after propagating through an 
even-sited ring lattice. The real (imaginary) quadrature vanishes on the odd (even) sites, and the phase takes 
binary values with equal probability: 0 or π π±( /2) at even (odd) positions. (e–h) Same as in (a–d) for an odd-
sited ring lattice. (g) Amplitudes of the fields take Rayleigh-like distributions. (h) Phase distributions reflect an 
intermediate stage between discrete and uniform probability distributions.
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of ϕ is no longer discrete (compare Figs 4e–h to 3e–h), but instead shows an intermediate stage between the dis-
crete and uniform distributions observed in disordered linear lattices endowed with and lacking chiral-symmetric 
mode pairs, respectively, therefore signifying a departure from field circularity. Indeed, simulations show that ϕ 
has a discrete distribution when ∆ →C 1 (the fields lacks circular symmetry) and a uniform distribution when 
∆ →C 0 (the field is circularly symmetric).

The dependence of the field circularity on the disorder level ∆C can be placed on a quantitative basis using the 
concept of the circularity quotient wcirc( )1  of a complex random variable w1, which is defined as the ratio between 
the variable’s pseudo-variance and variance53, 54, = ⁎w w w w wcirc{ } cov( , )/cov( , )1 1 1 1 1 , where = ⁎w w w wcov( , )1 2 1 2 . 
It is clear that =wcirc{ } 01  whenever w1 is a circularly symmetric complex random variable, while =wcirc{ } 11  
for a linear w1, so we quantify the field circularity by = −o z A z A z( ) cir{ ( ) ( ) }x x x . In any even-sited chiral ring 
lattice, the circularity coefficient =o z( ) 1x  for all disorder levels. In an odd-sited ring lattice, o z( )x  increases with 
∆C as shown in Fig. 5.

Lattice topology and Anderson localization. The dependence of the field circularity on ∆C in an 
odd-sited ring is a consequence of the transverse Anderson localization of light along the waveguides55. At small 
disorder levels ∆ →C( 0), the field spreads around the whole ring. The odd number of sites is incommensurate 
with fully braiding the real and imaginary strands of the field, thereby breaking the condition for chiral symmetry 
and leading to a circularly symmetric field and →o z( ) 0x . On the other hand, light is localized in the vicinity of 
the excitation site =x 0 for large disorder levels ∆ →C( 1) and hence does not extend around the ring lattice. As 
such, the lattice effectively corresponds to a linear lattice, chiral symmetry is preserved, the field is no longer cir-
cular, and ultimately →o z( ) 1x . In an even-sited ring lattice, whether light is localized or not, the field strands can 
always be braided and =o z( ) 1x  for all disorder values ∆C.

In addition, Anderson localization prevents the realization of Gaussian statistics, especially for high disorder 
levels. When light is strongly localized, it is coupled to a small number of lattice modes whose excitation ampli-
tudes thus become strongly correlated, which implies the non-validity of the central limit theorem. Consequently, 
the field statistics deviate from the Gaussian distribution, although they remain bell-shaped. Reducing ∆C 
reverses this trend: the excitation is coupled to a larger number of lattice modes with independent amplitudes and 
Gaussian statistics are produced.

Interplay of ring parity, disorder level, and lattice size. The interplay between disorder level and lat-
tice size in determining g (2) in even- and odd-sited ring lattices is illustrated in Fig. 6. Focusing first on g (2) at the 
excitation site =x 0, a marked distinction appears immediately between odd- and even-sited ring lattices: in the 
former 1 < g(2) ≲ 2, corresponding to sub-thermal photon statistics; while 2 ≲ g(2) < 3 in the latter, corresponding 
to super-thermal statistics. Consider the first row in Fig. 6b,c corresponding to a low disorder level (∆ = .C 0 2). 
In comparing lattices with 23 and 24 sites, we observe that the addition of a single site to the ring lattice results in 
a jump in g (2) from 2 to 3. In a ring lattice with 23 sites, the real and imaginary field strands cannot be consistently 
braided. Consequently, the two quadratures are symmetric and the low ∆C results in approximately Gaussian 
statistics. The field is circularly symmetric ≈ .o z( ) 0 10  and thermal ≈g 2(2)  (Fig. 6b). With the addition of a sin-
gle site, the real and imaginary strands can be consistently braided around the 24-sited ring lattice. The field is no 
longer circularly symmetric =o z( ) 10 , and one quadrature has approximately Gaussian statistics leading to 
super-thermal light with ≈g 3(2)  (Fig. 6c). In addition to the parity-based demarcation of the light statistics, the 
lattice size also effects the limit of thermalization. For a fixed disorder level, reducing the lattice size lowers g (2) in 
both even- and odd-sited lattices.

Figure 5. Circularity in odd-sited ring lattices with off-diagonal disorder. (a) Increasing the disorder level ∆C 
reduces the circularity of the output field at the excitation waveguide ( =x 0) and increases the circularity 
coefficient o z( )x . (b–d) The field probability distribution in the complex plane for selected disorder levels. Bright 
colors represent higher probability density. The second row gives the probability distribution of the 
corresponding field phase.
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When the disorder level is low, g (2) takes similar values at all lattice sites since the intensity is evenly distrib-
uted. As the disorder level increases, transverse localization of light dominates and statistics become non-uniform 
across the lattice. Increasing the disorder level has the effect of blurring the distinction between the even- and 
odd-sited lattices. This may be understood by observing that localization associated with increasing disorder 
diminishes the extent to which light spreads across the lattice. In the limit of high disorder, light remains confined 
around the excitation site, thereby nullifying the impact of lattice size and thus its parity. Therefore, there is little 
contrast between the photon statistics produced in lattices with different parities when the lattice size is larger 
than the transverse localization width. For all lattice sizes in this case, ≈g 2(2)  on the excitation site. Finally, g (2) 
generally increases in off-center lattice sites ≠x 0, especially in the limit of high disorder where localization is 
most pronounced. This is associated, nevertheless, with extremely low intensity levels (denoted by green lattice 
sites in Fig. 6b,c where >g 3(2) ).

Discussion
We have found that topology plays an unexpected role in determining the thermalization statistics of light prop-
agating in a disordered lattice of coupled waveguides. In linear lattices endowed with chiral symmetry, g (2) always 
corresponds to super-thermal statistics ( >g 2(2) ), while g (2) in a ring lattice depends on the ring parity–whether 
it is even- or odd-sited. Adding or removing a single lattice site can produce a dramatic shift in g (2) from 
super-thermal to sub-thermal statistics.

Although the construction of optical structures with non-trivial topology is challenging, recent advances in 
the precise fabrication of coupled waveguide arrays56, modulated fiber loops57, 58, liquid crystals59, 60, and on-chip 
coupled resonators61, 62 provide routes for producing optical structures in which the effects predicted here may 
be observed.

In this study, we have focused on the scenario where a single lattice is coherently excited. Previous studies of 
disordered linear lattices indicate that the illumination configuration can modify the photon statistics in crucial 
ways. Indeed, it has been shown theoretically27 and experimentally47 that changing the relative phase between 
two excited sites can help tune the photon statistics between the two extremes of sub-thermal and super-thermal 
statistics. We expect that the exploration of illumination configurations on different lattice topologies may yet 
reveal further surprises.

Figure 6. Normalized intensity correlation g (2) in ring lattices with off-diagonal disorder. (a) Evolution of the 
intensity on a ring lattice in a single realization of disorder. The arrow identifies the input site. (b) g (2) at the 
output of odd-sited ring lattices, which lack chiral symmetry. The color in the small circles (corresponding to 
the lattice points) depicts the normalized intensity correlation g (2). The field statistics are mainly sub-thermal. In 
the off-set waveguides the statistics may become super-thermal, but this comes with a reduction in intensity. 
The two regimes of sub-thermal and super-thermal photon statistics are denoted by different color palettes. The 
red arrow identifies the excitation site. The gray shading encompasses the lattice sites with the mean intensity 
exceeds 5% of the input power. (c) g (2) in even-sited ring lattices with chiral symmetry. The statistics are mainly 
super-thermal. At offset waveguides, g (2) may take very high values at the expense of low intensity.
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Methods
For both linear and ring lattices, the propagation of an optical field is described by the first-order differential 
equation20, 21

β+ + + =− − + +i E
z

E C E C Ed
d

0,
(3)

x
x x x x x x x x, 1 1 , 1 1

where E z( )x  is the complex optical field in the xth waveguide at the axial position z, βx is the propagation constant 
in the xth waveguide, and =+ +C Cx x x x, 1 1,  is the coupling coefficient between waveguides x and +x 1. If β  is the 
mean propagation constant, β β β= + ∆x x , and A z( )x  is the complex field envelope, then substituting 

β=E z A z i z( ) ( )exp( )x x  into the evolution equation produces the matrix equation

+ =ˆi
z
A HAd

d
0,

(4)

where = A zA { ( )}x x and Ĥ is the coupling matrix or the system’s Hamiltonian. Following the definitions given in 
the main text, the complex envelope at lattice site x  after propagating a distance z  is given by =A z( )x  

ϕ∑ c x e( )n n n
ib zn . For a single-lattice-site excitation from =x 0 δ=A( (0) )x x ,0 , we have ϕ=c (0)n n  by simply pro-

jecting the input onto the eigenmodes. To prove that the real and imaginary field quadratures alternate between 
adjacent waveguides, we first split the summation into two and reverse the index in the first summation such that
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Next, we make use of the relations = −−b bn n and φ ϕ= −− x x( ) ( 1) ( )n
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n  along with =b 00  for lattices exhibiting 
chiral symmetry to obtain:
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Note that the last term only exists when the lattice size is an odd number, thus reaching equation (1).
A signature distinguishing matrices with chiral ensembles is that they can be transformed into block 

off-diagonal form17, 18. The necessary transformation is performed by grouping the even- and odd-indexed sites. 
Examples of the matrices and their transformed versions for various cases are given here:

Example 1–Linear lattices with diagonal disorder and =N 5t . Here Ĥ cannot be transformed into the 
block-diagonal form, and the lattice thus lacks chiral symmetry.
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Example 2–Linear lattices with off-diagonal disorder and =N 5t . Here Ĥ can be transformed into the 
block-diagonal form, indicating the presence of chiral symmetry.

=













→













ˆ

C
C C

C C
C C

C

C
C C

C
C C

C C

H

0 0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 0

0 0 0 0
0 0 0
0 0 0 0

0 0 0
0 0 0 (8)

0,1

1,0 1,2

2,1 2,3

3,2 3,4

4,3

0,1

2,1 2,3

4,3

1,0 1,2

3,2 3,4

In these two cases, Nt does not play a role in the transformation. In the case of ring lattices with off-diagonal 
disorder, the outcome surprisingly depends on Nt.

Example 3–Even-sited ring lattice with off-diagonal disorder =N( 6)t . The block-diagonal form signals the 
presence of chiral symmetry and hence the eigenmodes come in chiral-symmetric pairs.



www.nature.com/scientificreports/

8Scientific REPORTS | 7: 8948  | DOI:10.1038/s41598-017-09236-8

=













→













ˆ

C C
C C

C C
C C

C C
C C

C C
C C

C C
C C

C C
C C

H

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0 (9)

0,1 0,5

1,0 1,2

2,1 2,3

3,2 3,4

4,3 4,5

5,0 5,4

0,1 0,5

2,1 2,3

4,3 4,5

1,0 1,2

3,2 3,4

5,0 5,4

Example 4–Odd-sited ring lattices with off-diagonal disorder =N( 5)t . Although the lattice is characterized by 
off-diagonal disorder, because the lattice is odd-sited, the block-diagonal form is not obtained and the chiral 
symmetry is thus lacking. The off-diagonal blocks in the matrix are interacting through matrix elements C4,0 and 
C0,4, which are equal.

=













→













ˆ

C C
C C

C C
C C

C C

C C
C C

C C
C C C

C C

H

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0

0 0 0
0 0 0

0 0 0
0 0

0 0 0 (10)

0,1 0,4

1,0 1,2

2,1 2,3

3,2 3,4

4,0 4,3

0,4 0,1

2,1 2,3

4,0 4,3

1,0 1,2 1,4

3,2 3,4

In the case of diagonal disorder23, 55, we assume random propagation constants (in units of C) described by a 
zero-mean uniform probability distribution of half-width β∆  (Fig. 1b) β≤ ∆ ≤0 3.

Since the field is circularly symmetric and takes random independent phases at the sites on a lattice lacking 
chiral symmetry, folding this lattice into a closed ring topology will have no impact on the field. In linear lattices 
with diagonal disorder, the complex field is indeed circularly symmetric at sufficiently large z  such that 

πb zVar( ) 2n , where bVar( )n  is the variance in the eigenvalues bn. Furthermore, A z( )x  is thermal with circularly 
symmetric gaussian quadratures for a wide range of disorder levels β∆ .
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