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Abstract: What is the maximum visibility attainable in double-slit interference by an
electromagnetic field if arbitrary – but reversible – polarization and spatial transformations
are applied? Previous attempts at answering this question for electromagnetic fields have
emphasized maximizing the visibility under local polarization transformations. I provide
a definitive answer in the general setting of partially coherent electromagnetic fields. An
analytical formula is derived proving that the maximum visibility is determined by only the two
smallest eigenvalues of the 4×4 two-point coherency matrix associated with the electromagnetic
field. This answer reveals, for example, that any two points in a spatially incoherent scalar
field can always achieve full interference visibility by applying an appropriate reversible
transformation spanning both the polarization and spatial degrees of freedom – without loss
of energy. Surprisingly, almost all current measures predict zero-visibility for such fields. This
counter-intuitive result exploits the higher dimensionality of the Hilbert space associated with
vector – rather than scalar – fields to enable coherency conversion between the field’s degrees
of freedom.
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1. Introduction

Thomas Young’s report on the observation of double-slit interference [1] marks a landmark in
our understanding of the nature of light [2]. Double-slit interference is an essential methodology
for evaluating the spatial coherence of optical fields and remains an important conceptual tool in
both classical [3] and quantum [4–6] optics. Spatial coherence – exemplified by high-visibility
double-slit interference – may nevertheless be obfuscated by polarization [7–10]. Indeed, the
visibility can be modified even by reversible (unitary) polarization devices placed at the slits [11,
12], thereby reducing the operational value of interference visibility as a hallmark of coherence
for electromagnetic (EM) fields.

A range of answers have been provided in the literature to the following question: what
is the maximum visibility attainable by a partially coherent and partially polarized EM field
in Young’s double slit experiment? The multiplicity of answers to this question is natural
because the constraints placed on the maximization procedure have varied. In general, however,
investigations have emphasized local polarization transformations implemented at each point –
whether unitary (reversible and energy-conserving) [11, 12] or otherwise [13–15]. Such a state
of affairs is not satisfying because the spatial and polarization degrees of freedom (DoFs) are
not treated on the same footing, and spatial transformations are not included in the analysis.

Here, I address the following question: what is the maximum visibility of double-slit
interference that may be observed from two points in a partially coherent and partially polarized
EM field if arbitrary unitary transformations (‘unitaries’ hereon for brevity) may be applied
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to either of its DoFs (spatial or polarization) or jointly to both? This is a larger family
of transformations than has been considered to date. EM fields that may be unitarily inter-
converted are members of an equivalency class that share the same unitary invariants, and
studying the maximum visibility attainable under the most general spatial-polarization unitaries
helps identify an intrinsic field-invariant that is independent of our manner of interrogation.
This maximum visibility is shown to depend only on the smallest two eigenvalues of the
4×4 two-point vector coherency matrix of the EM field. Furthermore, I demonstrate that most
previous measures of two-point visibility predict zero-visibility for a wide class of fields that
may nevertheless exhibit high visibility once the class of unitaries encompassing joint spatial-
polarization transformations is considered in lieu of only local polarization unitaries. In other
words, by examining the full Hilbert space describing the polarization and spatial DoFs for
EM fields and symmetrizing their treatment, a higher visibility can be attained. In answering
the titular question, it is found that scalar fields lacking any spatial coherence can nevertheless
exhibit full interference visibility by reversible conversion – without loss of energy – to an
unpolarized but spatially coherent field. This process of ‘coherency conversion’ between the
field DoFs can potentially be exploited in protecting a beam from the deleterious impact of a
randomizing medium.

The paper is organized as follows. First, I briefly review the standard description of
polarization and spatial coherence – each treated independently – via 2×2 coherency matrices
to fix the notation, before introducing the 4×4 vector-field coherency matrix describing jointly
polarization and spatial coherence, followed by defining the problem that is tackled in this
paper. Young’s double-slit interference is a venerable problem in optics, and I therefore briefly
review in Section 3 previous relevant investigations of the maximal interference visibility of an
EM field via local polarization unitaries to properly situate the new result developed here. In
Section 4 I obtain a closed-form expression for the maximum visibility attainable when an EM
field is subject to a general non-separable polarization-spatial unitary transformation. Examples
that apply this new formula and compare it to the visibility predicted by previous analyses are
presented in Section 5, in addition to a comparison with previous efforts that have considered
maximizing the visibility under non-unitary transformations. Finally, I provide in Section 6 an
example of ‘coherency conversion’ before presenting the conclusions.

2. Statement of the problem

2.1. 2×2-Matrix description of partial polarization and partial spatial coherence

Partial polarization at a position �r in a field is described via a 2 × 2 Hermitian positive semi-

definite polarization coherency matrix Gp =

(
GHH GHV

GVH GVV

)
, where G j j ′ = 〈E j (�r)E∗

j ′ (�r)〉, j, j′ =
H,V are the horizontal and vertical polarization components, respectively, and normalized such
that GHH+GVV = 1 [3, 16, 17]. The degree of polarization is defined as Dp = λH− λV, where
λH ≥ λV ≥ 0 are the eigenvalues of Gp [18] obtained by diagonalization via a polarization
unitary.

Spatial coherence at two points �ra and �rb in a scalar quasi-monochromatic field may be
defined in a similar fashion via a 2×2 Hermitian positive semi-definite spatial coherency matrix

Gs =

(
Gaa Gab
Gba Gbb

)
, where Gkk ′ = 〈E(�rk )E∗ (�rk ′ )〉, k , k′ = a, b, and Gaa + Gbb = 1. The double-slit

interference visibility is V =2|Gab |. It was recognized early on by Zernike [19] that V so-defined
is not a unitary invariant, but can in fact be changed upon applying spatial unitaries. In analogy
to Dp, a unitarily invariant degree of spatial coherence is defined, Ds=λa−λb, where λa≥ λb≥0
are the eigenvalues of Gs. It is straightforward to show that

Ds = max{Gaa − Gbb} = Vmax , (1)

                                                                                          Vol. 25, No. 15 | 24 Jul 2017 | OPTICS EXPRESS 18333 



corresponding to the maximum attainable visibility evaluated over the equivalency class of all
spatial coherency matrices Gs related through 2×2 spatial unitaries.

2.2. 4×4-Matrix description of the spatial-polarization Hilbert space

Proceeding to the case of a vector EM field, the correlations between the field components at
points �ra and �rb are represented by a Hermitian, positive semi-definite 4×4 coherency matrix,

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

GHH
aa GHV

aa GHH
ab GHV

ab

GVH
aa GVV

aa GVH
ab GVV

ab

GHH
ba GHV

ba GHH
bb GHV

bb

GVH
ba GVV

ba GVH
bb GVV

bb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
Gaa Gab

Gba Gbb

)
, (2)

where G j j ′
kk ′ = 〈E j (�rk )E∗

j ′ (�rk ′ )〉, G j j ′
kk ′ = (G j ′ j

k ′k )∗, the fields are normalized such that G has

unity trace, j, j′ = H,V, and k , k′ = a, b [20, 21]; GVH
ab , for example, represents the two-point

correlations between the V component at �ra and the the H component at �rb. The matrix G
can be viewed in block-diagonal form, where Gaa, Gab, Gba, and Gbb are 2 × 2 polarization

coherency matrices of the form Gkk ′ =

(
GHH

kk ′ GHV
kk ′

GVH
kk ′ GVV

kk ′

)
, where k , k′ = a, b. Here Gaa and Gbb

are Hermitian polarization coherency matrices at �ra and �rb, respectively, whereas Gab and Gba

are the 2× 2 cross-spectral density matrix for �ra and �rb [9] or the beam coherence-polarization
(BCP) matrix [7] – and are not necessarily Hermitian; however Gab=G†

ba.
Although these matrix blocks are separately well-known in coherence theory, their

arrangement together in a 4 × 4 matrix is more convenient in many cases. In particular, it
facilitates studying the field transformation under the influence of unitaries spanning the spatial
and polarization DoFs, and it also enables a clear benchmarking of various proposed measures
of spatial coherence and interference visibility for EM fields. Indeed, this 4× 4 formulation is
implicit in the tensor representation of partially coherent EM [22, 23], but it is nevertheless not
regularly utilized.

A matrix that will be of utility is the diagonal form of G. The real, positive eigenvalues of G
are denoted {λ j }, j=1 . . . 4,

∑
jλ j =1 and, without loss of generality, λ1≥ λ2≥ λ3≥ λ4≥0,

GD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= diag{λ1 , λ2 , λ3 , λ4}, (3)

referred to hereon as the canonical diagonalized coherency matrix. The diagonalization can
always be carried out via an appropriate 4 × 4 unitary Û , GD = ÛGÛ†. These eigenvalues
can be interpreted as the weight of four orthogonal modes (polarized and spatially coherent
fields) that are mixed to create the field represented by G [20]. For a coherent-polarized field
{λ}= {1, 0, 0, 0} and for an incoherent-unpolarized field {λ}= { 14 , 1

4 ,
1
4 ,

1
4 } [24].

For a classical EM field, all the information about its second-order field correlations is
encoded in G [25], which is measurable in its entirety via optical coherency matrix tomography
– proposed theoretically in [21] and demonstrated experimentally in [26]. This coherency matrix
is an element of the four-dimensional Hilbert space formed of a direct product of the two-
dimensional Hilbert spaces associated with polarization and spatial DoFs described above. As
such, G is isomorphic to the density matrix in quantum mechanics representing two-qubit
states [27] – an analogy that has recently proven fruitful in optics [24, 28, 29].
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(a) (b) ( )
( )

global pol. unitary local pol. unitary

Fig. 1. (a) Global polarization unitary transformation Ûp applied to both �ra and �rb. (b) Local

polarization unitaries Û (a)
p and Û (b)

p applied at �ra and �rb, respectively.

2.3. Formulation of the problem studied here

In this paper, I consider the following problem: what is the maximum double-slit visibility
achievable when a partially coherent and partially polarized EM field undergoes the most
general unitary transformation spanning both the polarization and spatial DoFs? Answering
this question requires first identifying the various families of unitaries operating on the Hilbert
space of 4×4 coherency matrices and their impact on G. Four classes of unitary transformations
on the spatial and polarization DoFs of interest are listed:

1. A global polarization unitary encompassing �ra and �rb; i.e., a spatially independent
polarization unitary Ûp (lossless birefringent device) covering both points [Fig. 1(a)]. The

corresponding 4×4 transformation takes the form Û = Î2⊗Ûp=

(
Ûp 0
0 Ûp

)
, where Î2 is the

2×2 unity matrix and 0 is the 2×2 zero matrix, and G thus transforms according to

G→ ÛGÛ†=
(

ÛpGaaÛ
†
p ÛpGabÛ

†
p

ÛpGbaÛ
†
p ÛpGbbÛ

†
p

)
. (4)

As such, Û retains the block form of G and does not ‘mix’ the block matrices with each
other. It will be shown that implementing such a unitary does not change the visibility V .

2. Different polarization unitaries Û (a)
p and Û (b)

p at �ra and �rb, respectively, corresponding

to the unitary Û =
(
1 0
0 0

)
⊗ Û (a)

p +

(
0 0
0 1

)
⊗ Û (b)

p =

(
Û

(a)
p 0
0 Û

(b)
p

)
, which no longer separates

into a direct product of spatial and polarization unitaries [Fig. 1(b)]. Thus, G transforms
according to

G→
(
Û (a)

p GaaÛ
(a)†
p Û (a)

p GabÛ
(b)†
p

Û (b)
p GbaÛ

(a)†
p Û (b)

p GbbÛ
(b)†
p

)
. (5)

It is critical to note that, once again, the block form of G is retained. Such a transformation
can change V , and indeed this class of local polarization unitaries has been the focus of
most studies investigating maximizing the double-slit visibility with EM fields to date
[11, 12]

3. Spatial unitaries that are independent of polarization, thus having the form Û = Ûs⊗ Î2,
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(b)(a)

Polarization-independent 
spatial unitary

H

V

Polarization-dependent 
spatial unitary

( )

( )

Fig. 2. (a) Spatial unitary transformation Ûs that is polarization-independent, depicted
as a generalized beam splitter [Eq. 6]. (b) Spatial polarization transformation that is
polarization-dependent [Eq. 7], depicted as a polarizing beam splitter. The H and V
polarization components undergo different spatial unitaries Û (H)

s and Û (V)
s , respectively.

such as a symmetric beam splitter or coupler [Fig. 2(a)] with Ûs=
1√
2

(
1 i

i 1

)
,

ÛBS =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 i 0
0 1 0 i
i 0 1 0
0 i 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The utility of the 4×4 formulation of G becomes clear in this case. It is critical to note that
unlike the polarization unitaries, this spatial unitary mixes the blocks in G. For example,
starting from a diagonal coherency matrix G= diag{λ1 , λ2 , λ3 , λ4}, whereupon Gab = 0,
after applying Û we have Gab�0. This feature will be crucial in our analysis below. Most
importantly, such transformations can change the value of V . These unitaries belong to the
class of transformations considered by Zernike with respect to maximizing V for scalar
fields [19].

4. Polarization-dependent spatial unitary transformations that introduce a spatial

transformation that differs for each polarization component; e.g., Û = Û (H)
s ⊗

(
1 0
0 0

)
+

Û (V)
s ⊗

(
0 0
0 1

)
. Here, Û (H)

s and Û (V)
s are the spatial transformations undergone by the H

and V polarization components, respectively [Fig. 2(b)]. One example is a polarizing
beam splitter in which the H polarization is transmitted and V is reflected, Û (H)

s = I2 and

Û (V)
s = i

(
0 1
1 0

)
, leading to

ÛPBS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 i
0 0 1 0
0 i 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

Such unitaries mix the blocks of G in such as way as to convert coherence from one DoF
to another [24] and thus can radically change the value of V . This class of transformations
has not been considered in previous work on maximizing V .

More general unitaries can be formed as a cascade of elements from these four groups [Fig. 3].
The problem that is tackled in this paper is thus as follows: given a coherency matrix G, what
is the maximum double-slit visibility attained after the transformation G→ÛGÛ†, where Û is
the most general 4×4 unitary transformation?
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( )
( )

( )
( )

H

V ( )
( )

Fig. 3. General unitary transformation extending across the spatial and polarization DoFs
formed as a cascade of the polarization and spatial unitaries in Fig. 1 and Fig. 2,
respectively.

3. Review of previous work on the problem

Because double-slit interference is observed spatially, the visibility can be found by referring to
the reduced spatial coherency matrix [21, 24] obtained by tracing over polarization in G,

G(r)
s =

⎛⎜⎜⎜⎜⎜⎝
GHH

aa +GVV
aa GHH

ab +GVV
ab

GHH
ba +GVV

ba GHH
bb +GVV

bb

⎞⎟⎟⎟⎟⎟⎠ , (8)

which describes the field spatial properties when the detectors are insensitive to polarization.
Note that diagonalizing G(r)

s requires only 2×2 spatial unitaries, while diagonalizing G requires
more general 4×4 spatial-polarization unitaries. The double-slit interference visibility is

V0 = 2
∣∣∣GHH

ab +GVV
ab

∣∣∣ = 2|Tr{Gab}|, (9)

which combines the results for the H and V components; that is, there is no influence from
correlations between H and V, such as the element GHV

ab of G. This result is related to the
spectral degree of coherence as defined by E. Wolf in Ref. [9] and early on by Karczewski [30].

Applying a global polarization unitary Ûp that introduces the map Gab → ÛpGabÛ
†
p per

Eq. 4 does not change V0 because Tr{Gab} = Tr{ÛpGabÛ
†
p } [31]. On the other hand, applying

local polarization unitaries Û (a)
p and Û (b)

p that introduce the mapping Gab → Û (a)
p GabÛ

(b)†
p

per Eq. 5 does change V0 because Tr{Gab} � Tr{Û (a)
p GabÛ

(b)†
p }. In other words, V0 is not a

unitary invariant, a fact that has prompted introducing an alternative definition for EM spatial
coherence proposed in Refs. [32, 33] and called the ‘electromagnetic degree of coherence’ γ,
where γ2 = Tr{GabG†

ab}/(Tr{Gaa}Tr{Gbb}). This quantity represents the correlation between
all the pairs of components of the fields at �ra and �rb and is invariant under local polarization
unitaries – however, γ is not directly related to the visibility, and other measurements are
required to determine it [32, 33]. Maximizing V = 2|Tr{Û (a)

p GabÛ
(b)†
p }| over the span of all

local polarization unitaries is equivalent to finding the so-called Ky-Fan 1-norm [34] of Gab,
which yields

VLPU = 2(μ1 + μ2) = 2
√

Tr{GabG†
ab} + 2|det{Gab}|, (10)

where μ1 and μ2 are the singular values of Gab [11,12], while a unity-trace for G is maintained.
Other measures have been introduced that rely on non-unitary local polarization transformations
and thus lead to loss of energy; these will be described in the Discussion Section.

Common to all previous efforts on maximizing the double-slit interference visibility or
identifying measures for spatial coherence is reliance on Gab (e.g., Eq. 9 and Eq. 10; see the
definition of the ‘complex degree of mutual coherence’ [35] that also requires a non-zero Gab).
A class of EM fields that evades these analyses is that having the block-diagonal representation

of the coherency matrix G=
(
Gaa 0
0 Gbb

)
. The zero off-diagonal blocks indicate that the fields at �ra

                                                                                          Vol. 25, No. 15 | 24 Jul 2017 | OPTICS EXPRESS 18337 



and �rb are statistically independent; i.e., spatially incoherent fields that are partially polarized.

At one extreme, Gaa = Gbb ∝
(
1 0
0 0

)
, in which case G corresponds to a scalar field that is

spatially incoherent. At the other extreme, Gaa = Gbb ∝
(
1 0
0 1

)
, corresponding to unpolarized

spatially incoherent light. Across this continuum of states of coherence maintaining Gab=0, all
the measures described above necessarily yield V =0 – implementing polarization unitaries at �ra

and �rb notwithstanding. Such an outcome may be expected since the field is spatially incoherent.
Nevertheless, such fields may still display high-visibility double-slit fringes – even reaching
V =1 – once unitaries that span both the spatial and the polarization DoFs are employed.

4. Derivation of Vmax

I now turn to the titular question and determine the maximal visibility Vmax=max{V0} attainable
by an EM field under arbitrary 4× 4 spatial-polarization unitaries Û, ÛÛ† = I4 with elements
{ui j }, i, j =1 . . . 4. Starting from GD =diag{λ1 , λ2 , λ3 , λ4}, the most general coherency matrix
is G = ÛGDÛ† [31]. Let us define the quantity X =GHH

aa +GVV
aa −GHH

bb −GVV
bb . It can be shown

that X = X1+X2−X3−X4, where Xk =
∑4

j=1 λ j |u jk |2. Referring to Eq. 8 and the definition of

Ds for a scalar field in Eq. 1, it is clear that Vmax=max{X } evaluated over all possible Û. Since
all the values entering into X are positive real numbers, maximizing X requires maximizing
X1+X2 and minimizing X3+X4 subject to the unitarity of Û. Because the eigenvalues {λ j } are
non-negative and arranged in descending value, then X1+X2 reaches a maximum of λ1+λ2

when u31=u41=u32=u42=0. Likewise, X3 + X4 simultaneously reaches a minimum of λ3+λ4

with u13 =u14 =u23 =u24 =0. Thus G is block-diagonal
(
Gaa 0
0 Gbb

)
, with Gaa and Gbb related to(

λ1 0
0 λ2

)
and

(
λ3 0
0 λ4

)
, respectively, via 2×2 local polarization unitaries.

The question posed at the outset can now be answered. Starting from a coherency matrix G,
the maximum double-slit interference visibility attainable by the EM field is given by:

Vmax = λ1 + λ2 − λ3 − λ4 = 1 − 2(λ3 + λ4). (11)

This equation is the central result of the Letter.
An unexpected result can be stated immediately. EM fields characterized by coherency

matrices possessing three or four non-zero eigenvalues, {λ} = {λ1 , λ2 , λ3 , 0} and {λ} =
{λ1 , λ2 , λ3 , λ4}, respectively, have Vmax < 1. On the other hand, EM fields whose coherency
matrices possess one or two non-zero eigenvalues, {λ} = {1, 0, 0, 0} and {λ} = {λ1 , λ2 , 0, 0},
respectively (i.e., the two smallest eigenvalues λ3 and λ4 vanish) – always attain Vmax = 1.
The first class of EM fields {λ} = {1, 0, 0, 0} corresponds to coherent fully polarized fields,
whereas the second class of EM fields {λ} = {λ1 , λ2 , 0, 0} corresponds to partially coherent
partially polarized fields that nevertheless can exhibit full-visibility double-slit interference
fringes Vmax = 1. This latter class is of particular interest since it encompasses scalar fields
that lack all coherence, and yet full interference visibility is predicted.

5. Discussion

5.1. Examples

I consider here a few examples of EM fields to clarify the concepts discussed thus far:

G1 =
1
10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 0
0 2 0 1
1 0 3 0
0 1 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G2 =

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 a
0 0 0 0
0 0 0 0
a∗ 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G3 =

1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a 0 0
a∗ 1 0 0
0 0 1 b
0 0 b∗ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)
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where 0≤ |a |, |b| ≤1 and |a | ≥ |b| without loss of generality. These three matrices are Hermitian
and positive semi-definite, and thus represent genuine coherency matrices for all values of a
and b.

The first example G1 corresponds to a field that has unequal field amplitudes at �ra and �rb,
is partially coherent spatially, but is unpolarized at both �ra and �rb. For such a field, V0 = 2/5.
Furthermore, VLPU = V0 because Gab ∝ I2. The eigenvalues of G1 are {λ} = 1

4 {1+1/
√

5, 1+

1/
√

5, 1−1/
√

5, 1−1/
√

5}, leading to Vmax=
√

5/5>V0.
The second example G2 corresponds to a partially coherent field that has orthogonal

polarizations at �ra and �rb. The value of a determines the spatial correlations between these
two orthogonal polarization components. The EM field represented by G2 yields V0=0 because
Tr{Gab}=0. Because Tr{GabG†

ab}= |a |2/4, local polarization unitaries can nevertheless increase
the visibility to VLPU = |a | ≤ 1 [Eq. 10], as can be expected since |a | determines the spatial
coherence once the field polarizations at �ra and �rb are made parallel to each other (e.g., via
a wave plate at �ra). However, the eigenvalues of G2 are {λ} = 1

2 {1+ |a |, 1− |a |, 0, 0}, which
yield Vmax = 1 independently of the value of a. In other words, there exists a 4× 4 polarization-
spatial unitary transformation that transforms the coherence matrix into a form that will yield
unity-visibility double-slit interference fringes – even when a=0 and the fields at �ra and �rb are
completely uncorrelated.

The third example G3 represents light that is partially polarized at �ra and �rb with different
degrees of polarization, but is spatially incoherent (the fields at �ra and �rb are statistically
independent, Gab = 0). All the measures of spatial coherence or double-slit visibility discussed
earlier predict zero-visibility for such a field. The eigenvalues of G are {λ}= 1

4 {1+|a |, 1+|b|, 1−
|b|, 1− |a |}, and thus Vmax = (|a |+ |b|)/2 = (D(a)

p +D(b)
p )/2; that is, the maximum visibility is

determined by the degrees of polarization D(a)
p = |a | and D(b)

p = |b| at �ra and �rb, respectively,
even though the field is spatially incoherent. Indeed, Vmax is guaranteed to be non-zero as long
as the field is at least partially polarized at one point, with Vmax = 1 when the field is fully
polarized at both points (the field need not be scalar and the polarization at �ra can be different
from that at �rb). I describe in Section 6 a specific example of how to convert the field described
by G3 to a form that exhibits this finite visibility.

5.2. Comparison to results relying on non-unitary transformations

The visibility may of course be increased via non-unitary transformations that involve filtering
or projecting either or both DoFs, which reduce the energy. The use of such transformations
involves an element of arbitrariness, in contrast to reliance on unitary transformations that
conserve energy. Nevertheless, some interesting studies have been reported along this vein, and
I compare them here to the measure Vmax introduced in this paper.

(1) The work by Réfrégier and Goudail on so-called ‘intrinsic degrees of coherence’ [36] does
not give a closed-form expression for the identified unitary invariants 0 ≤ μS , μI ≤ 1 (μS ≥ μI);
instead, an algorithm for extracting them from G is put forth [14]: (1) local polarization unitaries
diagonalize Gaa and Gbb; (2) the eigenvalues of Gaa and Gbb are ‘equalized’ by implementing
local non-singular Jones matrices, which are not unitary; and (3) implementing new local
polarization unitaries to diagonalize Gab. The resulting coherency matrix has the form

G =
1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 μS 0
0 1 0 μI

μS 0 1 0
0 μI 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

An implicit assumption in this approach is that the power at �ra is equal to that at �rb. Reaching a
condition of equal power at �ra and �rb requires either further filtering or a spatial transformation.
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Critically, it appears that reaching the form in Eq. 13 starting from an arbitrary field necessitates
non-unitary transformations. In the form of G given in Eq. 13, V0= VLPU= (μS+μI)/2, and the
eigenvalues are {λ}= 1

4 {1 + μS , 1 + μI , 1 − μI , 1 − μS} so that Vmax=V0.
(2) The analysis by Luis [15] suggests the definition VL=

λ1−λ4
λ1+λ4

. This expression is obtained
by first transforming the field via a spatial-polarization unitary to the canonical diagonal form,
followed by projecting or filtering out the modes associated with the eigenvalues λ2 and λ3

thus eliminating a fraction λ2 + λ3 of the total power (normalized to unity). On the other hand,
after such a projection, the definition in Eq. 11 gives Vmax = 1 ≥ VL. The analysis presented
here suggests an optimal filtering methodology to maximize V : filter out the modes associated
with λ3 and λ4 (instead of λ2 and λ3). This procedure has two advantages: a smaller fraction of
energy is lost since λ3+λ4≤ λ2+λ3 and the resulting visibility is always Vmax=1.

(3) Another approach to determining the double-slit visibility involves a generalized form of
the Fresnel-Arago interference laws [13], but this requires first placing linear polarizers at �ra

and �rb. Within our approach, placing linear polarizers at �ra and �rb always produces Vmax = 1
independently of the state of coherence (e.g., the examples of G2 and G3 in Eq. 12).

6. Coherency conversion

I illustrate here with an example the conversion of coherence between the polarization and
spatial DoFs. Consider a spatially incoherent scalar field with equal amplitudes at �ra and �rb,
G1=

1
2diag{1, 0, 1, 0} – for which Gab=0 and thus V0=VLPU=0 as expected for a field lacking

any spatial coherence [Fig. 4(a)]. Nevertheless, Eq. 11 gives Vmax = 1. One sequence of non-
commuting spatial-polarization unitaries that transforms G1 (spatially incoherent, polarized) to
G4 (spatially coherent, unpolarized) that displays full visibility is given by

G1=
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�������������︷︷�������������︸

G(r)
s =

1
2

(
1 0
0 1

)
→V0=0

Û12
−→ G2=

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�������������︷︷�������������︸

G(r)
s =

1
2

(
1 0
0 1

)
→V0=0

Û23
−→ G3=

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�������������︷︷�������������︸
G(r)

s =

(
1 0
0 0

)
→V0=1

Û34
−→ G4=

1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸�������������︷︷�������������︸

G(r)
s =

1
2

(
1 1
1 1

)
→V0=1

,

(14)
where Û12 corresponds to a half-wave plate placed at �rb that rotates the polarization from H to V,
Û23 is a polarizing beam splitter [Eq. 7], and Û34 is a beam splitter [Eq. 6] – with the latter two
having adjusted phases. Note that G2 describes a partially coherent field where polarization is
now correlated with position, such that the initially separable spatial and polarization DoFs G1=

1
2

(
1 0
0 1

)
s
⊗
(
1 0
0 0

)
p

become intertwined after Û12, and G2 is no longer factorizable (the subscripts ‘s’

and ‘p’ refer to the spatial and polarization DoF’s, respectively). The polarizing beam splitter
Û23 combines the fields from �ra and �rb to produce an unpolarized field fully localized at �ra.

Here G3 =

(
1 0
0 0

)
s
⊗ 1

2

(
1 0
0 1

)
p

is again separable in its DoFs, the field is now spatially coherent

but unpolarized. This separability is critical for the concept of field-protection via coherency
conversion discussed below. The beam splitter Û34 splits the field at r̂a into equal-amplitude
spatially coherent fields at r̂a and r̂b, G4. Therefore, a polarized but spatially incoherent field
G1 that displays zero interference visibility has thus been transformed to a spatially coherent
but unpolarized field G4 that displays full visibility. I call this process ‘coherency conversion’
[Fig. 4(b)]. The procedure is fully reversible and there has been no optical energy lost.

The same approach applies not only to two points in a scalar incoherent field, but to the
entire field via a similar sequence of unitaries, as shown in Fig. 4(c). The beam coherency

matrix (BCP) [7] of the initial field is G1 =

(
f (x1 , x2) 0

0 0

)
, where f (x1 , x2) = I (x1)δ(x1 − x2)
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(a)

Fig. 4. (a) Two-points in a spatially incoherent scalar field G1 produce no interference. (b)
Reversibly transforming the field in (a) to produce full-visibility interference fringes via
a succession of unitaries: Û12 rotates the polarization at �rb by π

2 , G2; Û23 is a polarizing
beam splitter that combines the field at �ra and �rb to produce unpolarized light at �ra, G3;
and, finally, a non-polarizing beam splitter Û34 produces a spatially coherent – albeit
unpolarized – field G4. (c) Reversibly transforming a scalar incoherent field to produce
full visibility interference fringes using a sequence of unitaries similar to (b). HWP: half-
wave plate; BS: beam splitter; PBS: polarization BS.

is a scalar coherency function and I (x) is the intensity distribution assumed for simplicity to
be even I (x1) = I (−x1). Polarization in one half of the wavefront is rotated from H to V,

G2 =

(
f+ (x1 , x2) 0

0 f− (x1 , x2)

)
, where f± (x1 , x2) = f (x1 , x2)h(±x1) and h(x) is the Heaviside

unit step function: h(x) = 1 for x ≥ 0 and is zero otherwise. The second beam-half is
combined with the first via a polarizing beam splitter to produce an unpolarized asymmetric

beam, G3 = 2 f (x1 , x2)h(x1) · 1
2

(
1 0
0 1

)
. The beam is then split into two halves again, resulting

now in a symmetrized unpolarized beam, G4 = fs(x1 , x2) · 1
2

(
1 0
0 1

)
, where fs(x1 , x2) =

I (x1){δ(x1 − x2)+ δ(x1+ x2)}, in which every pair of points x1=−x2 symmetrically positioned
around the central axis are now mutually coherent and thus produce Young’s interference fringes
with full visibility.

The above-described methodology suggests an approach for protecting a DoF of the EM field
during propagation in a medium that introduces random fluctuations to this DoF. For example,
consider transmitting a particular state of polarization through a depolarizing medium that is
nevertheless spatially uniform. Making use of a spatially incoherent beam, coherence is first
reversibly migrated from the polarization to the spatial DoF, rendering the beam unpolarized
but spatially coherent while encoding the polarization state in the spatial DoF. The beam
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remains unpolarized after traversing the depolarizing medium and the initial polarization is
finally retrieved by reversing the coherency-conversion process.

Is is instructive to view the procedure outlined above in light of the recently developed
concept of ‘classical entanglement’ [24]. Initially, the field has independent spatial and
polarization DoFs, as clear from the separability of the coherence matrix G1. The entropy of
the spatial DoF is maximal (spatially uncorrelated or incoherent) whereas that of polarization
is minimal (pure polarization).The impact of the HWP is to correlate the two DoFs: each point
is now associated with a different polarization state, as seen in G2. At this point the entropy is
distributed between the two DoFs. The PBS returns the field to a state where the two DoFs are
independent and the coherency matrix G3 is once again separable. However, the entropy of the
spatial DoF is now minimal and that of polarization is maximal. In previous studies of classical
entanglement, the field examined was usually coherent and the impact of correlations between
the DoFs was investigated. In contrast, the fields examined here are partially coherent, which
indicates that the utility of the quantum-information-theoretic formulation exploited in studies
of classical entanglement is readily extended to partially coherent classical fields.

7. Conclusion

In conclusion, I have developed a definitive answer to the question: what is the maximum
visibility of Young’s double-slit interference that may be attained by an EM field subject
only to the most general reversible, unitary, energy-conserving transformations? By treating
the spatial and polarization DoFs of the EM field symmetrically, a simple expression for the
maximum interference visibility is obtained subject to arbitrary spatial-polarization unitary
transformations. This visibility is an intrinsic invariant of the EM field and is evaluated in
terms of the eigenvalues of the 4 × 4 spatial-polarization coherency matrix. The analysis
presented reveals that the class of scalar spatially incoherent fields can always exhibit
unity interference visibility from any two points upon implementing the appropriate spatial-
polarization transformation that engenders coherency conversion between these two DoFs. That
is, there exist unitary transformations that reversibly convert – with no loss in energy – a
scalar field lacking any spatial coherence and thus exhibits no interference fringes to a spatially
coherent but unpolarized field that exhibits full interference visibility.

Only two transverse polarization components of the EM field have been taken into account
here. When considering the more general case of three polarization components, the analyses in
Refs. [37–40] must be taken into consideration. Finally, the results presented here all pertain to
the visibility of fringes observed in a Young’s double-slit interference experiment. However, the
methodology employed is based on treating the spatial and polarization DoFs symmetrically on
the same footing. Therefore, it should be clear that these results similarly apply to polarimetry
based on the polarization DoF.
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