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Studying the coherence of an optical field is typically compartmentalized with respect to its different physical
degrees of freedom (DoFs)—spatial, temporal, and polarization. Although this traditional approach succeeds when
the DoFs are uncoupled, it fails at capturing key features of the field’s coherence if the DOFs are indeed correlated—a
situation that arises often. By viewing coherence as a “resource” that can be shared among the DoFs, it becomes
possible to convert the entropy associated with the fluctuations in one DoF to another DoF that is initially fluc-
tuation-free. Here, we verify experimentally that coherence can indeed be reversibly exchanged—without loss of
energy—between polarization and the spatial DoF of a partially coherent field. Starting from a linearly polarized
spatially incoherent field—one that produces no spatial interference fringes—we obtain a spatially coherent field
that is unpolarized. By reallocating the entropy to polarization, the field becomes invariant with regard to the action
of a polarization scrambler, thus suggesting a strategy for avoiding the deleterious effects of a randomizing system on a
DoF of the optical field. © 2017 Optical Society of America

OCIS codes: (030.0030) Coherence and statistical optics; (030.1640) Coherence; (260.3160) Interference; (260.0260) Physical optics.
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1. INTRODUCTION

Optical coherence is evaluated by assessing the correlations be-
tween field fluctuations at different points in space and time
[1]. When multiple degrees of freedom (DoFs) of an optical
field—spatial, temporal, and polarization—are relevant, the co-
herence of each DoF is typically studied separately. For example,
spatial coherence is evaluated via double-slit interference [2], tem-
poral coherence through two-path (e.g., Michelson) interference
[3], and polarization coherence by measuring the Stokes
parameters [4]. Although this traditional approach succeeds when
the DoFs are uncoupled, it fails at capturing key features of the
field coherence if they are correlated [5,6].

Here we show that coherence can be viewed as a “resource”
that can be reversibly converted from one DoF of the field to
another. We demonstrate experimentally the reversible and
energy-conserving (unitary) conversion of coherence between
the spatial and polarization DoFs of an optical field. Starting from
a linearly polarized field having no spatial coherence (a complete
lack of double-slit interference visibility), we convert the field
without filtering or loss of energy into one that displays spatial
coherence (high-visibility interference fringes) but is unpolarized.
The optical arrangement we describe engenders an internal reor-
ganization of the field energy that leads to a migration of the en-
tropy associated with the statistical fluctuations from one DoF
(spatial) to another (polarization). This coherency conversion is
confirmed by measuring the full 4 × 4 coherency matrix that pro-
vides a complete description of two-point vector-field coherence

via “optical coherency matrix tomography” (OCmT) [7,8]. The
tomographic measurement of coherence is carried out at different
stages in the experimental setup to confirm the transformations
involved in the coherence conversion process. As an application to
highlight the usefulness of reallocating the entropy from one DoF
of the field to another, we show that the field can be reconfigured
to be invariant under the impact of a depolarizer or polarization
scrambler that transforms any input polarization to unpolarized
light. By transferring all the field entropy into polarization, the
polarization scrambler cannot further increase the polarization en-
tropy, which thus emerges unchanged. Since the coherence con-
version procedure is reversible and no energy is lost, the field may
be reversed to its original fully polarized configuration after
traversing the polarization scrambler.

The paper first briefly reviews the matrix approach to quanti-
fying optical coherence for a single DoF and multiple DoFs.
Second, we describe the concept of an optical-coherence con-
verter, a system that reversibly transforms coherence—viewed
as a resource—from one DoF of a field to another without loss
of energy. Starting from a field with one coherent DoF and an-
other incoherent DoF, we reversibly convert the field such that
the former DoF becomes incoherent and the latter coherent.
Third, we present the experimental arrangement used in confirm-
ing these predictions and the measurement scheme to identify
multi-DoF beam coherence. Finally, we demonstrate the invari-
ance of a field with respect to a polarization scrambler before
presenting our conclusions.
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2. MULTI-DoF COHERENCE

A. Polarization Coherence and Spatial Coherence

Partial polarization is described by a polarization coherency
matrix Gp � �GHH

GVH
GHV

GVV�, where H and V identify the horizontal
and vertical polarization components, respectively, Gij �
hEi�Ej��i, i; j � H;V, and h·i is an ensemble average [9].
Here, Gp is Hermitian (G†

p � Gp), semi-positive, normalized
such that GHH � GVV � 1, GHH and GVV are the contributions
of H and V to the total power, respectively, and GHV is their
normalized correlation. The degree of polarization is
Dp � jλH − λVj, where λH and λV are the eigenvalues of Gp

[10]. Spatial coherence can be similarly described via a spatial
coherency matrix for points ~a and ~b, Gs � �Gaa

Gba

Gab
Gbb

�, where
Gkl � hEkE�

l i, k; l � a; b. The properties of Gs are similar to
those of Gp. The visibility of the interference fringes observed
by superposing the fields from ~a and ~b is V � 2jGabj.
Alternatively, the degree of spatial coherence Ds � jλa − λbj rep-
resents the maximum visibility obtained after equalizing the
amplitudes at ~a and ~b, where λa and λb are the eigenvalues of
Gs [2,11].

A DoF represented by a 2 × 2 coherency matrix carries up
to 1 bit of entropy; e.g., the polarization entropy is Sp �
−λHlog2λH − λVlog2λV , where 0 ≤ Sp ≤ 1. The zero-entropy
state Sp � 0 corresponds to a fully polarized field (no statistical
fluctuations), whereas the maximal-entropy state Sp � 1 corre-
sponds to an unpolarized field (maximal fluctuations) [12]; sim-
ilarly for the spatial DoF based on Gs. Entropy so defined is a
unitary invariant of the field DoF: it cannot be changed by
applying lossless deterministic optical transformations.

B. Joint Polarization and Spatial Coherence Formalism

Evaluating Gp and Gs is not sufficient to completely identify the
coherence of a vector field in which the polarization and spatial
DoFS are potentially correlated. A 4 × 4 coherency matrix G is
necessary to capture the full vector-field coherence [6,13],

G �

0
BBBBB@

GHH
aa GHV

aa GHH
ab GHV

ab

GVH
aa GVV

aa GVH
ab GVV

ab

GHH
ba GHV

ba GHH
bb GHV

bb

GVH
ba GVV

ba GVH
bb GVV

bb

1
CCCCCA
; (1)

where Gij
kl � hEi

k�E
j
l ��i, i; j � H;V, and k; l � a; b. The matrix

G is Hermitian positive semi-definite and normalized such that
TrfGg � 1 (“Tr” is the matrix trace). The diagonal elements are
the power fractions from the mutually exclusive contributions:
GHH

aa and GVV
aa are the H and V components at ~a, respectively,

and GHH
bb and GVV

bb are those at ~b. The off-diagonal elements
are normalized correlations between field components. The dou-
ble-slit visibility observed when overlapping the fields from ~a and
~b is V � 2jGHH

ab � GVV
ab j [14]. Crucially, V is not a unitary

invariant of the field [15,16], and reversible optical transforma-
tions that span the spatial and polarization DoFs can increase
V [17,18].

Each physically independent DoF (spatial and polarization)
carries 1 bit of entropy, so the vector field now carries 2 bits of
entropy: S�−λaHlog2λaH−λaVlog2λaV −λbHlog2λbH−λbVlog2λbV ,
where 0 ≤ S ≤ 2 and fλg � fλaH; λaV ; λbH; λbVg are the real
positive eigenvalues of G. The zero-entropy state S � 0
corresponds to a fully polarized and spatially coherent field

(no statistical fluctuations in either DoF and fλg �
f1; 0; 0; 0g), whereas the maximal-entropy state S � 2
corresponds to an unpolarized spatially incoherent field (maximal
fluctuations in both DoFs and fλg � 1

4 f1; 1; 1; 1g).

3. CONCEPT OF OPTICAL COHERENCY
CONVERSION

In general, S ≤ Sp � Ss, with equality achieved only when the
two DoFs are independent, in which case G can be written in
separable form G � Gs ⊗ Gp. In general, Ss and Sp are obtained
from the 2 × 2 “reduced” spatial and polarization coherency
matrices

G�r�
s �

�GHH
aa � GVV

aa GHH
ab � GVV

ab

GHH
ba � GVV

ba GHH
bb � GVV

bb

�
;

G�r�
p �

�GHH
aa � GHH

bb GHV
aa � GHV

bb

GVH
aa � GVH

aa GVV
aa � GVV

bb

�
; (2)

which are obtained from G by a “partial trace” [19], that is, by
tracing over one DoF [6,7].

The concept of an optical-coherence converter is illustrated in
Fig. 1(a). Consider the case when the field carries 1 bit of entropy
(S � 1) and the DoFs are independent (S � Sp � Ss), in which
case a single DoF can accommodate this entropy. The field may
be maximally incoherent but polarized (Ss � 1 and Sp � 0),
whereupon no interference fringes can be observed [Fig. 1(b)].
Alternatively, the field may be spatially coherent but un polarized
(Ss � 0 and Sp � 1), in which case full-visibility fringes can be
observed [Fig. 1(c)]. We demonstrate here that an optical field
can be reversibly transformed from the former configuration to
the latter without loss of energy, thus converting coherence from
one DoF (polarization) to the other (spatial). Throughout the
procedure, S remains constant; that is, no uncertainty is added
or removed from the field, only an internal reorganization of
the field engendered by a unitary transformation confines the
statistical fluctuations to one DoF while freeing the other from
uncertainty. We call such a system a “coherence converter.”

Fig. 1. Concept of an optical-coherence converter. (a) Starting with a
polarized but spatially incoherent field (Sp � 0 and Ss � 1,
S � Sp � Ss � 1), coherence is converted from polarization to the spa-
tial DoF, thereby yielding an unpolarized but spatially coherent field
(Sp � 1 and Ss � 0) but without introducing further fluctuations (fixed
total entropy S � 1). The device thus converts the statistical fluctuations
(and the attendant entropy) from one DoF to the other. (b) When a
polarized but spatially incoherent field is incident on a double slit, no
interference fringes are observed. (c) After converting coherence from
polarization to the spatial DoF, high-visibility (but unpolarized) interfer-
ence fringes appear.
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The optical arrangement we propose to convert coherency be-
tween the spatial and polarization DoFs is depicted in Fig. 2. We
start from two points ~a 0 and ~b 0 of equal intensity in a spatially in
coherent H-polarized field (the fields are mutually incoherent or
statistically independent), which thus produce no interference
fringes. The polarization at ~b 0 is rotated to become orthogonal
to that at ~a 0 �H → V� before combining the fields at a polarizing
beam splitter (PBS), which yields an un polarized field. We then
split the field into two points ~a and ~b using a non polarizing beam
splitter, which creates two copies of the field that can demonstrate
high-visibility interference fringes. We proceed now to present the
measurements at each step of this coherency-conversion process.

4. SOURCE CHARACTERIZATION

The optical field we study is extracted from a broadband, unpo-
larized LED (center wavelength 850 nm, 30 nm FWHM band-
width; Thorlabs M850L3 IR). The field is spectrally filtered
(10 nm FWHM), polarized along H, and spatially filtered
through a 100 μm wide slit placed at a distance of 180 mm from
the source. The “input” plane that includes the points ~a 0 and ~b 0

(each defined by a 100 μm wide slit) is located 420 mm away
from the slit [the source in Fig. 2(a)]. We first confirm that
the field is spatially coherent within ~a 0 and ~b 0 separately (i.e.,
the spatial coherence width of the field, estimated to be
∼1 mm, is larger than the slit width). This is accomplished using
a narrow pair of slits (50 μm wide separated by Δ � 150 μm) at

either ~a 0 or ~b 0 and observing the double-slit interference on a
CCD camera (Hamamatsu 1394) at a distance of d �
200 mm away. High-visibility fringes (V � 0.98) are observed
separated by λd∕Δ ≈ 1170 μm. Next, we superpose the fields
from ~a 0 and ~b 0 [“measurement” in Fig. 2(a)] and observe no in-
terference fringes [Fig. 3(a)], confirming that the two points are
separated by more than the field coherence width. We have thus
confirmed the relationship between the two length scales in-
volved: the sizes of the locations at ~a 0 and ~b 0 (100 μm) are smaller
than the coherence width, and the separation between them
(10 mm) is larger. The field that we start from is linearly polarized
(scalar) but spatially incoherent, thus G has the form

G1 �
1

2

0
BB@

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1
CCA � 1

2

�
1 0
0 1

�
s

⊗
�
1 0
0 0

�
p

; (3)

where the subscripts “s” and “p” refer to the spatial and polariza-
tion DoFs, respectively, and the notation diagf·g identifies a
diagonal matrix with the entries along the diagonal listed between
the curly brackets.

To fully characterize the field coherence across the spatial and
polarization DoFs, we measure G1 via OCmT [7,8], which re-
quires 16 measurements to reconstruct G1. Since four polarization
projections are required to identify Gp and four spatial projections
are required to determine Gs for a scalar field, 4 × 4 linearly
independent combinations of these spatial and polarization
projections are necessary to reconstruct G subject to the con-
straints of Hermiticity, semi-positiveness, and unity trace. These
measurements are in one-to-one correspondence to those required

Fig. 2. (a) Schematic depicting the input field preparation (source)
and characterization (measurement). The field at points ~a 0 and ~b 0 is spa-
tially incoherent but fully polarized (scalar). F, filter; P, polarizer; L, lens;
PA, polarization analyzer; CCD, charge-coupled device camera. (b) A
coherency converter maps the spatially incoherent but polarized field
at ~a 0 and ~b 0 to a spatially coherent but unpolarized field at ~a and ~b.
(c) Schematic of the optical setup for the coherence-converter. A biconvex
lens (L: f � 20 cm) images ~a 0 and ~b 0 to ~a and ~b, respectively, with
2× magnification. The delay lines enable matching pairs of paths within
the source temporal coherence length. HWP, half-wave plate; PBS, po-
larizing beam splitter; BS, beam splitter. The planes at which the coher-
ency matrices G1, G2, and G3 are reconstructed are marked.
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Fig. 3. (a) Four measurements required to reconstruct the spatial coher-
ence matrixGS for a scalar field at ~a and ~b. The intensity pattern is recorded
with both slits open (left), and two measurements are made: the intensity on
the optical axis (red dot) and at the location midway along the first expected
fringe location calculated from the slit separation (green dot). No fringes are
observed here since the field is spatially incoherent. Next, the intensity on the
optical axis is recorded when ~a (left) and ~b (right) are blocked (the red dots;
see Refs. [7,8] for details). (b) Plot depicting graphically the real parts of the
elements of the spatial-polarization coherency matrixG1 for the source plane
as reconstructed from OCmT that utilizes the measurements in (a) when
carried out in conjunction with polarization measurements. (c) Plot graphi-
cally depicting the elements of the theoretically expected coherency matrix
G � 1

2 diagf1; 0; 1; 0g, corresponding to a scalar H-polarized field that is
spatially incoherent [Eq. (3)].
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to reconstruct a two-qubit density matrix in quantum mechanics, a
process known as “quantum state tomography” [20–22]. Carrying
out these optical measurements (see [8] for details), G1 is recon-
structed [Fig. 3(b)] and found to be in good agreement with
the theoretical expectation [Fig. 3(c)], with the remaining slight

deviations attributable to unequal powers at ~a 0 and ~b 0.
The measured coherency matrix G1 in the �~a 0; ~b 0� plane yields

S � 1.001, and the reduced spatial and polarization coherency
matrices G�r�

s and G�r�
p obtained from G yield Ss � 0.991 and

Sp � 0.037, respectively. The field entropy is thus associated with
the spatial DoF and not polarization, resulting in an absence of
interference fringes [Fig. 3(a)]. The lack of interference fringes is
consistent with the fact that all measures of spatial coherence or
double-slit interference fringes for a vector field rely on the cross-
correlation matrix [14] or beam-coherence matrix [23],

Gab �
�

GHH
ab

GVH
ab

GHV
ab

GVV
ab

�
, which is the top-right 2 × 2 block of the co-

herency matrixG. For example, the degree of coherence proposed
by Wolf [14], the degree of electromagnetic coherence [15,16],
the complex degree of mutual polarization [24], the visibility pre-
dicted through a generalized form of the Fresnel–Arago law [25],
or the maximal visibility obtainable through local unitary trans-
formations [17,18] all predict that the observed visibility will be
zero if all the entries in Gab are zero. Because the measured and
theoretically expected G1 has all zero entries in the Gab block, it
follows that interference fringes do not form. We proceed to show
that interference fringes nevertheless appear once the coherence
has been reversibly converted from polarization to the spatial DoF.

5. CONVERTING COHERENCE FROM
POLARIZATION TO SPACE

Converting the coherence reversibly from polarization to the
spatial DoF entails maximizing the polarization entropy Sp
and minimizing the spatial entropy Ss at fixed total entropy S.
A half-wave plate (HWP) placed after ~b 0 rotates the polarization
H → V, resulting in a new coherency matrix G �
1
2 diagf1; 0; 0; 1g. The fields from ~a 0 and ~b 0 are then directed
by mirrors to the two input ports of a PBS (Thorlabs CM1-
PBS252), where the V component is transmitted and H is re-
flected [Fig. 4(a)]. Consequently, the H and V components over-
lap in the same output port at ~a 0 0 (minimal power in the other

port ~b 0 0). Note that a PBS is a reversible device: when the two
output fields reverse their direction and return to the PBS, the
input fields are reconstituted. The field is now unpolarized, which
we confirm by registering a flat Malus curve and comparing it to
the sinusoidal Malus curve produced by the linearly polarized in-
put fields [Fig. 4(b)]. That is, each incident field on the PBS is
linearly polarized, whereas their superposition at the output—
with the initial optical power now concentrated in a single
path—is randomly polarized. The coherency matrix G2 at ~a 0 0

and ~b 0 0 is reconstructed via OCmT [Fig. 4(c)] and is found to
be in good agreement with the expected form [Fig. 4(d)]:

G2 �
1

2

0
BB@

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1
CCA �

�
1 0
0 0

�
s

⊗
1

2

�
1 0
0 1

�
p

: (4)

It is important to note that the two spatial modes derived from
~a 0 and ~b 0 completely overlap in a single mode after the PBS. This
is confirmed by placing double slits separated by 150 μm right
after the PBS and observing high-visibility interference fringes
(thus eliminating the possibility of incoherence due to reduced
spatial overlap [26]).

From the reconstructed G2 in the �~a 0 0; ~b 0 0� plane, the total
entropy is S � 0.997, but the new values of entropy for the spa-
tial and polarization DoFs are Ss � 0.001 and Sp � 0.996, re-
spectively. The entropy has now been converted between the two
DoFs. To observe interference fringes, the randomly polarized
field at ~a 0 0 is split symmetrically into two halves by a 50:50

non-polarizing beam splitter to points ~a and ~b [Fig. 5(a)], which
can then be overlapped to produce high-visibility fringes.
This step does not change the values of S, Ss, or Sp. The

�~a; ~b� plane is the image plane relayed from the �~a 0; ~b 0� plane
by a lens [Fig. 2(c)]. The coherency matrix G3 in this plane is

G3 �
1

4

0
BB@

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1
CCA � 1

2

�
1 1
1 1

�
s

⊗
1

2

�
1 0
0 1

�
p

:

(5)

The measured G3 reconstructed via OCmT [Fig. 5(b)] is in
good agreement with the theoretical expectation [Fig. 5(c)].

Fig. 4. (a) Schematic for the setup to combine two linearly polarized

fields from ~a 0 and ~b 0 that are statistically independent or spatially inco-

herent (Sp � 0 and Ss � 1) into ~a 0 0 and ~b 0 0 whereupon the field becomes
unpolarized but spatially coherent (Sp � 1 and Ss � 0), without loss of
power or increase in total entropy S � 1. HWP, half-wave plate rotated
to implement the transformation H → V; PBS, polarizing beam splitter.
(b) Malus curves for fields at the two input ports of the PBS highlight the
linear polarization (one orthogonal to the other) and that for the field at
the output port highlights its random polarization. The dashed and con-
tinuous lines are the flat and sinusoidal curves associated with unpolar-
ized and V-polarized light, respectively. (c) Graphical depiction of the
elements of the full coherency matrix G2 is obtained experimentally
and (d) expected theoretically.
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Now that we have GHH
ab � GVV

ab � 1
2 , the predicted visibility is

V � 1 [14]. Furthermore, because the two DoFs are independent
and the field is unpolarized [as is clear from the separable form of
G3 in Eq. (5)], projecting the polarization on any direction will
not affect the high visibility [Fig. 5(d)]. Note that the coherence
time of the field is determined by its spectral bandwidth, and
observing the fringes [Fig. 5(d)] requires introducing a relative
delay in the path of the fields from ~a or ~b before overlapping them
[delay line 2 in Fig. 2(c)]. The variation in the measured visibility
with introduced relative time delay corresponds to the expected
field coherence time ≈100 fs (coherence length ≈30 μm)
[Fig. 5(e)].

6. SURVIVING RANDOMIZATION THROUGH
ENTROPY REALLOCATION

The ability to redistribute or reallocate the field entropy S be-
tween the DoFs can be exploited in protecting a DoF from
the deleterious impact of a randomizing medium. Consider a de-
polarizing medium represented by a Mueller matrix M̂ �
diagf1; 0; 0; 0g that converts any state of polarization into a com-
pletely unpolarized state. The initial field G1 [Figs. 3(b) and 3(c)]
would be converted into the incoherent unpolarized field G 0

1 �
1
4 diagf1; 1; 1; 1g upon traversing this medium with Sp → 1, such
that S → 2. If, however, coherence is first reversibly converted
from the spatial DoF to polarization (Sp → 1 and Ss → 0), then
traversing a depolarizing medium cannot increase Sp, and the field
is thus left unchanged. Subsequently, the coherence conversion
can be reversed and a polarized field is retrieved after emerging
from the depolarizing medium without loss of energy.

We have carried out the proof-of-concept experiment depicted
in Fig. 6(a) where we place a depolarizer or polarization scrambler
in the path of the field G2 in the �~a 0 0; ~b 0 0� plane. The polarization

Fig. 5. (a) Schematic for the coherence converter that transforms two linearly polarized, spatially incoherent fields (at ~a 0 and ~b 0) into two randomly

polarized mutually coherent fields (at ~a and ~b). (b) Graphical depiction of the real part of the entries of the experimentally reconstructed G3 via OCmT.

(c) The theoretical expectation forG3. (d) Interference patterns obtained by overlapping the fields from ~a and ~b after a polarization projection, with high-
visibility fringes observed in all cases. The top panels are CCD camera images and the lower panels are obtained by integrating the fringes vertically. The
main reasons for the different interference-fringe visibilities observed after the various polarization projections are experimental inaccuracies in aligning the

two spatial modes and superposing them at the PBS and unequal slit sizes at ~a 0 and ~b 0. As a result, H and V projections display higher visibility than that

for the diagonal and circular projections. (e) Visibility as a function of a relative delay inserted between the fields at ~a and ~b before overlapping them at the
CCD camera [Fig. 2(c)] for the diagonal polarization projection case in (d).

Fig. 6. Effect of a polarization scrambler on the field when introduced
at two different planes. (a) A polarization scrambler is placed at the G2

plane (after the PBS at ~a 0 0) has no effect on the visibility of the interfer-
ence pattern measured at theG3 plane, as shown in the right panels. (b) A
polarization scrambler placed before ~a destroys the visibility. (a, b) The
measurements in the right panels are averaged over the polarization
shown in Fig. 5(d).
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scrambler is implemented by rotating a HWP. The CCD camera
exposure time is increased to 10 s, corresponding to the rotation
time of the wave plate, to capture the averaged interference pat-
tern in a single shot. The Mueller matrix associated with a polari-
zation scrambler is M̂ � diagf1; 0; 0; 0g. The visibility observed

after the �~a; ~b� plane remains high. This result can be modeled
theoretically by first noting that a unitary transformation Û trans-
forms the field according to G2 → G 0

2 � ÛG2Û
†, where Û is a

4 × 4 unitary transformation that spans the spatial and polariza-
tion DoFs. If the device in question impacts the two DoFs inde-
pendently, then Û � Û s ⊗ Û p, where Û s and Û p are 2 × 2
unitary transformations for the spatial and polarization DoFs, re-
spectively. The impact of a randomizing but energy-conserving
transformation can be modeled as a statistical ensemble of unitary
transformations [27–29]. The transformation of G2 upon
traversing a polarization scrambler can be expressed as

G 0
2 �

X4
j�1

pjfÎ ⊗ Û �j�
p gG2fÎ ⊗ Û �j�†

p g; (6)

where Î is the 2 × 2 identity matrix and the ensemble fU �j�
p g com-

prises with equal probabilities pj � 1
4 the Jones matrices: 1ffiffi

2
p �11 −11 �,

1ffiffi
2

p �1
1
1
−1�, �10 0

−1�, �01 10�, which correspond to polarization rotations
of �45° in the H-V basis, and a HWP in the H-V basis and ro-
tated by 45°. Substituting the ensemble fÛ �j�

p g into Eq. (6) yields
G 0

2 � G2, which entails that the high-visibility seen in Fig. 5(d)
should be retained, as confirmed in Fig. 6(a). In other words, G2

is invariant with regard to any polarization randomization.
If the polarization scrambler is position dependent, the coher-

ency matrix G2 will no longer be invariant under randomization
(because the spatial and polarization DoFs become coupled). In
the experiment illustrated in Fig. 6(b), the polarization scrambler
is placed at ~a in the plane of G3. The spatial-polarization
transformation of G3 takes the form

G 0
3 � fΛ̂b ⊗ IgG3fΛ̂†

b ⊗ Ig

�
X4
j�1

pjfΛ̂a ⊗ Û �j�
p gG3fΛ̂†

a ⊗ Û �j�†
p g; (7)

where we have Λ̂a � �1
0
0
1
� and Λ̂b � �0

0
0
1
�, resulting in

G 0
3 � 1

2 Î ⊗
1
2 Î � 1

4 diagf1; 1; 1; 1g; that is, an unpolarized and
spatially incoherent field with maximal entropy S � 2 is
produced. No fringes will appear in this case [Fig. 6(b)].

7. DISCUSSION AND CONCLUSION

To facilitate the analysis of the coherence of optical fields encom-
passing multiple DoFs, it is becoming increasingly clear that the
mathematical formalism of multipartite quantum mechanical
states is most useful [5,6,30]. The underlying foundation for this
utility is the analogy between the mathematical descriptions used
in these domains. The Hilbert space of a multipartite system is the
tensor product of the Hilbert spaces of the single-particle subsys-
tems. In classical optics, the multiple DoFs of a beam are de-
scribed in a linear vector space having formally the structure
of a tensor product of the linear vector spaces of the individual
DoFs. In the quantum setting, pure multipartite states that can-
not be separated into products of single-particle states are said to
be entangled, whereas in the classical setting, fields in which the

DoFs cannot be separated are now being called “classically en-
tangled” [6]; coherence can be viewed as a “resource” that may
be reversibly converted from one DoF of the beam to another,
just as entanglement is a resource shared among multiple quan-
tum particles. There is a critical difference though between the
quantum and classical settings. Entanglement between initially
separable particles requires nonlocal operations of particle–
particle interactions (which are particularly challenging for pho-
tons [31]); on the other hand, entangling operations that couple
different DoFs of a beam are readily available in classical optics.
Adopting this information-driven standpoint has led to a host of
novel opportunities and applications. For example, Bell’s measure,
originally developed for ascertaining nonlocality, becomes useful
in quantifying the coherence of a multi-DoF beam and assessing
the resources required to synthesize a beam of given characteristics
[6]; beams in which spatial modes and polarization are classically
entangled have been shown to enable fast particle tracking [32],
local teleportation [33,34], and full Mueller characterization of a
sample [35,36]; and introducing spatiotemporal spectral correla-
tions leads to propagation-invariant pulsed optical beams [37,38].

We have demonstrated—for the first time to the best of our
knowledge—the “conversion” or transformation of coherence
from one DoF of an optical field to another, namely, from polari-
zation to the spatial DoF. Starting from a field that is spatially
incoherent but polarized, we redirect the statistical fluctuations
from space toward polarization, resulting in an unpolarized field
that is spatially coherent. Specifically, the 1 bit of entropy char-
acterizing the spatial DoF was removed and added instead to the
initially zero-entropy polarization. This is confirmed by multiple
tests: (i) the field is found to be spatially coherent by reconstruct-
ing the 4 × 4 coherency matrix and observing the high-visibility
interference fringes after overlapping the two field paths; (ii) the
field is unpolarized as confirmed by the invariance of the outcome
under different polarization projections; and (iii) the polarization
and spatial DoFs are separable, as confirmed by repeating the spa-
tial interference measurements and observing the invariance of the
visibilities for all polarization projections. Entropy engineering of
partially coherent optical fields can open the path to a variety of
possible future extensions and applications with regard to opti-
mizing the interaction of optical fields with disordered media.
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