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Abstract: The propagation of Gaussian beams is analyzed for an acousto-optic deflector by 
varying the refractive index in two-dimensions with a row of phased array piezoelectric 
transducers. Inhomogeneous domains of phase grating are produced by operating the 
transducers at different phase shifts, resulting in two-dimensional index modulation of 
periodic and sinc function profiles. Also different phase shifts provide a mechanism to steer 
the grating lobe in various directions and, therefore, the incident angle of the laser beam on 
the grating plane is automatically modified without moving the beam. Additionally, the 
acoustic frequency can be varied to achieve the Bragg condition for the new incident angle of 
the laser beam so that the diffraction efficiency of the deflector is maximized. The Gaussian 
beam is expressed in terms of planes and the second order coupled mode theory is 
implemented to analyze the diffraction of the beam. The diffraction efficiency is found to be 
nearly unity for optimal operating parameters of the acousto-optic device. 
© 2017 Optical Society of America 
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1. Introduction

Acousto-Optic Deflectors (AODs) are inertialess optical solid state devices to deflect and 
scan laser beams in numerous applications including microvia drilling in microelectronic 
industries for advanced high density packaging. Conventional mirror-based mechanical 
deflectors are prone to wear and tear, mechanical noise and drift due to moving parts such as 
rotating mirrors [1–3]. AODs are free of these drawbacks since they do not have any moving 
parts. Additionally, AODs allow higher deflection velocities, better accuracy in the scan angle 
and lower response time than the mechanical deflectors due to massless photons [1]. Various 
applications of AODs include optical communication [4–6], optical tweezers for molecule 
trapping [7], optical image scanners [8,9], and optical frequency shifters [10,11]. Two 
cascaded Bragg cells are generally used for two-dimensional scanning of lasers in imaging 
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applications. For improved image quality, the performance of acousto-optic diffraction 
gratings of one-dimensional refractive index modulation has been analyzed by spectral 
representation of the laser beam using Fourier transform [12–14]. 

Chu and Tamir [15] modeled the diffraction of Gaussian beams in dielectric media of 
periodically modulated permittivity by treating the incident beam as linear superposition of 
plane waves, and showed that both the refracted and Bragg-scattered beams split into two 
beams and this distortion lowers the diffraction efficiency compared to when a single plane 
wave is incident on the medium. Later they [15] applied the model to incident angles close to 
the Bragg angle and analyzed the effect of beam splitting by examining the major and minor 
lobe profiles for both the refracted and Bragg-scattered beams. Chu, Kong and Tamir [16] and 
Kong [17] presented a highly accurate second order coupled-mode model for the diffraction 
of Gaussian beams due to periodic modulation of permittivity, and showed that the 
conventional first order coupled-mode theory is accurate for small perturbation in the 
permittivity and that the second order approach must be used for strongly modulated media. 
In Ref [16], x-L should be read as x in Eqs. (25) and (26), and the exponential term should be 

( )3 1
b
x zexp ik x L ik z− − +   in Eq. (26). Moharam, Gaylord and Magnusson [18] modeled the

diffraction of Gaussian beams in transparent volume gratings by two coupled first order 
partial differential equations based on a modified version of the two-dimensional coupled 
wave theory. 

One-dimensional modulation of the refractive index, ( )n z , has been considered in the 

above-mentioned studies. Also conventional AODs operate at small deflection angles, and 
high diffraction efficiency only over a narrow bandwidth of the acoustic frequency. However, 
advanced applications, such as high precision and high speed microvia drilling and image 
scanning, require large deflection angles for large-area processing and high diffraction 
efficiency over a wide acoustic bandwidth. Phased-array transducers have been incorporated 
to AODs for improving the deflection angle and bandwidth [19–21] by assuming one-
dimensional index modulation that holds good for small tilting of the phase grating planes. 
Two-dimensional index modulation, ( ), ,n x z  provides a mechanism to improve the

performance of AODs further. Recently, Andre, Guen and Jonnard [22] applied a rigorous 
coupled-wave theory to lossy volume gratings with two-dimensional permittivity for X-ray 
spectroscopy and concluded that the rigorous approach, which is not based on the two-wave 
and the first derivative approximations, is necessary to accurately calculate the diffraction 
efficiency. Wang et al. [23] studied the effect of two-dimensional refractive index modulation 
on the diffraction of plane waves and showed that the deflection angle can be increased using 
phased array transducers and the diffraction efficiency is nearly unity over a wide acoustic 
bandwidth. The phase-shifted acoustic waves, which are emitted by the transducers, interfere 
inside the AOD to form a phase grating within which the refractive index varies in two 
dimensions. The grating lobe can be tilted to different angles by operating the transducers 
with appropriate time-delayed radio-frequency (RF) signals. This tilt in the grating 
automatically modifies the incident angle of the laser beam on the grating plane even though 
the laser is stationary [24]. So the frequency of the RF signal is changed to achieve the Bragg 
condition under this new angle of incidence, and thus the dynamic acousto-optic volume 
grating can improve the performance of AODs. 

In this paper, the diffraction of Gaussian beams is studied for AODs of finite size with 
two-dimensional index modulation. Section 2 provides a summary of the AOD geometry and 
the index modulation used in this study. The Gaussian beam is represented by the 
superposition of plane waves and then the electric field is determined at the exit surface of the 
AOD using the plane wave solution from Ref [23]. The results and discussion are presented in 
Section 3 for TeO2, and Ge-AODs based on the phase, frequency and amplitude modulations 
of the transducers for Ne-Ne and CO2 lasers respectively. 
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2. Theoretical background

2.1 Two-dimensional refractive index modulation 

AODs can be generally classified into two groups depending on whether a single transducer 
or phased-array transducers are used to operate the AODs. The drawbacks of single-
transducer AODs are narrow acoustic bandwidth, small deflection angle and small scan angle. 
Phased-array transducers are utilized to overcome these shortcomings [6,23]. Phase-shifted 
acoustic waves, which are emitted by the transducers when they are operated with some time 
delays with respect to each other, propagate through the AOD medium as a tilted composite 
wavefront (Fig. 1) due to the diffraction and interference of the waves. Due to this acoustic 
effect, the atomic planes of the AOD medium are tilted as alternating compressed and rarefied 
layers with index modulation along the tilted planes. The composite wavefront can be steered 
in different directions by dynamically varying the time delays and, consequently, the index 
modulation planes can be tilted at various angles. 

Fig. 1. Dynamic phased array transducers for acoustic beam steering to produce tilted phase 
fronts with a sinc-function diffraction pattern of the acoustic waves. 

A typical steering angle, θ , corresponding to the principal direction, zs, of the acoustic 
diffraction lobe is presented in Fig. 1, showing that the new incident angle would be 

0inθ θ θ= +   for the tilted index modulation if the laser beam is originally incident on the 

unperturbed AOD at the angle 0θ . Using this acoustic beam steering mechanism, the angle of 

laser incidence on the tilted phase grating can be varied automatically without moving the 
original laser beam. For each steering angle, the frequency of the acoustic waves needs to be 
adjusted to ensure that inθ corresponds to the Bragg angle of incidence for achieving large

deflection angle given by inθ and large diffraction efficiency given by the Bragg diffraction

condition. 
The above-mentioned acoustic effect also produces a two-dimensional phase grating in 

contrast to one-dimensional gratings in conventional AODs. The acoustic waves emitted by 
an array of transducers generally produces a diffraction pattern of the sinc-function shape in 
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Cartesian coordinates [25]. Since the variation of refractive index depends on the intensity 
distribution of the composite acoustic wavefront, the refractive index is considered to vary as 
a sinc-function in the transverse direction xs in this study (Fig. 2). On the other hand, the 
refractive index varies periodically with the period Λ in the longitudinal direction zs, where Λ 
is the wavelength of the acoustic waves in the AOD medium, and this periodic variation is 
taken as a cosine function. So the two-dimensional index profile in region II, ( )n ,II s sx z , can 

be written as [26]: 

( ) ( ) ( )
2 0

sin2
n , =n + n cos s

II s s s
s

bx
x z z

bx

πλ
  Δ   Λ  

(1)

where cos sinsx x zθ θ= −  , sin cossz x zθ θ= +  and θ  is the tilting angle. 

Fig. 2. Geometry for laser beam propagation in an AOD medium of two-dimensional refractive 

index variation caused by phased array transducers, 
'O D  = d.

where n2(λ0) is the refractive index of the unperturbed acousto-optic medium at the 
wavelength of the incident light in vacuum, λ0, and nΔ  is the maximum change in the 
refractive index that can be determined by considering the Acousto-optic effect [27]. The 
parameter b  is a constant that defines the width of the central lobe of the sinc function. Since 
this function varies from a maximum value at the center of the lobe to zero at the edge of the 
lobe, the parameter b is so chosen that the index modulation is significant in the AOD 
medium. The central peak of the sinc function occurs at xs = 0 and the lobe spans from xs = -
L1 to xs = L2 (Fig. 2) to yield a significant index modulation. If Lm represents the larger of the 
two values L1 and L2, b can be determined by considering that Lm is the full width at half 
maximum of the sinc function, i.e., 

( )sin / 2 1

/ 2 2
m

m

bL

bL
= (2)

The above-mentioned two-dimensional index ( )n ,II s sx z  were used in the second order

coupled-mode Maxwell equation by Wang et al. [23] to analyze the performance of AODs for 
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incident lights of plane wavefront. Their model is implemented in this paper for studying the 
diffraction of Gaussian beams by decomposing the beam into numerous plane waves. 

2.2 Decomposition of Gaussian laser beam profiles into plane wave spectral 
components 

The electric field of Gaussian laser beams can be written as follows [28] 

( ) ( )
( ) ( ) ( )

2
2

0
0

' '
' ' 2 ''' 00

0', '
'

z z
ik

w x i x R xik x
i

w
E x z A e e e e

w x
φ

 
−   − = (3)

in the Cartesian coordinate system ( )', 'x z  with the origin being at the center of the beam

waist as shown in Fig. 2. Here 0A  is the peak electric field and 00w  is the radius of the 

Gaussian beam waist which is located at the plane ' 0x =  The radius of the Gaussian beam at 

any other plane is given by ( ) ( )2'
00' 1 '/ Rw x w x x= + , ( )'xφ  is the Gouy phase,

( ) ( )1 '' tan '/ Rx x xφ −= , ( )'R x  is the radius of curvature of the Gaussian laser wavefront,

( ) ' 2' ' / 'RR x x x x= + , and '
Rx  is the Rayleigh range, ' 2

00 0/Rx wπ λ= . 

The laser beam is incident on the x = -L/2 surface of the AOD with the interception points 
A, D and B as shown in Fig. 2. The widths of the interception DA and DB are given by wa 
and wb respectively. These two widths are determined by applying the Gaussian beam radius 
w(x') to the points A and B, which yield wb and wa that can be expressed as: 

( )2 ' 2 2
0' 2

0 02
00

2'
20

0
00

cos
sin sin

cos
sin

R

R

a

R

d x
x d

w
w

x

w

θ
θ θ

θ θ

+
− +

=
 

− 
 

(4)

( )2 ' 2 2
0' 2

0 02
00

2'
20

0
00

cos
sin sin

cos
sin

R

R

b

R

d x
x d

w
w

x

w

θ
θ θ

θ θ

+
− −

=
 

− 
 

(5)

To analyze the laser beam propagation inside the AOD medium in the (x, z) coordinate 
system, the following coordinate transformation is applied to Eq. (3) 

( )
( )

0 0

0 0

/ 2 cos sin'

/ 2 sin cos'

x L z dx

x L zz

θ θ
θ θ

 + + +  
=    − + +   

(6)

to obtain the Gaussian beam profile as 

( ) ( )
( )

( )
( )

( ) ( )

2 2
0 00 0

0
0 0 0

/ 2 sin cos/2 sin cos

/2 cos .sin2,

x L zx L z
ik

ik x L zw d R d
iE x z A d e e e

θ θθ θ
θ θ

  − + +− + +   −  + +     =  (7) 

where d is the distance from 'O  to D in Fig. 2, ( ) ( )
( )000

0
i dik dw

A d A e e
w d

φ−=  and θ0 is the

incident angle of the Gaussian beam; ( ) 2 ' 2
00 1 / Rw d w d x= +  and ( ) ' 2 /RR d d x d= + . The 
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electromagnetic field of the laser, Ei(x,z), is expressed as a superposition of plane waves so 
that the solution of Ref [23], which was obtained for the diffraction of plane waves due to 
two-dimensional index modulation, can be implemented in this study. 

2.3 Gaussian beam diffraction in AOD media with two-dimensional refractive index 
modulation 

Fourier representation of Ei(x,z) in terms of angular spectra provides a convenient way of 
expressing the electric field of an incident Gaussian beam as linear plane wave superposition, 
i.e.,

( ) ( ) ( )0 1 0 0, expi z x z zE x z G k i k x k z dk
∞

−∞
= +   (8)

where ( )0zG k  is the spectral amplitude and ( )1exp xik x  and ( )0exp zik z  are spectral 

components of wavenumbers k1x and koz for the plane waves propagating in the x and z 
directions, respectively. ( ),iE x z  is incident on the incident surface of the AOD medium 

from region I ( / 2x L< − ) with the wavenumber k1 = n1k0, where n1 is the refractive index of 
medium I, k0 = 2π/λ0 and λ0 is the wavelength of the incident laser in vacuum. So k1, k1x and 
koz can be related to each other by the expressions k1x = k1cosθ, k0z = k1sinθ and 

2 2
1 1 0x zk k k= − , where θ is the incident angle of an arbitrary plane wave of wavenumber k1. 

The unknown factor, i.e., the spectral amplitude G(k0z), in Eq. (7) can be obtained by 
applying the Fourier inverse transform to Eq. (7) on the incident surface x = - L/2, which 
yields 

( ) ( ) 1 0/2
0

1
/ 2,

2
x zik L ik z

z iG k E L z e e dz
π

∞ −

−∞
= − (9)

In Fig. 2, w(d) is the length scale for the 1/e-point of the electric field in ' 'x z−  coordinates. 
On the incident plane x = -L/2, however, the points A and B of distances DA = wa and DB = 
wb represent the 1/e-point of electric field. Since a bw w> , the length scale is taken as wa. 

( ) ( )
( )

( )

2 2
00

0
0 0

coscos

2 sin/ 2, a

zz
ik

w R d ik z
iE L z A d e e e

θθ
θ

 
−  
 − = (10)

Substituting Eq. (10) into Eq. (9), G(k0z) is obtained as 

( ) ( )

( )

( )

( )

2
0 0 0

0
02

1

sin

cos1
4

2 / 2
0

0
02

cos12
2

z

a x

k k

ik
R dw ik L

z

a

A d
G k e e

ik
R dw

θ

θ
π

θπ

− −
 
 + 
 =

+
(11)

As pointed out by Chu, Kong and Tamir [16], the transmitted beams in region III can be 
viewed as the linear superposition of plane wave solutions. Therefore, the electric field of the 
zeroth order beam in region III is 

( ) ( ) ( ) ( )0 0 0 0 3,0 0 0, expz z x z zE x z G k t k ik x ik z dk
∞

−∞
= + (12) 

for x ≥ L/2, and the Bragg-diffracted, i.e., −1 order, beam is 

( ) ( ) ( ) ( )1 0 1 0 3, 1 1 0, expz z x z zE x z G k t k ik x ik z dk
∞

− − − −−∞
= + (13)
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for x ≥ L/2, where t0(k0z) and t-1(k0z) are the transmission coefficients for plane waves of 
wavenumber k0z in the zeroth order and −1 order lights, respectively, at the exit surface x = 
L/2. Due to the propagation of acoustic waves of wavenumber K in the AOD medium, k0z and 
k-1z in Eqs. (12) and (13) are the z components of the zeroth and −1 order Floquet modes and
are given by 0 0 sinzk k θ=  and 1 0z zk k K− = − . Similarly, k3,0x and k3,-1x are the x components 

of the zeroth and −1 order Floquet modes and are given by 2 2
3,0 3 0x zk k k= −  and 

2 2
3, 1 3 1x zk k k− −= − . Here K = 2π/Λ and k3 = n3k0 where the wavelength of the acoustic waves 

in region II and the refractive index in region III are Λ and n3, respectively. The transmission 
coefficients t0(k0z) and t-1(k0z) in Eqs. (12) and (13) are obtained for each plane wave 
component [23] by (i) applying the refractive index ( ),II s sn x z  into the Maxwell equation in 

region II, (ii) solving the coupled-mode Maxwell equations in regions I, II and III, and (iii) 
satisfying the boundary conditions at the interfaces of regions I and II, and II and III. 

The integrations in Eqs. (12) and (13) are evaluated numerically using the extended 
trapezoidal rule [29]. To transform the limits of integration from the infinite range to a finite 
range, the limits on k0z are considered as follows: 

1 0 0 1 0

2 2
sin sinz

a b a b

k p k k p
w w w w

π πθ θ− ≤ ≤ +
+ +

 (14) 

where p is any positive number which is chosen to ensure that sufficient number of spectral 
components are selected for representing the Gaussian beam in terms of plane waves. Ngoc 
and Mayer [30] chose p = 1 for their studies on the intensity distribution of ultrasonic beams 
reflected from a liquid-solid interface. In the present study, p is found to be 5 to accurately 
represent the incident Gaussian laser beam as linear superposition of plane waves. The finite 

range of integration is discretized into M points with the interval 
( )( )0

4

1z
a b

p
k

w w M

πΔ =
+ −

and the value of the spectral component at any point m as ( )0 , 0 ,1 01z m z zk k m k= + − Δ  for m = 

1, 2,3, …, M where 0 ,1 1 0

2
sinz

a b

k k p
w w

πθ= −
+

. Defining the integrands of Eqs. (12) and (13) 

at any point m as 

( ) ( ) ( )
0 0 ,

0, 0 0 0 3,0 0exp
z z m

m z z x z k k
E G k t k ik x ik z

=
 = +  (15)

( ) ( ) ( )
0 0 ,

1, 0 1 0 3, 1 1exp
z z m

m z z x z k k
E G k t k ik x ik z− − − − =

 = +  (16)

the electric fields in the zeroth and −1 order modes can be approximately determined by the 
following expressions: 

( ) ( )0
0 0 0, 0,1 0,1

,
2

M z
z m Mm

k
E x z k E E E

=

Δ
≈ Δ − + (17)

( ) ( )0
1 0 1, 1,1 1,1

,
2

M z
z m Mm

k
E x z k E E E− − − −=

Δ
≈ Δ − + (18)

Equations (17) and (18) are used to analyze the performance of AODs for He-Ne and CO2 
lasers of wavelengths 632.8 nm 10.6 µm, respectively, and the corresponding AOD media are 
considered to be crystalline TeO2 and Ge. The diffraction efficiency, which is defined as 

2 2

1 0/D E Eη −= , is determined numerically using Eqs. (17) and (18). 
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3. Results and discussion

To examine the transmitted behavior of the Gaussian beam diffracted by periodically 
modulated AO medium, several numerical calculations were carried out in this study based on 
the data listed in Table 1. The width of laser beam was w00 = 0.64 mm and the refractive 
indices in regions I and III were taken as n1 = n3 = 1.0. The accuracy of E0(x,z) and E-1(x,z) in 
Eqs. (17) and (18) depends on the choice of p and M. While p determines the range of 
spectral components chosen for plane wave decomposition of the Gaussian beam, M affects 
the convergence of the numerical integration by the extended trapezoidal rule. To verify the 
computational accuracy, the normalized intensity of the Gaussian beam is calculated by two 
approaches that are based on the exact expression of the input beam given by Eq. (7) and the 
spectral representation of the beam given by Eqs. (9) and (11). The results as obtained at the 
incident surface of the AOD medium with the beam waist on this surface, i.e., x = -L/2 and d 
= 0, as shown in Fig. 3 for the case of TeO2 AOD. The two results were found to match well 
when p = 5 and M = 100, for both cases of TeO2 and Ge AODs. 

Table 1. Simulation parameters for TeO2 and Ge crystals to deflect He-Ne and CO2-
lasers respectively [31]. 

AO material Ge crystal TeO2 crystal 
Density of AO medium, 
ρ [g/cm3]

5.33 5.99

Laser wavelength, [ μ m] 10.6 (CO2 laser) 0.6328 (He-Ne laser) 

Laser beam width, 00w  [mm]
0.64 0.64

Refractive index, n2 4.0 2.26
Acoustic speed for P-wave, [m/s] 5500 4200 
Acoustic speed for S-wave, [m/s] 3510 616 
Central acoustic frequency, 
[MHz] 

70 75

Central acoustic wavelength, 
[ μ m]

78.6 56

The results of this study are also compared to the beam profiles determined by Chu, Kong 
and Tamir [16] for one-dimensional index modulation, and their model is referred to as 1D-
CKT model hereafter. For this comparison, the diffraction of the laser beam is simulated 
using Eqs. (17) and (18) for one-dimensional index modulation by setting the sinc function to 
unity in Eq. (1), and the laser beam profiles are obtained at the exit surface (x = L/2) as 
presented in Fig. 4. Although the profiles of both studies exhibit similar trend, the results do 
not match exactly and this discrepancy may be attributed to the method of solution. The 
transmission coefficients t0 and t-1 in 1D-CKT model were based on Kong’s [17] exact 
calculation for these two coefficients by solving an 8 × 8 matrix equation exactly. In the 
present study, the transmission coefficients were calculated by considering Wang’s et al. [23] 
first order approximation of the electric field for each plane wave component of the Gaussian 
beam. The results, however, exhibit two dominant peaks in the −1 order diffracted beam 
showing non-Gaussian profiles and splitting of the beam. The zeroth order beam is also non-
Gaussian with a fairly uniform irradiance profile showing distortion of the original Gaussian 
beam incident on the AOD. 
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Fig. 3. Comparison between the plane wave superposition of a Gaussian beam and the exact 
Gaussian beam profile given by Eq. (7). 

Fig. 4. Comparison of the Gaussian beam profiles at the exit surface of a TeO2 AOD for one-
dimensional refractive index modulation based on CKT 1-D model and the reduction of the 
current 2-D model to 1-D problem. 

Vol. 25, No. 14 | 10 Jul 2017 | OPTICS EXPRESS 16011 



Fig. 5. Magnitude of the electric field (|E|) at the exit boundary for an AOD of thickness L, 
calculated using the Gaussian beam diffraction model of this study and the CKT model for F = 
75 MHz, L = 2.24 cm and θin = 0.324o. 

To examine the beam splitting and distortion, two-dimensional index modulation of this 
study, which is referred to as 2D model hereafter, is analyzed with optimized index 
modulation strength Δn as presented in Fig. 5. Results are obtained from both the 2D and 1D-
CKT models for the optimized values of Δn = 2.2 × 10−5 and 1.4 × 10−5, respectively, to 
achieve the maximum diffraction efficiency in each model. Both models yield Gaussian 
profile with beam splitting in the −1 order diffracted beam. The zeroth order beam, however, 
exhibits non-Gaussian profile with two peaks indicating beam splitting at the exit surface in 
Fig. 5. The beam distortion, which causes the beam splitting, occurs due to continuous 
exchange of energy between the zeroth and −1 order beams as they propagate through the 
AOD medium [32]. This continuous coupling of energy diffuses the energy over the entire 
irradiated region and, consequently, the beams are distorted to non-Gaussian profiles. For 
large distortions, the beams are sufficiently modified and each beam splits into two portions. 
The beam splitting is less dominant with much lower electric field in the 2D model than in the 
case of 1D-CKT model. Two-dimensional index modulation, therefore, allows more energy 
transfer to the −1 order beam than the one-dimensional index modulation and, consequently, 
higher diffraction efficiency can be achieved in the former case. Figure 6 examines the shape 
of the zeroth order split beam as it propagates in medium III away from the exit surface of the 
AOD medium. The zeroth order beam begins to separate from the −1 order beam for the 
AOD of thickness 2L in Fig. 6, but the profile of the zeroth order beam remains the same as 
that shown in Fig. 5 for an AOD of thickness L. 
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Fig. 6. Magnitude of the electric field (|E|) at the exit boundary for an AOD of thickness 2L, 
calculated using the Gaussian beam diffraction model of this study and the CKT model for F = 
75 MHz, L = 2.24 cm and θin = 0.324o. 

Wang et al. [23] showed that nearly 100% diffraction efficiency can be achieved for a 

given acoustic beam steering angle, θ  (Fig. 1), by optimizing the acoustic frequency F and 
the index modulation strength Δn. The steering of acoustic beam produces tilted phase grating 
inside the AOD device, and the tilt angle automatically modifies the laser incident angle on 
the grating compared to the original angle of incidence (θ0) on the AOD device, resulting in a 

new incident angle 0inθ θ θ= +  . So the acoustic frequency and amplitude are modulated to 

achieve the Bragg diffraction under the new angle of incidence and maximize the diffraction 
efficiency, respectively. The diffraction efficiency is plotted as a function of the incident 
angle θin for different pairs of F and Δn in Fig. 7 for He-Ne lasers, so that each pair has its 
own Bragg angle of incidence and thus nearly 100% diffraction efficiency is achieved at 
different values of F. A change in F changes the wavelength, Λ, of the acoustic waves inside 
the AOD medium and, therefore, the periodicity of the phase grating changes as F is varied. 
Since the diffraction angle and efficiency depend on the ratio n2λ0/Λ, the effect of laser 
wavelength is examined in Fig. 8 for CO2 lasers of wavelength 10.6 μm using Ge as the AOD 
medium. Both Figs. 7 and 8 show that the phased array AODs increase the efficiency and 
deflection angle. Also the acoustic bandwidth of the AODs increases since nearly 100% 
diffraction efficiency is achieved over a wide range of acoustic frequency. 
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Fig. 7. Diffraction efficiency of TeO2 ideal AODs as a function of the incident angle θin for 
different operating parameters including the phase shift (δ) of acoustic waves between two 
consecutive transducers. 

Fig. 8. Diffraction efficiency of Ge ideal AODs as a function of the incident angle θin for 
different operating parameters including the phase shift (δ) of acoustic waves between two 
consecutive transducers. 

In Figs. 7 and 8, the acoustic lobes were generated at different steering angles θ  by 
considering the pitch, i.e., the center-to-center distance between two adjacent transducers, as 
Λ/2 for each F. Nakahata et al. [24] reported that optimum lobes are produced when the pitch 
is Λ/2. Since the acoustic lobes affect the shape of the phase grating and Λ depends on F, the 
pitch was varied for different frequencies to obtain the ideal values of the diffraction 
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efficiency and deflection angle under the ideal pitch condition in these two figures. In 
practice, however, the pitch cannot be varied once the AOD is fabricated with a certain pitch 
for a given F and, therefore, the diffraction efficiency and deflection angle will deviate from 
their ideal values. This deviation is studied by determining the real values of the diffraction 
efficiency and deflection angle for the pitch Λm/2. Here Λm is the minimum acoustic 
wavelength corresponding to the maximum frequency considered in this study for the TeO2 
and Ge AODs. The values of Λm are 21 µm and 27.5 µm for the frequency of 200 MHz, 
based on TeO2 and Ge respectively. Under this pitch condition, the real values of the 
diffraction efficiency and deflection angle are compared to their ideal values in Figs. 9 and 10 
for the TeO2 and Ge AODs respectively. Although the real values differ from the ideal values, 
the maximum deviations of the diffraction efficiency and deflection angle are, respectively, 
within 32.3% and 0% of the ideal values for the TeO2 AOD and 76.3% and 0% of the ideal 
values for the Ge AOD. 

Fig. 9. Comparison between the ideal and real values of the diffraction efficiency and 
deflection angle for He-Ne lasers and a phased array TeO2 AOD with pitch S = 10.5 µm for the 
real AOD. 

This reduction in the efficiency is due to the different dimensions of the ideal and real 
AOD devices. The width and pitch of the transducers and the length of the AOD can be 
varied arbitrarily in the ideal case to maximize the diffraction efficiency and deflection angle 
for each acoustic frequency, but the dimensions of the transducers and AOD cannot be altered 
once an AOD device is fabricated with certain dimensions. Four parameters, which affect the 

performance of an AOD device, are Δ n, L, F and θ . While the acoustic pressure, i.e., the 
operating radiofrequency power of the transducer, affect Δn, the phase of the acoustic wave at 

each transducer affect θ . Klein and Cook [33] showed that the laser energy is transferred 
from the zeroth order mode to the first order diffraction mode and vice versa as a function of 
L. There is a smallest value of L at which all of the laser energy is transferred to the first
order mode to yield 100% diffraction efficiency. As L increases further, the laser energy
begins to transfer back to the zeroth order mode from the first order mode to eventually yield
100% energy in the zeroth order mode and 0% diffraction efficiency. With L increasing
further, the energy is transferred back to the first order mode, and this energy transfer process
between the two modes continues as a function of L. For the real cases of TeO2 and Ge
AODs, the thicknesses of the AOD media are found to be L = 35 mm and L = 11.1 mm,
which yield the maximum diffraction efficiency at the radiofrequencies of 65 MHz and 85
MHz respectively. These values of L, however, are not optimum to maximize the
performance of the real AOD devices at any other radiofrequencies. This effect of L causes
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incomplete transfer of laser energy from the zeroth order mode to the first-order mode, and 
thus lowers the diffraction efficiency of real AODs compared to the case of ideal AODs as 
shown in Figs. 9 and 10. 

Fig. 10. Comparison between the ideal and real values of the diffraction efficiency and 
deflection angle for CO2 lasers and a phased array Ge AOD with pitch S = 13.75 µm for the 
real AOD. 

4. Conclusion

The performance of two phased array AODs is analyzed for Gaussian laser beams of 
wavelengths 632.8 nm and 10.6 μm by considering two-dimensional refractive index 
modulation. Nearly 100% diffraction efficiency is achieved without any beam splitting or 
distortion in the −1 order beam for both two-dimensional and one-dimensional index 
modulations. The zeroth order beam, however, exhibits less distortion and less electric field in 
the case of former modulation than the latter. Two-dimensional modulation, therefore, yields 
slightly higher diffraction efficiency than the one-dimensional modulation. The profile of the 
distorted beam appears to be non-Gaussian and this profile does not change as the beam 
propagates outside the AOD medium. The phased array AODs can be operated with nearly 
100% diffraction efficiency over a broad range of acoustic frequency and thus the bandwidth 
of the device increases. Also the acoustic beam steering capability provides a mechanism to 
create titled phase gratings and this tilt angle can be utilized to achieve large deflection angles 
for the diffracted laser beam. The theoretical approach of Gaussian beam steering in two-
dimensional index dynamic gratings can be applied to predict the performance and technical 
characteristics of AOD devices, and the results can be used to design AODs for different 
applications. 
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