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Statistical parity-time-symmetric lasing in an
optical fibre network
Ali K. Jahromi1, Absar U. Hassan1, Demetrios N. Christodoulides1 & Ayman F. Abouraddy1

Parity-time (PT)-symmetry in optics is a condition whereby the real and imaginary parts of

the refractive index across a photonic structure are deliberately balanced. This balance can

lead to interesting optical phenomena, such as unidirectional invisibility, loss-induced lasing,

single-mode lasing from multimode resonators, and non-reciprocal effects in conjunction

with nonlinearities. Because PT-symmetry has been thought of as fragile, experimental

realisations to date have been usually restricted to on-chip micro-devices. Here, we

demonstrate that certain features of PT-symmetry are sufficiently robust to survive the

statistical fluctuations associated with a macroscopic optical cavity. We examine the lasing

dynamics in optical fibre-based coupled cavities more than a kilometre in length with

balanced gain and loss. Although fluctuations can detune the cavity by more than the free

spectral range, the behaviour of the lasing threshold and the laser power is that expected

from a PT-stable system. Furthermore, we observe a statistical symmetry breaking upon

varying the cavity loss.
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S ince their mathematical inception1, 2, non-Hermitian
parity-time (PT) -symmetric notions have found manifes-
tations in many diverse physical embodiments, ranging

from photonics3–9 to acoustics10, 11, phononics12 and even
electronics13, 14. Nevertheless, optics has proven to date to be the
most convenient platform for the realisation of PT-symmetry. In
large part, the suitability of optics is a consequence of the facile
deviation from Hermiticity achieved by adding optical loss
(attenuation) or gain (amplification) to an initially unitary
(lossless) system. These investigations have led to the observation
of a number of counter-intuitive effects such as loss-induced
transparency15, lasing suppression with increased gain16 and the
revival of lasing with increased loss17. Furthermore, phenomena
such as double refraction, power oscillations and solitons have
been observed in photonic lattices18, 19. Recently perfect
absorption has been suggested20 and realized21 in PT-symmetric
configurations in addition to a burgeoning effort on
PT-metasurfaces22–27. Furthermore, PT-symmetry has been
employed to achieve one-sided invisibility28, 29, demonstrate
unidirectional scattering and absorption30, 31, construct
mode-selective lasers32, 33 and realise on-chip unidirectional
devices34, 35. Moreover, ramifications of these concepts are
currently being extended to the emerging field of topological
photonics36–38 and ultra-sensitive measurement devices39–41.

Exact PT-symmetry is achieved by arranging a delicate balance
deliberately introduced into the spatial distribution of the com-
plex refractive index throughout the system. In general, it is
required to simultaneously maintain the real part of the refractive
index symmetric while the imaginary part (corresponding to gain
or loss) is kept anti-symmetric under inversion3, 4. Note however,
that PT-symmetry appears to be only a sufficient condition for
the effects described above. Indeed, it has been shown that any
patterned gain-loss structure in a deterministic scheme may
exhibit counter-intuitive PT-symmetry-related phenomena42.
Because establishing a PT-symmetric refractive index distribution
imposes stringent fabrication requirements, experimental rea-
lisations to date have been usually restricted to on-chip micro-
devices. To date, optical demonstrations of PT-symmetry have
focused on micro-structures realized on a chip ranging from
coupled semiconductor15 or photorefractive waveguides5 to
coupled ring resonators in InP32, 43, quantum cascade disk-
lasers16 or erbium-doped silica34, 35. The large free spectral range
(FSR) associated with micro-devices helps isolate a single or a few
relevant resonant modes in a compact and stable manner, thereby
justifying a fully deterministic theoretical treatment. However, in
larger optical systems such as fibre networks, the FSR can be so
small that unavoidable fluctuations lead to detuning of the
resonances between sub-systems – potentially reaching a full FSR.
In view of the above, it is an open question whether signatures of
PT-symmetry are retained in such large-scale settings.

Here we demonstrate that many features of PT-symmetry are
sufficiently robust so as to survive the statistical fluctuations
associated with macroscopic fibre cavities – even ones having a
length in excess of 1 km. Starting from a generic linear
PT-symmetric laser cavity model, we construct a conceptually
analogous lumped-component model that we experimentally
realise in a single-mode-fibre cavity. Coherent coupling and
feedback from the interfaces in the traditional model are replaced
by partially reflective fibre Bragg mirrors connecting two sub-
cavities, in which optical amplification and attenuation are pro-
vided by localised components in lieu of the distributed gain and
loss used in previous approaches. In such an arrangement, the
gain-loss balance is readily maintained and varied deterministi-
cally, but the sub-cavity phases cannot be held fixed due to
unavoidable fluctuations in such a large system – thereby leading
to resonance detuning. To study non-Hermitian phenomena in

such large-scale settings, we first theoretically analyse an ideal
zero-detuned cavity geometry using a mean-field saturable model
to obtain two distinct steady-state nonlinear supermodes. We
then find that even in the presence of a random detuning, the
system behaviour still mimics this zero-detuned ideal scenario. In
this case, although the supermodes are not formally equivalent to
those when the detuning is absent, the existence of unbroken and
broken PT-symmetry phases can still be inferred. In addition,
a gradual phase transition between these phases can also take
place despite random fluctuations in the cavity resonances. We
demonstrate experimentally and theoretically that the lasing
threshold and the post-lasing output-power scaling in the PT-
symmetric configuration survives the statistical detuning effects
of the sub-cavity resonances – even when this detuning spans the
full FSR. We present the first quantitative identification of lasing
thresholds and broken and unbroken PT-symmetric lasing pha-
ses, which is made possible by the unambiguous separation of the
power emitted by the gain and loss sub-cavities. Furthermore, we
find that although detuning precludes the existence of an exact
unbroken PT-symmetric phase, observation of the signature of
symmetry breaking is nevertheless enabled through tuning the
attenuation of the loss sub-cavity. As the loss is monotonically
increased, a transition occurs from a phase in which the lasing
power emitted from the gain side decays to one in which the
lasing power increases with increased loss. We attribute this
aspect to the presence of an exceptional point in this non-
Hermitian arrangement. Our results thus extend the manifesta-
tion of non-Hermitian effects in large-scale non-deterministic
settings. The demonstrated robustness of PT-symmetry in mac-
roscopic fibre systems could pave the way to applications of such
concepts in telecommunications and fibre lasers.

Results
Lumped-component model of a photonic PT-symmetric system.
We start by abstracting from an archetypical optical PT-
symmetric configuration (Fig. 1a), an equivalent discrete
lumped-component system (Fig. 1b-d). The arrangement shown
in Fig. 1a consists of equal lengths of homogeneous materials of
refractive indices nG and nL in intimate contact and surrounded
with symmetric external media. The imaginary part of the index
corresponds to either optical loss (nL) or gain (nG), depending on
its sign. If the indices satisfy n�G ¼ nL, then the structure is said to
be PT-symmetric. This condition entails that the real part of the
refractive index has an even distribution (it is equal in both
layers), whereas the imaginary part has an odd distribution
(optical gain in one layer and matching losses in the other). Index
discontinuities at all three interfaces provide reflection that is
particularly weak at the interface between the two layers (where it
depends on only the contrast between the imaginary components
of nG and nL) – resulting in strong coupling between the two
layers. Despite the simplicity of this fundamental model, it has
not been experimentally realized to date – in part due to the
constraints placed by the Kramers–Kronig relations on the
commensurate values of the real and imaginary components of
the refractive index of any material44. To date, many physical
realisations of PT-symmetric cavities have focused instead on
other micro-systems such as coupled ring cavities or parallel
waveguides.

The optical structure shown in Fig. 1b that comprises two
coupled sub-cavities is conceptually equivalent to that in Fig. 1a.
Fresnel reflection at the interfaces is replaced by partially
reflecting mirrors: outer symmetric mirrors M1 and M3 having
equal reflectivities R1=R2=R that correspond to the interfaces
with the external media, and a middle mirror M2 of reflectivity R2
that couples the two sub-cavities and corresponds to the interface
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between the gain and loss layers. Discrete optical amplifiers and
attenuators provide single-pass amplification G and attenuation L
in the sub-cavities. Crucially, in such a configuration the
reflections are no longer constrained by the physical limitations
on the refractive indices of materials as dictated by the
Kramers–Kronig relations. Instead, coherent feedback between
the sub-cavities becomes independent of the gain/loss contrast.

In the lumped-component model, balanced gain and loss
corresponds to GL ¼ 1, removing attenuation altogether from
the lossy sub-cavity corresponds to L ¼ 1 (gain-lossless config-
uration in Table 1), and an infinite attenuation to L ¼ 0 (gain
sub-cavity in Table 1). From this perspective, the PT-symmetric

arrangement is a particular element in a continuum of
possibilities, where L is varied and G is held fixed. This family
of structured laser cavities can be viewed as a result of inserting
passive elements (the mirror M2 and the attenuation L) into a
symmetric reference cavity consisting of an amplifying gain
element G between two mirrors M1 and M3 having an equal
reflectivity R (Fig. 1a, b; reference gain cavity) – corresponding to
the addition of a loss layer to the gain layer. A question naturally
arises whether the establishment of PT-symmetry by inserting a
gain-balancing loss will inevitably raise the lasing threshold of
this structured cavity with respect to that of a reference cavity
where the loss is eliminated? We proceed to show that this is not
always the case.

Experimental realisation in a PT-symmetric fibre-based cavity.
To realise the lumped-component PT-symmetric structure shown
in Fig. 1b, we have constructed a C-band single-mode-fibre-based
cavity in which all the degrees of freedom are independently
accessible, as illustrated in Fig. 1c. Gain is produced by a fibre-
pigtailed semiconductor optical amplifier (SOA), the loss is
induced by a variable optical attenuator (VOA), and optical
feedback is provided by custom-made fibre Bragg gratings (FBGs)
with desired reflectivity, central wavelength, and bandwidth
(Methods). A single polarisation is maintained by utilising a
polarisation-sensitive SOA and polarisation-maintaining optical
components. Here we keep the reflectivities of the side mirrors
fixed at R≈ 82% (left and right external FBGs M1 and M3), and
vary R2 from 7 to 99% for the intra-sub-cavity coupling FBG M2.

We first measure the lasing threshold of the PT-symmetric
configuration by gradually increasing the contrast between G and

Table 1 Comparison of the lasing threshold of a PT-
symmetric cavity with those for other configurations after
removing the loss element
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Three cavity models are considered here: a, a PT-symmetric cavity comprising sub-cavities with
balanced gain and loss GL ¼ 1; b, the same cavity configuration in (a) after removing the loss
component from its sub-cavity; c, a reference cavity with symmetric mirror reflectivities R
containing only a gain element with amplification G. In all cases, we examine the measured and
expected lasing threshold as R2 is varied. All the lasing threshold values in the table are in dB,
the value R=82% is held fixed, and the average error in the measured thresholds is ≈ 0.2 dB.
The values of the threshold for the reference cavity (c) are independent of R2
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Fig. 1 A lumped-component model of a PT-symmetric laser cavity.
a, A PT-symmetric structure formed of two homogeneous layers of
refractive indices ng and nl, (corresponding to optical gain and loss,
respectively) and equal thicknesses. PT-symmetry requires ng ¼ n�‘ . As a
reference, the gain layer alone (corresponding to the reference cavity in
Table 1) after removing the loss layer is shown on the right. b, A discrete
model composed of lumped components to replace the continuum model in
a: the interfaces are replaced with localised mirrors M1, M2 and M3, with
reflectivities R1, R2 and R3, respectively. The distributed gain and loss are
replaced with an amplifier (amplification factor G) and an attenuator
(attenuation factor L), respectively. PT-symmetry requires that R1=R3=R
and GL ¼ 1. The cavity corresponding to the gain layer alone is formed of
the side mirrors containing the amplifier. c, Schematic representation of an
experimental realisation of the PT-symmetric structured cavity shown on
the left in b using single-mode optical fibres. Specially designed FBGs are
used as partially reflecting mirrors with reflectivies R, R2, and R from left to
right. Gain is provided by a SOA and attenuation by a VOA. d, Optical setup
in c after inserting an additional 1-km-long fibre spool. A polarisation
controller (PC) is added to maintain the state of polarisation throughout the
cavity
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L, while maintaining the balanced condition GL ¼ 1 until lasing
is initiated. The PT-symmetric lasing thresholds G=GPT for
different R2 are listed in Table 1. Measurements of the thresholds
at the two limits of the above-described continuum of arrange-
ments while varying L are also listed. At L ¼ 1 (gain-lossless),
the threshold G0 is always less than GPT; whereas for L ¼ 0 (gain
sub-cavity), the threshold Gopen is always higher than GPT. The
PT-symmetric cavity may have higher or lower threshold GPT in
comparison to the threshold GRef for the reference cavity (after
removing the passive elements M2 and L). Measurements of the
thresholds in all four cavity configurations while varying R2 are
compared to theoretical values obtained by identifying the poles
of the cavity transmission (Supplementary Note 1),

GPT ¼ 1� R

2~R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� R

2~R

� �2s
; G0 ¼ 1þ ~R

Rþ ~R
; Gopen ¼ 1

~R
; GRef ¼ 1

R
;

ð1Þ

where ~R ¼ ffiffiffiffiffiffiffiffi
RR2

p
. These expressions remain unaffected whether

the cavities are deterministic or if we assume randomly varying
phases inserted in the sub-cavities.

We would like to stress the reason behind comparing GPT

with GRef and not the other three-mirror systems. Previously
considered models have usually dealt with coupled-disk or
coupled-cavity lasers that are evanescently coupled. In this
scenario, once one sub-cavity is removed from the system
(the lossy cavity, for example), the coupling also disappears.
Comparing this to our linear cavity arrangement, the coupling is
provided by the central mirror R2. Hence, in order to remove the
loss sub-cavity, a fair comparison can only be made if the
coupling mirror R2 is also removed, which is the reason for
comparing GPT with GRef.

The differences between the thresholds of the distinct cavity
configurations listed in Table 1 are most prominent at low R2,
whereupon the two sub-cavities are strongly coupled. As R2

increases, the differences between GPT, G0, and Gopen are reduced
monotonically and ultimately vanish as the amplifying sub-cavity
is effectively isolated from its attenuating counterpart. In
comparing GPT to GRef; however, we find two regimes while
varying R2. At low R2 (strong coupling), we have GPT>GRef,
whereas increasing R2 can result in GPT<GRef, therefore
indicating that introducing gain-balancing loss into the
reference cavity–counter-intuitively–may help reduce the lasing
threshold. The advantage of a PT-symmetric cavity over the
reference gain cavity is brought out in Fig. 2, where we plot the
threshold-reduction factor η=GRef/GPT. This ratio is unity when
R2=R/(1+R)2, which is identified by the black curve in Fig. 2 that
divides the parameter space into two regions: η>1 where PT-
symmetry helps lower the lasing threshold, and η<1 where it does
not. The lasing threshold is reduced despite introducing gain-
balancing loss in the cavity whenever R2 and R are judiciously
selected.

Theoretical model for the coupled-cavity laser system. The
expressions for lasing thresholds in Eq. (1) are obtained via the
transfer matrix method that posits a linear model for all the
optical components (Supplementary Note 1). As such, this
approach is not suitable for describing the lasing dynamics
whereupon the fields may experience exponential growth. In this
nonlinear regime, we employ a mean-field temporal coupled-
mode approach45 (Supplementary Note 2). The averaged field
amplitudes a and b in the gain sub-cavity and the loss sub-cavity,

respectively, are coupled through

da
dt

¼ �γ1aþ i
Δ
2
aþ g

1þ aj j2 aþ iκb; ð2Þ

db
dt

¼ �γ2b� i
Δ
2
bþ iκa: ð3Þ

Here we have introduced an effective temporal coupling
coefficient κ between the sub-cavities (to be defined below); γ1
and γ2 are temporal linear losses in the amplifying and
attenuating sub-cavities, respectively (Supplementary Eqs 18
and 19), which incorporate leakage from the side mirrors and
the loss imposed by the VOA; and g is the small-signal gain. Here,
Δ is the frequency difference between the resonances of the sub-
cavities (Fig. 3a, b); henceforth referred to as the detuning. These
parameters are all related to the mirror reflectivities and fibre
lengths (Supplementary Note 2). We introduce gain saturation in
Eq. 2 to capture the power dynamics after the onset of lasing43.
A useful feature of this model is that it can apply to a wide range
of non-Hermitian photonic systems beyond ours.

We are still missing a model for the temporal coupling
coefficient κ between the two sub-cavities. To this end, we have
adapted the Lamb coupled-cavity model46, 47. Lamb modelled the
coupling between two coupled cavities through a permittivity
bump of infinitesimal thickness, which we relate here to the
reflectivity R2. In addition, leakage from the finite-reflectivity side
mirrors effectively produces a shift in the FSR, leading to a
dependence of κ on R. These considerations lead to an expression

GRef GPT

R R
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0
0.8

0.8

R

0.6

0.6

0.4

0.4

0.2

0.2

R2

� = GRef / GPT

� 
=
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Fig. 2 Comparison of the thresholds from a PT-symmetric cavity and a
reference cavity. The threshold-reduction factor η ¼ GRef=GPT , where GRef

and GPT are the lasing thresholds for the reference gain-only cavity and the
PT-symmetric cavity configurations, respectively, shown schematically at
the top. We plot η with R and R2, and two colour palettes are used to
distinguish the regime of PT-enhanced threshold where introducing the
gain-balancing loss reduces the lasing threshold with respect to that of the
reference gain-only cavity (η>1, red palette), and PT-diminished threshold
(η<1, blue palette), delineated by a black curve (η=1). The horizontal green
line corresponds to the experimental value R=0.82, and the circles to the
experimental values of R2 (see Table 1)
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for κ,

κ ¼ vg
2n2od

1� Rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

R2

r
; ð4Þ

where d is the fibre-cavity length, vg is the group velocity and no is
the refractive index (see Supplementary Note 3 for details).

In light of the macroscopic nature of the fibre-based cavity,
we assume that the detuning Δ is a random variable. Indeed,
given the long cavity length, and thus the extremely small
FSR, slight perturbations in the experimental conditions
may cause Δ to potentially vary across the whole FSR. The
solutions are obtained numerically by carrying out an ensemble
average over a distribution for Δ, either a Gaussian distribution
P Δð Þ / exp �Δ2= 2σ2ð Þ� �

(Fig. 3c) or a uniform distribution
(Fig. 3d) as candidate models. Analysis under these considera-
tions leads to the intriguing conclusion that features associated
with the presence of an exceptional point (a non-Hermitian
degeneracy)48–55 can–in principle–still be detected.

Linear model for predicting the lasing threshold. The lasing
modes can be obtained from Eqs 2 and 3 in the steady-state. This
model is valid both before and after lasing occurs, and to ensure
the consistency of our analysis we compare computed lasing
thresholds of the PT-symmetric arrangement to those obtained
from the linear transfer matrix method (Eq. 1). To achieve this,
we linearise Eq. 2 by ignoring gain saturation and set the detuning
to Δ=0, and then determine the lasing thresholds by assuming a

harmonic ansatz for Eqs 2 and 3 of the form
a tð Þ
b tð Þ

� �
¼

a0
b0

� �
eiλt ; where

a0
b0

� �
is a constant vector. The general solution

for the eigenvalues has the form

λ1;2 ¼ � i
2

g � γ1 � γ2ð Þ± κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g � γ1 þ γ2

2κ

� �2r
: ð5Þ

Within the linear, zero-detuning, PT-symmetric configuration
(g+γ1=γ2), the two eigenvalues are λ1;2 ¼ iγ1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � g2

p
.

The lasing threshold is identified by determining the onset
for a negative imaginary component of the eigenvalues,
gth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ κ2

p
. Computing the lasing threshold based on this

model reveals excellent agreement with the predictions of
the transfer matrix method for the PT-symmetric structure
(Supplementary Fig 3).
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Fig. 3 Resonance detuning and its effect on eigenvalue bifurcation. a, In the
absence of detuning, the resonance frequencies of the gain (red) and lossy
(blue) sub-cavities are aligned. b, In the presence of detuning Δ
(�ωFSR=2<Δ<ωFSR=2), the sub-cavity resonances are no longer aligned.
c, d, Candidates for the probability distribution P(Δ) of the detuning: (c) a
Gaussian or (d) a uniform distribution. e, f, Trajectories of e the real and
f imaginary components of the eigenvalues λ1,2 for a linear PT-symmetric
configuration g+γ1=γ2. Dashed curves correspond to Δ=0, whereas the
solid curves are for the case Δ ¼ ωFSR=10. The shaded regions correspond
to all the intermediate detuning values. As the gain g increases, the real
parts of the eigenvalues Re{λ} tend to coalesce whereas the corresponding
imaginary parts Im{λ} bifurcate. The exceptional point at zero-detuning
(yellow triangle) occurs at g=κ, whereupon Re{λ}=0 and Im{λ}=γ1, thus
separating the unbroken (U) and broken (B) PT-symmetric phases. The
green circle corresponds to the experimental value for the lasing threshold
at R2=6.8% (Table 1), plotted on the axis to represent gain-clamping. Inset
in e shows the PT-cavity configuration. g, The domains of operation of a
structured cavity as dictated by the values of gain g and loss γ2 (γ2=0). The
dotted line g=γ2 corresponds to the PT-symmetric condition. The dashed
line g+γ2=2κ separates the unbroken (U, g<2κ−γ2, represented by circles)
and broken (B, g>2κ−γ2, represented by edges) domains, according to Eq.
(5). The lasing (red) and non-lasing (blue) regions are delineated by a solid
line (the lasing threshold). In U, lasing occurs when g>γ2, whereas lasing
occurs in B when g>κ2/γ2
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The behaviour of the eigenvalues while varying g displays a
bifurcation, as illustrated in Fig. 3e, f (dashed curves). When g<κ,
the eigenvalues have the same imaginary part iγ1 but distinct real
parts ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 � g2

p
. As g→κ, the real parts coalesce at zero (Fig. 3e)

whereas the imaginary components diverge along forked
trajectories (Fig. 3f). We denote the range g<κ as the unbroken
PT-symmetry regime (U), and the range g>κ the broken PT-
symmetry regime (B), separated by the exceptional point at g=κ.
The behaviour of the field is quite distinct in these two regimes
(see Supplementary Note 4 for a detailed analysis). The
unbroken-PT regime features equal field amplitudes in the two

sub-cavities
a0
b0

� �
¼ 1

± e± iθ

� �
, where sin θ=g/κ. The power

emitted from the gain and loss sub-cavity ports are thus expected
to be equal. In the broken-PT regime, the modal field is more
concentrated in the gain or loss sub-cavity having unequal

amplitudes
a0
b0

� �
¼ 1

ie± θ

� �
, where cosh θ=g/κ, leading to

unequal power emission from the two ports. Four
sharply delineated domains of operation can be identified
while varying the loss and gain independently: lasing in B,
lasing in U, non-lasing in B, and non-lasing in U, as depicted in
Fig. 3g.

We now consider the impact of detuning Δ on the
system while retaining the linear PT-symmetric condition
(GL ¼ 1). As Δ increases, the bifurcation in the real
and imaginary parts of the eigenvalues is smeared out in a
complementary fashion. Before the EP, the real part
closely resembles the zero-detuning results, but deviates
considerably after the EP. The opposite is observed in the
imaginary part: it closely follows the zero-detuning results
after the EP and diverges beforehand. It can be shown on
theoretical grounds that the presence of detuning precludes the
observation of a pure unbroken-PT mode (Supplementary
Note 5). We can nevertheless define a pseudo-unbroken
symmetry regime, whereupon a0j j � b0j j and the amplitudes
are affected in a similar manner upon changing the gain and
loss43. Note that in a strict PT-symmetric configuration (the
dashed zero-detuning curves in Fig. 3e, f), lasing will only occur
in the broken-symmetry regime, which has been the case in
previous experiments32, 33. Nevertheless, the calculations in
Fig. 3e, f show that the smearing of the bifurcation resulting
from detuning can produce lasing in the unbroken-PT regime
(see Supplementary Note 6 for a detailed analysis). Furthermore,
this restriction can be relaxed by relying on unbalanced gain and
loss (GL≠1; Fig. 3g)42.

Nonlinear steady-state coupled-cavity model for PT-lasing
dynamics. Various models have recently been put forth to study
the interplay of nonlinearity and PT-symmetry56–59. In the
structure under consideration, the lasing field dynamics, such as
power-scaling with gain, can be analysed using the nonlinear
model in Eqs 2 and 3. An important property of lasing structures
in the steady-state is that the saturated gain always clamps to the
net amount of attenuation present in the system60. A critical
consequence of this general physical restriction is that the gain/
loss contrast no longer determines the transition between dif-
ferent symmetry phases, only the loss does. We confirm this
prediction by again employing a harmonic ansatz (with Δ=0) but
without imposing a balance between gain and loss. Instead, we
regard them as independent variables. By allowing for only real
eigenvalue solutions (as a result of gain clamping), we obtain
analytical expressions for two distinct phases of field oscillation,
which we map to the unbroken and broken PT-symmetry

regimes described above:

γ2 � κ :
a

b

� �
U

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
γ1 þ γ2

� 1
r

1

± e± iθ

� �
e± i κ cos θð Þt ; ð6Þ

γ2>κ :
a

b

� �
B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
γ1 þ κ2=γ2

� 1
r

1

iκ=γ2

� �
; ð7Þ

where the parameter θ in Eq. 6 is obtained from sin θ=γ2/κ. Two
new features emerge here. In contrast to the linear model in
which the gain/loss contrast determines the boundary between
the broken and unbroken regimes, this boundary in the nonlinear
regime is dictated by the loss γ2 in the lossy sub-cavity alone. The
unbroken PT-phase (Eq. 6) is characterised by equal intensities
aj j2 ¼ bj j2 in the sub-cavities and the two nonlinear supermodes
are split in frequency by 2κ cos θ. On the other hand, the broken
PT-phase entails an unequal distribution of intensities with
aj j2> bj j2. Another important feature is that the supermodes now
exhibit fixed amplitudes because of nonlinearity, dictated by the
cavity gain and loss values, in contradistinction to the linear
regime. An intuitive explanation of loss-induced enhancement of
the lasing power is that the field profile becomes more asym-
metric across the system as the loss increases because the lasing
mode becomes increasingly localised within the gain side, thereby
leading to a rise in the lasing power IGain. Eq. (7) showing a
broken nonlinear supermode, quantitatively captures this beha-
viour since the ratio between the steady-state fields in the gain
and loss cavities, i.e., γ2/κ, increases as the loss γ2 increases.

In our experiment conducted on a macroscopic fibre system
extending for many metres, a pertinent question is whether the
observation of such prominent broken and unbroken phases is
still possible in the presence of the unavoidable resonance
detunings. As a first demonstration of the validity of the
nonlinear analysis described above, we measure the power-
scaling characteristics of the PT-symmetric laser while holding
R2=6.8% fixed and increasing the gain-loss contrast while
maintaining the balance GL ¼ 1. A unique feature of our
experimental arrangement is that the output power from the
loss and gain sub-cavity ports (IGain ¼ aj j2 and ILoss ¼ bj j2) can
be recorded separately and quantitatively (Fig. 4). It is thus
possible to determine unambiguously whether lasing is initiated
in the broken or unbroken symmetry phases. We carried out
these measurements in two cavity configurations that we denote
‘short’ and ‘long’. In the short cavity, the total length is d≈ 6 m,
which is associated with a FSR of λFSR=λ2/2nd=133 fm. The
cavity has a quality factor of Q= 5.2×107 and a finesse of F ¼ 14.
In the long cavity, we inserted an extra 1-km-long fibre spool in
the loss sub-cavity (Fig. 1d), which exacerbates the detuning
between the two sub-cavities. The total length is d≈ 1 km, the
FSR is λFSR=0.8 fm, Q=8.7×109 and F ¼ 14. The data reveals
clearly that lasing occurs in the broken regime IGain≠ILoss in both
cavity configurations. Note however that IGain≈ ILoss at low gain/
loss contrasts, which indicates that an unbroken phase is
approached, as can be expected from Fig. 3g.

To compare the data on power scaling with predicted values
based on the nonlinear model, we must include the impact of
phase detuning in the system of Eqs 2 and 3. We compute an
ensemble average over a Gaussian distribution for Δ over one
FSR; Fig. 3c. The standard deviation σ plays an important role in
determining the lasing characteristics. We fitted the results of the
coupled model for different values of σ and obtained a good
match for σ ¼ ωFSR=10. This quantifies the amount of average
resonance detuning between the two coupled-fibre sub-cavities.
Using a uniform probability distribution (Fig. 3d) predicts a
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substantially larger contrast between IGain and ILoss than that
observed experimentally.

The trends in Fig. 4 clearly show that the disparity between
IGain and ILoss continues to grow with g, thus confirming that the
mode in the gain sub-cavity further localises as the gain-loss
contrast in the PT-system is enhanced5, 15, 32–35. This is a well-
known feature of the broken-PT phase. Since the steady-state
always remains in this phase for the balanced values of γ2=g+γ1
maintained here, we deduce from the results in Eq. 2 that the
range over which the loss is varied is actually higher than the
coupling strength between the fibre cavities for R2=7%.

Observing statistical PT-symmetry breaking. Finally, we
demonstrate that our macroscopic fibre-based laser-cavity sys-
tem–despite the extreme random detuning between the sub-
cavities–still displays the signature of an exceptional point. It is
clear from Fig. 3g that transitioning between the unbroken- and
broken-symmetry phases associated with a lasing system in the
steady state can take place by varying the loss γ2 alone at fixed
gain g. Crucially, a quantitative observation of this transition
necessitates independent tuning of the gain and loss and unam-
biguous measurements of the power at the two output ports. Both
of these requirements are satisfied in our experimental arrange-
ment. We vary γ2 via the VOA after holding g as provided by the
SOA fixed at a value well above the lasing threshold of the gain
sub-cavity, such that lasing occurs regardless of γ2. We have
carried out this experiment for four values of single-pass ampli-
fication (G=15,20,25,30 dB), and for each value we sweep the
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contrast. Plot of the output power from the loss and gain laser cavity ports
as the gain-loss contrast is increased while maintaining the PT-symmetric
balance GL ¼ 1; inset shows the cavity configuration. Measured values are
shown as circles and crosses for cavity configurations of total lengths
d=6m and 1 km, respectively. The solid blue and red curves are simulations
of the output power from loss and gain ports, respectively, obtained from
the nonlinear model of the coupled fibre system in Eqs 2–3 after making use
of measured values for the model parameters and fitting the detuning Δ
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VOA single-pass attenuation from 0 to 25 dB while recording the
lasing power at the two output ports. Increasing the loss results in
a monotonic drop in power from the loss port as might be
expected (Fig. 5c, d). However, the result for the gain port is
counter-intuitive: the power initially drops with increasing loss,
but then increases as further loss is added (Fig. 5a, b). This
increase in lasing power with additional loss is particularly visible
when the gain is held at 30 dB. At a gain of 15 dB, this effect has
vanished and a transition is no longer detectable.

Loss-induced enhancement of lasing power has been observed
in microcavities and is attributed to the notion of an exceptional
point. While the same effect is observed in this macroscopic
cavity, it is worth mentioning that strictly pure broken and
unbroken phases do not exist in this cavity because the
propagation phases are not deterministic. Yet, even in this
statistical environment, we have confirmed that a PT-phase
transition is still observable in such large-scale active cavities.

We note that a perfect eigenstate coalescence disappears in our
system as a consequence of the statistical fluctuations. But this
does not have a detrimental effect on the expected response of
the system: the behaviour of eigenvalues is smoothed out when
the loss γ2 is varied. In other words, instead of coalescing, the
eigenvalues still approach each other around the original location
of the EP (associated with the zero-detuning case) and also tend
to bifurcate afterwards. This is the reason why a loss-induced
enhancement of lasing power is still observable in our randomly
varying system (see Supplementary Fig. 5 for details).

Discussion
Early studies of PT-symmetry focused solely on deterministic
models, owing to the micro-scale nature of the coupled resonators
and waveguides investigated. In such settings, the impact of a
fixed deterministic detuning can be easily understood. In contrast
to this scenario, the random phase fluctuations in macroscopic-
scale photonic systems lead to drastic detuning between coupled
cavities that may span, in principle, the full FSR. Carrying out an
ensemble average over a range of outcomes becomes necessary,
and it is not clear a priori that the essential features of PT-
symmetry will survive.

It is worth mentioning that a complete elimination of detuning
between coupled resonators is obviously not possible due to
unavoidable fabrication imperfections. However, micro-scale
settings afford the benefit of not only restricting the detuning
to small values in comparison with the cavity FSR but also of
having the detuning approximately invariant over time. We
deliberately dispense with such near-ideal configurations in order
to study non-Hermitian effects in a statistical system. In the
coupled-fibre arrangement considered here, the detuning between
the cavity resonances is of the order of the FSR and also fluctuates
randomly over time.

In this work, we have presented the realisation of a statistical
PT-symmetric lasing structure using coupled fibre cavities
extending over a kilometre in length. An important outcome of
our experiment has been the persistence of many essential fea-
tures of the deterministic formulation of PT-symmetry. For
example, the lasing threshold was found to be robust against
random phase fluctuations. Indeed, the lasing threshold in a PT-
symmetric cavity containing a gain-balancing loss can be lower
than that of the same cavity after removing the loss and the
coupling mirror, thus potentially providing significant benefits
compared to a gain-only cavity. In all cases, the experimental
results are in agreement with theoretical predictions after
ensemble averaging over a Gaussian distribution of detuning
values.

With regards to lasing power emerging from the gain and loss
ports of our structure, we have observed a transition between the

two well-known phases of unbroken and broken symmetry in this
statistical system occurring around an exceptional point. The
presence of random phase fluctuations; however, prevents a
complete coalescence of eigenvalues and thus precludes the
observation of a pure unbroken phase where the lasing powers
from the gain and loss ports are equal. Crucially, in this nonlinear
system the transition behaviour between the unbroken- and
broken-symmetry phases is dictated only by the loss in the lossy
sub-cavity. Despite the statistical nature of the experimental
arrangement, the optical power decays from both the loss and
gain cavities with increasing cavity loss until the exceptional point
is reached, after which the power counterintuitively begins to rise
at the gain port with further increase in the incorporated loss.
Such loss-induced transparency and lasing effects have so far
been observable only in micro-scale devices. Our results thus
indicate that the notion of PT-symmetry–and non-Hermitian
optics in general–may have impact on large-scale non-
deterministic platforms such as fibre networks.

Methods
Experimental arrangement. In the fibre-based cavity, the mirrors are custom-
made FBGs on single-mode fibres (SMF28) in the C-band (O-Eland Inc., central
wavelength ≈ 1552.5 nm, bandwidth ≈ 5 nm). The gain of the SOA is fine-tuned
(resolution < 0.05 dB). Similar fine-tuning for optical attenuation is achieved by
cascading the VOA (Thorlabs VOA50PM-APC) with a secondary SOA (Thorlabs
BOA1004P), which enables high-resolution adjustment of the net loss in the lossy
sub-cavity. The gain spectra of the SOAs were calibrated over the bandwidth of
operation (5 nm) using a tunable laser (Agilent 8164A Mainframe with 81680A
Tunable Laser Source Module). The VOA employed in our setup has a flat spec-
trum since it induces loss by physically blocking the optical beam. All fibre pigtails
are APC-type to minimise unwanted reflections at the fibre connections. All the
SOAs operate in the TE-polarisation mode, and we ensure that the polarisation of
the fibre mode is TE when it reaches the SOAs. In all the experimental config-
urations (except the long cavity), the fibres are polarisation-maintaining and the
beam polarisation remains TE when circulating throughout the cavity. For the long
cavity, we use polarisation controllers to guarantee that TE-polarisation reaches the
SOAs. The output power from each port is recorded by an optical spectrum
analyser (OSA, Advantest Q8381A) with a spectral resolution of 0.1 nm.

Ensemble averaging in the presence of random detuning. The simulation
results provided in Figs 4 and 5 for the nonlinear system of Eqs 2–3 were carried
out by first finding steady-state values of aj j2 and bj j2 for a specific value of the
detuning Δ. We then compute an ensemble average for these steady-state inten-
sities over a full FSR assuming either a Gaussian or a uniform probability dis-
tribution for Δ. This is explained in Supplementary Note 7, and the equation
involved is stated here for convenience:

hIðssÞa;b i ¼
Z ωFSR=2

�ωFSR=2
I ssð Þ
a;b Δð ÞP Δð ÞdΔ ð8Þ

Here P(Δ) is the probability distribution followed by the detuning Δ and I ssð Þ
a;b is

the steady-state intensity found for a specific value of Δ. To obtain the final curves
given in Figs 4 and 5, this procedure is followed for each parameter value over the
whole range of the loss γ2 and gain g.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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