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ABSTRACT 
 

We review the potential and limitations of a temperature-dependent Raman Scattering Technique (RST) as a non-
destructive optical tool to investigate the thermal properties of bulk Chalcogenide Glasses (ChGs). Conventional 
thermal conductivity measurement techniques employed for bulk materials cannot be readily extended to thin films 
created from the parent bulk.  This work summarizes the state of the art, and discusses the possibility to measure 
more accurately the thermal conductivity of bulk ChGs with micrometer resolution using RST.  Using this 
information, we aim to extend the method to measure the thermal conductivity on thin films. While RST has been 
employed to evaluate the thermal conductivity data of 2D materials such as graphene, molybdenum disulfide, carbon 
nanotubes and silicon, it has not been used to effectively duplicate data on ChGs which have been measured by 
traditional measurement tools. The present work identifies and summarizes the limitations of using RST to measure 
the thermal conductivity on ChGs. In this technique, the temperature of a laser spot was monitored using Raman 
Scattering Spectra, and efforts were made to measure the thermal conductivity of bulk AMTIR 1 (Ge33As12Se55) and 
Ge32.5As10Se57.5 ChGs by analyzing heat diffusion equations. To validate the approach, another conventional 
technique - Transient Plane Source (TPS) has been used for assessing the thermal conductivity of these bulk glasses.  
Extension to other more complicated materials (glass ceramics) where signatures from both the glassy matrix and 
crystallites, are discussed. 

Keywords: Chalcogenide Glasses, Raman Scattering Technique, Transient Plane Source Method, Thermal 
Conductivity 

 

1. INTRODUCTION 

 
Chalcogenide glasses (ChGs) are of interest for both basic research and technological applications because of their 
unique optical and electrical properties1,2. They have good transparency in the infrared region and can be molded 
into lenses and drawn into fibers 3,4. ChG lenses are commercially used as optical components for infrared cameras 
and detectors, and ChG fibers are used in waveguides for use with lasers, for optical switching, chemical and 
temperature sensing and phase change memories 5-7. Thermal performance is a key consideration for applications 
such as photo-thermal sensing. The lower thermal conductivity of ChGs provide an extra motivation for planar 
ChGs cavities for ultra-sensitive photo thermal detection. Based on the photonic and thermal design considerations, 
a material Figure-Of-Merit (FOM) can be defined as: 
ܯܱܨ                                                                               = ݊. ଵ . ௗௗ்                                                                              (1) 

where n is the material’s refractive index, K denotes the thermal conductivity, and dn/dT gives the thermo-optic 
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coefficient. It is important to quantify thin film and bulk material thermal properties to provide detailed data 
enabling the modeling and fabrication of planar devices. However, much of the literature data available provides 
conductivity data only on bulk samples, making extension to films imprecise.  This fact is compounded in the case 
of glass films, where deposition-method structural variation has been shown to modify resulting physical and optical 
properties8.  Understanding the thermal conductivity of thin films would allow more precise understanding of multi-
material integration behavior associated with heat transfer through packaged structures. While specific data 
comparing (parent) bulk/thin film properties is limited, the thermal conductivity (K) of thin film materials is usually 
different from their bulk counterparts. For example, at room temperature, thermal conductivity of a 20 nm Si film 
can be a factor of five smaller than its bulk single-crystalline counterpart 9 and thermal conductivity of a suspended 
single layer graphene is at least five times larger than the corresponding value for bulk graphite 10. These variations 
have been hypothesized to be attributable to material microstructural variation of films versus bulk, substrate 
contributions to heat flow from the film or film thickness variations 11-13.  Additionally, many techniques often 
employed for bulk materials (typically thickness is greater than the mean free path of its heat carriers), cannot be 
extended to thin films.  This motivates further experimental efforts to measure the variation in thermal conductivity 
of chalcogenide glass thin films from the parent bulk glass materials and their stability in physical properties 
following deposition.  

Recently, a Raman Scattering Technique (RST) has been proposed as another optical method capable of measuring 
the thermal conductivity of both thin film and bulk materials.  Using a strongly focused laser beam, this technique 
potentially offers a spatial resolution on the micrometer scale. Such scale length capability is needed in the case of 
films in planar photonic structures, typically on the order of ~0.5 µm thick by a few µm2 wide (such as waveguides 
or resonators) as deposited on Si substrates. The temperature dependence of the Raman active phonon modes carries 
a great deal of information about the thermal conductance of the material or device investigated. Together with 
sufficient knowledge of sample geometry, the path (lateral/radial or axial) of heat flow in the sample, and the known 
(laser) excitation power it is possible to obtain the Thermal Conductivity (K) of bulk as well as thin film materials. 
To date, the technique has been used by several groups and has shown practicality in extracting the thermal 
conductivity data of 2D materials such as graphene and molybdenum disulfide; carbon nanotubes; silicon; and 
chalcogenide glasses 10,14-17. However, there are limited reports to measure the thermal conductivity on 
Chalcogenide glasses using RST 16.  

The present work identifies and summarizes the limitations of using RST to measure the thermal conductivity of 
bulk AMTIR 1 (commercial sample; composition of Ge33As12Se55) and Ge32.5As10Se57.5  ChGs. The commercially 
available AMTIR 1 is used as a reference in the following evaluation and the composition Ge32.5As10Se57.5 was 
chosen in an attempt to duplicate results of Gan et al. 16.  We used these samples to evaluate and define suitable 
measurement conditions to determine the glass’ thermal conductivity using RST.  

2. EXPERIMENTAL METHODS 

Ge32.5As10Se57.5 glass was prepared using a standard chalcogenide melt-quench protocol. Specific to this study, 
elemental Ge, As and Se (Alfa Aesar, minimum 99.999% purity) were individually weighed out in their appropriate 
ratios in a glovebox with a N2 atmosphere and placed in fused silica tubes (10 mm inner diameter) to create 25 g 
batch. The elemental starting materials were weighed out to an accuracy of ±0.005 mg, which translates to an 
approximate “batch sheet” error of 0.1 atomic% for each element. After the raw materials have been placed in the 
silica ampule, a vacuum fixture was then placed on the end. The evacuated tube was sealed-off using an oxygen- 
methane torch to create a sealed ampule for melting. The ampule was placed in a rocking furnace at room 
temperature. The rocking furnace was increased to a melting temperature of 900 °C, at a rate of 1.5°C /min, and held 
for ~16 hours for both glasses. The following day, the temperature of the furnace was decreased to 750 °C at a rate 
of 1.5 °C /min. The melt was then quenched to these temperatures using forced air. Bulk samples were subsequently 
annealed at 300oC for 2 hours to relax quench related stresses in the glass.  

Transmission spectra was measured using Cary 500 UV-VIS NIR spectrometer on thick polished samples, over a 
spectral range of 0.2 to 2µm.  
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2) Local Temperature, TL: The absorption of the laser beam by the sample induces local heating that raises the 
temperature in the vicinity of the laser spot, and this results in the observed TL. Local temperature, TL is directly 
related to the thermal conductivity, K, and several parameters can influence the resulting heating effect.  For 
example, TL can be influenced by: 

• Raman excitation wavelength 
• Laser power  
• The specimen’s coefficient of absorption at the excitation wavelength 

During a micro-Raman experiment for measuring the thermal conductivity, it is important to use an appropriate laser 
power because high laser power can significantly increase the local temperature, and affects the Raman spectra by 
broadening and shifting of the Raman peak(s).  In addition, the risk of possibly inducing local damage to the sample 
(photo-structural, ablative, melting).  Additionally, the excitation wavelength should be as far away from the 
material’s bandgap as possible, to minimize photo-induced structural modification.  Such modification during 
measurement, changes the as-formed glass network structure and thus, it’s intrinsic thermal properties. To determine 
the thermal conductivity from RST, it is important to control and measure the local temperature accurately.  
 
In this work an effort was made to measure the Thermal Conductivity (K) from RST using equation (2) employing 
multiple approaches ways: 
 
1. Considering the radial heat flow, Yu-Lin Gan et. al.  have derived an expression for thermal conductivity for 
chalcogenide glasses 16: 

ܭ                                                                                   =	 ଶ	(డ௪ డ்ൗ )గ	(డ௪ డൗ )                                                                            (3) 

where ∂w/ΔT is the change in the Raman shift with temperature, a is the diameter of the laser spot and ∂w/∂ΔP is the 
change in the Raman shift with laser power. Extracting the thermal conductivity using equation 3, requires two 
complementary effects. The first one is the local heating caused by the laser beam focused on the sample. The 
second effect is the shift of the Raman peak with temperature. The two slopes ∂ω/∂T (change in the Raman shift 
peak with temperature) and ∂ω/∂P  (excitation power dependence of the Raman peak) can be used to calculate the 
thermal conductivity. 

2. In another approach Stokes and anti-Stokes Raman bands intensity and can be used to determine the local 
temperature (TL) which is related to the Thermal Conductivity. The intensity ratios of Stokes and anti-Stokes Raman 
bands are determined by Boltzmann’s law:  

                                                                          ூಲೄூೄ = (ఔಲೄఔೄ )ସexp	( ିఔಳ்ಽ)                                                                       (4) 

where, IAS and IS are anti-stokes and stokes intensities, vAS and vS are anti-stokes and stokes frequencies, v is the 
input laser frequency, h Planck’s constant, kB is Boltzmann constant and TL is the local temperature 20. 

Considering the heat source induce shallow heating on the layer, that the layer thickness is at least one order larger 
than the heat source diameter, than the distribution of the isotherms within the layer is hemispherical, S. Perichon et. 
al.  have derived an expression for thermal conductivity for porous silicon using equation17: 

ܭ                                                                                 =	 ଶ	గ	(்ಽି்್)                                                                              (5) 

where K is the thermal conductivity, P is the laser power, a is the diameter of the laser beam, TL is the local 
temperature and Tb is the bulk temperature. In this approach local temperature was measured using the stokes and 
anti-stoke spectra for a given power and which leads to the material thermal conductivity.  
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Discussed below are findings from initial efforts to employ the above technique(s) to evaluate the thermal properties 
of bulk ChG materials and to provide validation of the technique and its potential to provide reliable property data.  
 
 

 
 

Figure 3: Shows the Raman Spectra of AMTIR 1 and Ge32.5As10Se57.5 bulk glass at room temperature. 
 
Figure 3 shows the Raman spectra collected from AMTIR 1 and Ge32.5As10Se57.5 at room temperature. Raman 
spectra were measured using 785 nm excitation wavelength with power of 1mW. As seen in the Figure 3, the 
prominent peak around 192 cm-1 was observed for AMTIR 1 and Ge32.5As10Se57.5, respectively, and can be attributed 
to the vibrational modes of the corner sharing GeSe4 tetrahedrons21.  
 
To measure the thermal conductivity from our first approach using equation 3, Raman spectra were recorded at 
different temperatures and different powers. Red shift of Raman peak position of AMTIR 1 and Ge32.5As10Se57.5 
recorded at temperatures between 25oC and 200oC are presented in Figure 4(a) and 5(a) respectively. For 
measurements recorded at different temperatures the excitation power levels were kept relatively low to prevent 
local heating. As seen in Figures 4 (a) and 5(a) Raman peak position shows the linear dependence on the sample 
temperature. The data of the peak position versus temperature were fitted using the equation: ݓ = ݓ	 + ߯ܶ, where 
wo is the frequency of the vibration at absolute zero temperature and	߯  is the first order temperature coefficient. The 
slope of the fitted straight line represents the value of ߯. The value of ߯ for AMTIR 1 and Ge32.5As10Se57.5 were 
found to be (-0.82 and – 0.96) x 10-2 cm-1/oC, respectively.  As expected, a good linear correlation between the 
Raman shift of the Stokes peak and the sample temperature can be observed over this temperature range. As 
explained earlier this effect is attributable to thermal expansion and changes in the population of the vibrational 
energy levels with increasing temperature which originates from the anharmonicity of the potential. Figure 4 (b) and 
5 (b) shows the Raman spectra obtained at room temperature with 785 nm laser excitation wavelength for different 
laser powers. It is clear that changing the power of the laser beam has no effect on the Raman peak position. We 
asuume this is because the power of the laser beam is not high enough to cause sufficient heating to raise the local 
temperature of the sample.  
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