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A synchronously pumped Kerr cavity is proposed and studied for power-efficient
frequency comb generation in optical microring resonators. The system is mod-
eled using the Lugiato-Lefever equation. Analytical solutions are provided for an
ideal case and extended by numerical methods to account for optical loss and
higher orders of dispersion. It is shown that the average power requirement is
reduced by the duty cycle of the pulse with respect to the conventional continuous-
wave-pumped microrings, and it is significantly lower than the pulsed pumping
of straight waveguides. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4983113]

Frequency combs are composed of a series of short and high-power pulses in the time domain
that translate into a broad comb in the frequency domain. This duality translates into a host of
applications for optical combs.1,2 For instance, the broad spectrum facilitates spectroscopy in regimes
from the ultraviolet (UV) to the infrared (IR),3 wherein a high peak power of the pulses is necessary
for precision distance measurements to overcome noise.4 Atomic clocks, where combs are used
to count the optical cycles, are another important application.5 In conjunction with the quest for
miniaturization, there has been a strive toward reducing the footprint of frequency optical comb
sources using continuous-wave (CW) pump sources. The first step was the demonstration of frequency
comb generation in whispering-gallery mode resonators,6,7 followed by a demonstration of on-chip
frequency comb generation on silicon nitride.8 The transition from smooth laser-ablated structures
to etched waveguides, however, came at the expense of a higher threshold power (e.g., ≈1.3 W).8

Additionally, the conversion efficiency for the generation of frequency combs is low and on the order
of 1% to 2% for CW pumping.9

To overcome this power-efficiency shortcoming, we have previously proposed pulsed pumping
in a fully integrated on-chip frequency comb source.10 The notion of a synchronously pumped Kerr
cavity was first theoretically explored in fibers.11 The system has drawn particular interest due to its
chaotic and bistable behavior.12 Synchronous pumping with sinusoidal input, coming from a beat
signal of two CW sources, was first suggested in Ref. 13 as a means of frequency comb generation.
Furthermore, wide Gaussian pulses with sinusoidal modulation are proposed for storing solitons in
optical memory devices.14 A synchronously pumped fiber Kerr cavity has been studied in optical
fibers for observing spontaneous symmetry breaking.15 Soliton formation in a 10 GHz fiber cavity
pumped by picosecond pulses has recently been demonstrated experimentally.16

In this letter, synchronous pulsed pumping is studied for the first time in the context of octave-
spanning optical comb generation in integrated microring resonators. Microrings offer the possibility
of a compact, chip-size stable frequency comb source. The Lugiato-Lefever (LL) model is employed
here,17 which can be shown to be equivalent to the coupled-mode equations formalism.17 We show
that for broadband frequency comb generation, essential for f–2f referencing, the large dispersion
slope (β3), of the microring resonators results in the generation of the Cherenkov radiation and a
change in the solitons group velocity that has to be compensated by adjusting the repetition rate of the
driving pulse train. Such an effect is not observed in the aforementioned narrow-band synchronously
pumped fiber-based combs,16 due to lower dispersion in fibers. The power efficiency of the proposed
approach is explored, and the design and modeling guidelines are developed.
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The paper is structured as follows. We first present an analytical expression for a special lossless
case with a soliton pulse pump, sech(τ), to develop basic understanding of the system behavior.
Next, losses are included for a sweep of Gaussian input pulses where the pulse width is varied. Next,
we add a third order dispersion term and discuss the effects of the Cherenkov radiation. Finally, an
experimentally feasible 10-GHz ring architecture pumped by a mode-locked laser is simulated and
compared against both CW pumping of microrings and pulsed pumping of straight waveguides.

The Lugiato-Lefever (LL) equation17 is a mean-field model of microresonator behavior, where
the effect of coupling is averaged over each round trip. The two equations from the Ikeda map
approach governing pulse propagation and periodic boundary conditions are reduced to one making
it computationally more efficient.18 The full LL equation is

tr
∂A
∂t
= [−

α + θ
2
− iδ0 + iL

∑
k>2

βk

k!
(i
∂

∂τ
)k + iLη |A|2]A +

√
θAin, (1)

where t is the slow time of the cavity (duration of multiple roundtrips), τ is the fast time in the moving
frame of reference, α is the integrated loss, θ is the coupling loss, L is the length of the cavity, tr is
the round trip time, δ0 is the detuning or the phase difference between the driving field and the cavity
resonance, η is the Kerr non-linearity coefficient (= 2πn2

λpAeff
), Ain is the envelope of the pump field, and

A is the envelope of the field in the cavity.
Initially, only the second-order anomalous dispersion (β2) is retained and the normalized version

of the same equation is used,19 i.e.,

∂A
∂t
= [−1 − i∆ + i

∂2

∂τ2
+ i|A|2]A + Ain(τ). (2)

The normalization is achieved via the following transformations: t→ (θ + α)t/2tr , A→√
2Lη/(α + θ)A, τ→

√
(α + θ)/L | β2 |τ, ∆= 2δ0/(α + θ), and Ain→

√
8Lθη/(α + θ)3Ain.

First, we note that there exists an analytical solution to the steady state,13 lossless LL equation

[−i∆ + i
∂2

∂τ2
+ i|A|2]A + Ain(τ)= 0, (3)

where the input and the field inside the cavity are given by

Ain(τ)=
C1

cosh(C2τ)
, A(τ)=

C3

cosh(C2τ)
, (4)

with the coefficients related by |C3 | =
√

2C2 and ∆C3 − 1/2|C3 |
2C3 + iC1 = 0. Physical intuition

suggests that if the input pulse is wide, it can be locally approximated as a constant background for
which the stable solutions are known. Mathematically, this concept is encompassed by the method
of matched asymptotics (MA). For τ << 1, Ain is constant, i.e., Ain = C1, and the stable solution to
(3) is known.20 Far away from the center of the pulse τ = 0, the solution is just the soliton obtained
from (4). The field inside the cavity is the sum of these two minus the overlap at τ =∞. Following
this method, the compressed pulse is given by

A(τ)=
C3

cosh(C2τ)
+

2A0 sinh2 α

1 − cosh α cosh(Bτ)
, (5)

where the coefficients are related implicitly via α as

C1 = i

√
4∆3 cosh2 α

(1 + 2 cosh2 α)3/2
, A0 =

√
∆/(1 + 2 cosh2 α), (6)

and B=
√

2A0 sinh α.
The relation for coefficients of Eq. (4) is a third-order polynomial, and thus, in principle, there

can be three solutions of C3, the smallest of which (widest pulses) was found to be stable. Also, two
solutions are available for a constant pump power (CW) case, referred to as ψ+ and ψ− in Ref. 20.
ψ− is stable and has been used in the construction of the solutions presented in (5). An excellent
agreement between the above approximate analytical solution and the numerical solutions, produced
by the Newton-Raphson method, is evident in Fig. 1.
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FIG. 1. (a) Excellent agreement between the matched asymptotics (MA) method and the numerical solution from the Newton-
Raphson (NR) solver plotted for ∆= 12, zero loss, and C1 = 6. (b) Solitons formed from Gaussian pulses, exp(−τ/τp)2, are
the same as those from the CW background provided that the loss and the detuning are the same (∆= 4), and the peak power
of the pulse is equal to the CW background (Ain = 2). All solutions are stable, as confirmed using the split-step Fourier time
evolution method.

Since the output solitons formed from pulses have the same shape as those formed from a CW
pump, it can be inferred that when the locally flat approximation holds for input pulses, the average
power requirement for a pulse pump will be a fraction of the CW power, that is, the duty cycle of
the pulse with respect to CW. This is an important, yet simple, finding of this work for the comb
generation in microring structures.

So far for the analytical treatment, loss was not considered in Eq. (2). In the next section, we retain
it and use Gaussian pulses, exp(−τ/τp)2, for the input field. A computationally efficient method of
investigating the steady state solutions utilizes a Newton-Raphson (NR) solver21 and a continuation
method.20 The single soliton state for the CW case, generated by the split-step Fourier method time-
evolution code,22 is used as the initial guess for a NR solver. We wish to find a steady-state solution
to the case of pulse pumping while knowing the solution to the CW case. Thus, we use a NR solver
to smoothly transform the solution from the extreme case τp =∞, i.e., CW case to that of the desired
input pulse width. The peak power and the detuning have to remain constant in this transformation.
The steady state solutions are plotted in Fig. 1. The stability of the solutions is confirmed monitoring
their time evolution in the split-step Fourier method code with initial amplitude noise (max amplitude
10�7). The noise is added to seed any potential instabilities. It is evident that the solitons formed from
pulses have the same functional form as those formed from the CW case. The observation remains
valid for relatively short pulses τp = 3 in comparison to solitons with a full-width at half maximum
(FWHM) of 1.25 and for different pump powers and detunings, as long as the undesired spontaneous
symmetry breaking does not occur. The temporal symmetry breaking manifests itself as the soliton
forming on one side of the input pulse.15

We also confirmed that the soliton formation (pulse compression) can be achieved starting from
Gaussian pulses themselves. The time evolution of the LL equation is studied using the split-step
Fourier method. The detuning is changed non-adiabatically to induce various phases. First, as in
the CW case,22 the modulation instability develops on top of the input pulses. Next, after an abrupt
increase of detuning, unstable breathing solitons appear, which coalesce and break apart. Finally, the
detuning is adjusted to obtain a stable single soliton phase. An example of such evolution is shown
in Fig. 2(a). The compression can be also achieved via increasing the input pulse power in abrupt
steps.

Next, we add a third order dispersion term. To accentuate the effects, the term is arbitrarily
chosen as −0.12 ∂

3A
∂τ3 . The additional dispersion term perturbs the solitons and results in an emission

of a dispersive wave, referred to as the Cherenkov radiation.21,23 The dispersive wave creates an
additional peak in the spectrum, but more importantly leads to a temporal drift of solitons in the
moving reference frame. Since the drift velocity is constant, this would experimentally correspond
to a change of the spacing of comb lines. It also means that, in the simulations, the pump pulse has to
drift with the solitons to form stable solutions, as demonstrated in Fig. 2(b). If the pump is allowed to
drift with the solitons, all the above-discussed observations regarding soliton formation remain valid.

Finally, realistic simulations on a specific material system for a microring cavity are presented
here utilizing the full Lugiato-Lefever equation (1). The physical parameters are borrowed from
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FIG. 2. (a) The path toward pulse compression (single soliton formation) closely follows that of the CW case. The plot shows
the power in the cavity on a log scale and corresponding selected snapshots. Initially, the pulses develop a modulational
instability (MI) for ∆= 0, t < 20. After an abrupt increase in the detuning at t = 20,∆= 2, unstable breathing solitons appear,
which coalesce and break apart; at∆= 4.16, t = 80, they condense on a stable single soliton solution. The simulation performed
for the Gaussian input pulse, 2.0 exp(−(τ/10)2). (b) The same simulation parameters as in (a) are used except that the 3rd

order dispersion is added, −0.12 ∂
3A
∂τ3 ; this causes the soliton to emit a dispersive wave (Cherenkov radiation) that affects its

group velocity, and the soliton drifts in the simulation in the moving frame of reference. For the single soliton state to be
stable, the input pulse has to also drift (the repetition of the input pulses has to be adjusted).

our recent experimental results on chalcogenide glass (Ge23Sb7S70),24 as well as further dispersion
and nonlinear index measurements we have performed on the material. The platform’s loss has been
steadily decreasing.24,25 Accordingly, the following values are assumed: 2 mm radius corresponding
to 10 GHz free spectral range (FSR), γ = 1.92 W�1 m�1, propagation loss of 0.2 dB/cm, critical
coupling, and β2 =−6.9 × 10−26 s2 m�1. It is noted that chalcogenide glasses have a higher nonlin-
ear coefficient than silicon nitride which has been used for frequency comb generation.8 The higher
nonlinearity of the material can compensate for the higher losses, as verified by our models. The super-
continuum generation on this platform has been demonstrated experimentally by our collaborators
and us.26

Regardless of the material system choice, the power requirement is reduced by the duty cycle of
the pulse with respect to the CW case. The simulated field inside the cavity and the corresponding
spectra are shown in Fig. 3. For an octave spanning spectrum generated in a 10 GHz system, the
CW power requirement in the bus waveguide was found to be 10 W, which is experimentally hard to
achieve. It is reduced to a manageable average power of 130 mW (1.3%) for Gaussian input pulses
(τp = 1 ps) and 200 mW (2%) for more realistic breathing mode-locked lasers (MLL) that could be
integrated on the same chip.27,28

It is known that the pulse compression can be also achieved in straight waveguides,29 and thus
a comparison of the power efficiency with this approach would be useful. As summarized in Fig. 3,
for Gaussian pulses with τp = 1 ps, the required peak power is 80 W in order to attain similar comb
bandwidths of the microring cases. This power is 8 times higher than the above synchronously
pumped microring cavity. The optimal propagation distance for which the spectrum is the broadest
was found to be 30 cm, which demonstrates that, on top of better power efficiency, the rings provide
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FIG. 3. (a) Comparison of compressed pulses in the 100 ps ring cavity plotted together inside a 10 ps window. The Gaus-
sian in all plots corresponds to the width of τp = 1 ps and MLL is a breathing mode-locked laser. The solitons formed
inside the ring cavity are the same provided that the peak of the pulse is the same as the CW background. The oscillations
present next to the solitons are the Chernekov radiation. (b) Octave spanning spectra of the pulses from (a) after coupling
into the bus waveguide. Also shown is the case of supercontinuum generation in straight waveguides using Gaussian input
pulses. For the supercontinuum to reach a similar bandwidth as in the case of a cavity, the average power has to be 8 times
higher.

compactness for the same performance, but at the expense of increased complexity in the system
architecture, as discussed above. The spectrum of the supercontinuum from straight waveguides is
flatter, but the waveguide dispersion was designed such that the Cherenkov radiation boosts the power
of the microring spectra at the short (1223 nm) and long (2456 nm) sides. This is essential for f–2f
referencing.

Pulsed pumping of a microring cavity is more complicated than using the CW pump, nevertheless
we believe that it is experimentally feasible. Such a system has been demonstrated in fiber cavities23

and it could be transferred to microring resonators, as outlined in the following. For precise control
of the cavity detuning, part of the MLL beam could be tapped off and injected into the laser in the
counterpropagating direction. Locking would be achieved by monitoring the coupled power. The low
power of the counterpropagating beam would ensure locking of the carrier frequency to the closest
CW resonance, and thus detuning of the main beam could be precisely controlled using, for example,
a phase modulator. Consequently, the soliton formation process of Fig. 2(a) would be experimentally
possible. Either the MLL or the cavity could be controlled thermally to achieve matching of the
FSRs. Furthermore, Ref. 16 demonstrates that for a 10-GHz fiber cavity, the soliton remains locked
to the driving pulse train over 10 s of kHz, thus exact FSR matching may not be necessary. The
important finding of the present work is that in microrings, which are much more dispersive than
fibers, the soliton emits a dispersive wave that results in solitons with different group velocity than
the CW light case. This difference in FSRs of the soliton and the cold cavity is constant and can
be extracted from the simulations and will have to be taken into account in the actual experiment.
Finally, we note that using a MLL is conceptually similar to using a CW light modulated at the
repetition rate of the cavity,30 which supports the feasibility of the proposed scheme. Also, Ref. 30
has shown that parametric seeding has an added benefit of suppressing undesirable non-equidistant
combs.

In conclusion, a synchronously pumped Kerr cavity is proposed for octave spanning frequency
comb generation in integrated microrings and its power efficiency benefits are analytically and
numerically modeled. It is demonstrated that for pulsed input, solitons remain the fundamental
solution of the system; hence the power requirement is reduced by the duty cycle of the pulse
with respect to CW pumping of the same rings. When compared with straight waveguides, the pro-
posed approach benefits from the power enhancement of the microring and hence again lower power
requirement.
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Government. We also thank Meer Nazmus Sakib for performing chalcogenide depositions, Seyfollah
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