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1.  Introduction

High-power short laser pulses are widely used in various 
applications involving strong laser-matter interactions, such 
as laser material processing [1, 2], tissue ablation in medi-
cine [3, 4], and ion acceleration from solids in experimental 
high-energy physics [5, 6]. The mechanisms and the results of 
these interactions depend on the power density, the duration 
of the laser energy deposition, and the material properties. 
These behaviors have stimulated studies of processes occur-
ring in different materials under high-power excitation with 
laser pulses of variable duration. In particular, the appropri-
ate choice of pulse duration within the femto- and picosecond 
ranges helps to optimize ablation regimes in different mat
erials, allowing the required quality, rate, and cost of process-
ing to be achieved [7–11].

Two approaches have typically been employed to vary laser 
pulse duration, i.e. multi-laser and single-laser techniques. 
The multi-laser approach involves the use of different lasers 
with different pulse durations [1, 2, 7], and the range and 
specific value of the pulse width are limited by the number 
of available lasers. The obvious disadvantage of this method 
is the need for both realignment of the optical system after 
laser replacement and adjustment of the focusing optics for 
different beam configurations from different lasers. In con-
trast, the single-laser approach, which has been employed in 
[8–11], is based on a standard technique utilizing compression 
of chirped femtosecond pulses by pairs of surface diffraction 
gratings [12]. The pulse width is varied by altering the grating 
distance and can be expanded up to hundreds of picoseconds. 
However, this technique typically requires expensive fem-
tosecond laser equipment and precise control of the grating 
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alignment after each distance change. In addition, application 
of this technique with high-power pulses is limited by the low 
damage threshold of the surface gratings and by difficulties 
regarding the stretching of pulses with initial durations of a 
few picoseconds or longer. The development of laser systems 
with variable pulse duration in picosecond range continues 
mostly with the utilization of surface diffraction gratings [13, 
14]. A simple method to control the duration of short laser 
pulses can be also implemented based on apparatus contain-
ing a dispersive element and focusing optics [15]. However, 
in that case, the controllable pulse width exists in the near dif-
fraction zone in the focal plane only. Depending on whether 
or not a sample is placed before or after the focal plane, the 
different regions on the sample are pumped at different times.

A relatively new type of optical element, a volume Bragg 
grating (VBG) in photo-thermo-refractive (PTR) glass, has 
been successfully employed for the spectral and spatial con-
trol of laser radiation, including in high-power applications 
[16]. Volume chirped Bragg gratings (CBGs), with grat-
ing periods that gradually vary along the beam propagation 
direction, have been used as high-power pulse controls (for 
stretching and compressing) in femtosecond pulse amplifica-
tion schemes [17, 18]. These optical elements have an accept-
able level of optical loss, and the primary advantage of their 
use in pulse operations is their mechanical robustness and 
compactness [19]. However, the current developmental stage 
of the manufacturing technology used to produce CBGs in 
PTR glass does not facilitate the fabrication of CBGs for the 
stretching of pulses with initial durations of a few picosec-
onds or longer; this problem arises because the required low 
longitudinal chirp rate is difficult to achieve for the parameters 
of a typical holographic recording setup. This fact has stimu-
lated the present authors to develop an alternative approach 
to stretching high-power picosecond laser pulses based on 
uniform VBGs. Besides their compactness and robustness, the 
obvious advantages of VBGs include their high optical dam-
age threshold and their conservation, or even improvement, of 
the initial beam quality. In addition, system realignment is not 
required when the pulse duration is changed.

In this paper, we discuss theoretical modeling and present 
experimental results showing the control of pulse temporal 
parameters using uniform reflective VBGs. This control may 
be beneficial for pulse stretching in the picosecond region, for 
which CBGs with the required chirp rates are unavailable. In 
the proposed approach, the thickness of the uniform reflec-
tive VBG should be larger than the spatial length of the inci-
dent pulse, so that the duration of the stretched reflected pulse 
is defined by the grating thickness. In this case, the spectral 
bandwidth of the grating should be less than the spectral width 
of the incident pulse. Therefore, unlike a CBG, a uniform VBG 
reflects a portion of the incident pulse energy only, which is 
proportional to the selected part of the spectrum. It is possible 
to compensate for the reduction in the energy of the diffracted 
stretched pulses that results from the spectral narrowing via 
the commonly used method of long-pulse amplification. This 
approach has been employed in the development of custom 
lasers, through the incorporation of a uniform VBG stretcher 
in the multipass amplifier of a picosecond laser Compiler 

(Passat, Inc) for generation of stretched pulses with no reduc-
tion in the output pulse energy and using the same laser head 
dimensions.

The mechanism of short pulse reflection from Bragg grat-
ings with narrow spectral selectivity has been theoretically 
studied via numerical modeling in several works [20–22]. 
Below, we present a theoretical analysis considering the actual 
parameters of the uniform VBG and the laser pulse used in our 
experiment, in order to demonstrate the robustness of such a 
technique and, also, to prove the adequacy of our modeling 
procedures. One of the particular procedures performed in 
section 3 is the quantitative rectification of the local amplitude 
of the refractive index modulation (RIM), based on the exper
imental reflection spectrum of an actual VBG with longitudi-
nal non-uniformities.

In the final section, we discuss the general properties of 
short pulse reflection by a uniform Bragg grating and provide 
simple analytical formulas for estimating the pulse duration 
and reflection efficiency. Finally, we propose a reflective 
VBG design having uniform modulation, in which the thick-
ness varies along the transverse coordinate. This simple and 
robust monolithic device would enable researchers to change 
the lengths of reflected pulses. Thus, it is a potentially useful 
tool for finding optimal laser processing regimes in various 
applications.

2.  Coupled wave propagation equations

Pulse propagation inside a VBG is considered here, using a 
1D coordinate framework. We assume that the laser beams 
have quite a wide aperture; thus, they do not demonstrate sig-
nificant angular divergence across the grating aperture, and 
they propagate along a grating vector (perpendicularly to the 
Bragg modulation fringe planes, which are parallel to the 
VBG plate surfaces).

Let us begin with the wave equation for the electric field 
amplitude E(z, t) inside a medium with refractive index n(z), 
which is periodically modulated by the middle-to-top ampl
itude n1 of the RIM at the Bragg wavelength λ0 in vacuum. 
Then,

(
∂2/∂z2 − n(z)2

c2 ∂2/∂t2
)

E(z, t) = 0,

n(z) = n0 + n1cos(Qz + γ), n1 � n0,
Q = 2k0, k0 = 2πn0/λ0 = n0ω0/c.

� (1)

Here n0 is the background refractive index and c is the speed 
of light. With skew incidence at the VBG, the resonant wave-
length shifts to λres  =  λ0cosθin, where θin is the propagation 
angle relative to the z-direction inside the VBG. The phase 
term γ is constant for a uniformly modulated Bragg grating 
and can typically be omitted. However, if the grating has non-
uniformities, longitudinal deviations of the local Bragg reso-
nant condition can then be represented as a slowly varying 
functional dependence γ(z).

The E(z, t) inside the Bragg grating can be conveniently 
represented as the sum of two counter-propagating waves 
exp(±ik0z  −  iω0t), with slowly varying complex amplitude 
envelopes A(z, t) and B(z, t), such that
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E(z, t) = [A(z, t)eik0z + B(z, t)e−ik0z]e−iω0t + c.c.� (2)

By substituting equation  (2) into the wave equation  (1) and 
performing simplifications (including elimination of residual 
terms with second-order derivatives), we obtain the following 
system of coupled equations:

{ (
∂
∂z +

n0
c

∂
∂t

)
A = iκBeiγ ,(

∂
∂z −

n0
c

∂
∂t

)
B = −iκAe−iγ ,

κ = πn1/λ0,� (3)

where κ is a coupling parameter proportional to n1 that in gen-
eral can depend on the z coordinate.

For a particular temporal envelope A(z  =  0, t) of an inci-
dent pulse, the expressions given in equation (3) can be solved 
explicitly in the time domain. On the other hand, calcul
ations can be performed in the frequency domain by decom-
posing slowly varying envelope profiles into their spectral 
components

a(z,Ω) =
∫

A(z, t)eiΩtdt, A(z, t) = 1
2π

∫
a(z,Ω)e−iΩtdΩ.

� (4)

The Fourier transforms for envelope B are similar. Substituting 
these transforms into equation (3) yields a system of ordinary 
differential equations

d
dz

(
a
b

)
=

(
i n0

c Ω iκeiγ

−iκe−iγ −i n0
c Ω

)(
a
b

)
.� (5)

In the case of an arbitrary Bragg grating, the parameters κ 
and γ depend on the z coordinate, as mentioned above. These 
parameters are constant for a uniform Bragg grating, which 
allows integration of equation (5) and yields analytical expres-
sions for the reflection r and transmission u coefficients, which 
are discussed below.

3.  Spectral properties of uniform VBG

The spectral properties of reflective Bragg gratings were first 
efficiently described in terms of 1D coupled wave theory by 
Kogelnik [23]; this work was then expanded upon by many 
others. Here, we review the primary theoretical results using 
the notation employed in this study; these findings will later 
be used in the analysis of our experimental results.

A well-known analytical solution of the system given in 
equation  (5) has been presented in the following transfer 
matrix form [24]:
(

a(l)
b(l)

)
=

(
α∗ β∗

β α

)(
a(0)
b(0)

)
,

α = coshG − iΦG sinhG,
β = −i S

G e−iγsinhG,

|α|2 − |β|2 = 1, G =
√

S2 − Φ2, S = κl = πn1l/λ0,
Φ = n0c−1Ωl ≈ −2πn0lλ−2

0 Λ, Λ = λ− λ0.
� (6)

Here, the dimensionless parameter S is the so-called ‘strength 
of reflection’ and Φ is the dimensionless phase detuning, 
which is proportional to the frequency shift Ω out of the Bragg 

resonance or to the wavelength shift Λ. Both S and Φ are pro-
portional to the grating length l.

The matrix solution given in equation  (6) defines the 
amplitude reflection coefficient r according to the boundary 
condition b(l)  =  0, such that

r = b(0)
a(0) = −β

α , R(Φ) = |r|2 = sinh2G
cosh2G−Φ2/S2 ,

R(0) = tanh2S, u = a(l)
a(0) =

1
α , T = |u|2 = 1 − R.

� (7)

To derive the amplitude transmission coefficient denoted by 
letter u, we used the fact that the matrix determinant is unity, 
which follows from equation (6). The intensity reflectivity and 
transmissivity are R and T, respectively, and the notation used 
to express the mathematical values in equation (7) are defined 
in equation (6).

To experimentally demonstrate pulse stretching and to 
verify the presented theory, we employed a uniform VBG 
with thickness l  =  7.77 mm, which was capable of reflect-
ing at a laser wavelength of 1064 nm at an angle of incidence 
of approximately 3° in air. At this wavelength, the refractive 
index of PTR glass is n0  =  1.485. The VBG reflection spec-
trum, which was experimentally measured using a tunable 
laser, exhibited a resonant peak at λ0  =  1064.9 nm, with a 
full width at half maximum (FWHM) bandwidth equal to 
ΛVBG,expt  =  61 pm and maximum reflectivity R0,expt  =  30%. 
According to equation  (7), this corresponds to an exper
imentally measured strength of reflection Sexpt  =  0.61. This 
Sexpt value allowed the RIM amplitude to be estimated from 
equation  (6) as n1,expt  =  27 ppm. By taking this number and 
performing calculations for the reflection spectrum R(Φ(Λ)) of 
the uniform VBG, using equations (6) and (7), we obtained a 
theoretical value of ΛVBG,theor  =  49 pm for the FWHM band-
width, which is noticeably smaller than the experimental result.

This discrepancy between the experimental and theoretical 
values of the bandwidths can be explained by acknowledging 
the presence of fluctuations in both the holographic interference 
fringe pattern and refractive index of glass along the relatively 
large l of the manufactured VBG. As mentioned above, such 
non-uniformities can be represented as unknown phase varia-
tion γ(z) in the coupling factors in equation (5), and this variable 
deviation from the uniform Bragg coupling causes broadening 
of the resonant peak width and lowering of the resonant peak 
maximum. To incorporate the effects of non-uniformities and 
for a more accurate estimation of n1, we employed the fact that 
the integral value of R(Φ(Λ)) over a wavelength region is con-
served for weakly reflective distributed feedback systems.

Let us discuss this statement in more detail. With Born 
approximation of small total wave coupling, we assume that 
an incident pulse propagating along the grating essentially 
conserves its energy; thus, we can neglect the term containing 
b(z) in the first expression of equation (5) and regard a(z) as 
the phase oscillating function. With this assumption, we can 
represent the amplitude reflection coefficient rBorn via integra-
tion of the second coupled equation in equation (5) by itself, 
with a standard boundary condition b(l)  =  0. Thus,
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aBorn = a(0)eiΦz/l , d
dz (bBorneiΦz/l ) = −iκe2iΦz/l−iγ(z)a(0),

b(l) = 0 → rBorn(Φ) =
b(0)
a(0) = iκ

∫ l
0 e2iΦz/l−iγ(z)dz.

� (8)
Subsequently, the dimensionless integral of the spectral reflec-
tivity RBorn can be calculated with intermediate simplification 
through recognition of the delta function in the integral repre-
sentation, such that

RBorn = |rBorn|2,
∫

e2iΦ(z1−z2)/l dΦ = πlδ(z1 − z2) = Fδ ,∫
RBorndΦ = κ2

∫ l
0 dz1

∫ l
0 dz2ei(γ(z2)−γ(z1))Fδ = πS2.

� (9)
Here, S is the strength of reflection previously introduced in 
equation (6).

We obtained that, in the case of a weak reflective Bragg grat-
ing for which Born approximation is valid, the integral of the 
reflection spectrum does not depend on the γ(z) caused by unpre-
dictable non-uniformities. This fact can be used to estimate n1 
that is more accurate than the n1,expt value calculated simply from 
the experimentally measured R0,expt of the actual VBG, which 
was residually distorted following the manufacturing process.

Figure 1 shows the experimental reflection spectrum Rexpt 
of an actual VBG and the approximated theoretical spectrum 
Rtheor of the uniform VBG obtained from equation  (7), for 
a theoretical RIM amplitude n1,theor  =  31.8 ppm and corre
sponding theoretical strength of reflection Stheor  =  0.73 
according to equation (6). These adjusted parameters yield the 
same integral value for both spectra over the 400 pm range. 
We employed this limitation in the integration in order to pre-
vent the measurement errors from having a significant influ-
ence at under large wavelength detuning. The spectrum Ia of 
a pulse with a Gaussian temporal profile and an FWHM time 
duration of 9.3 ps is also presented, in order to demonstrate the 
relationship between the VBG bandwidth and the pulse band-
width used in our experiment. We will discuss the properties 
of pulse reflection by VBG in the next section.

The theoretical spectrum Rtheor of a purely uniform VBG 
with the same thickness l and the same fit total integral of 
spectral reflectivity as that given in equation (9) is character-
ized by a higher resonant reflectivity R0,theor  =  38.8% and a 
narrower bandwidth ΛVBG,theor  =  51.7 pm. The suggestion of 

the same integral area for the Rexpt and Rtheor of a VBG is based 
on the Born approximation discussed above, and its validity is 
supported by the fact that the value of the numerical integral 
for Rtheor is only 15% less than the simple approximated value 
πS2 given in equation (9). For higher S, the proposed proce-
dure for estimation of n1,theor is less accurate.

4. Temporal profiles of pulses produced by VBG

In this section, we analyze the shapes of reflected and transmit-
ted pulses occurring after interaction of an incident short pulse 
with a uniform VBG. In the experiment, we used laser pulses at 
1064 nm with an FWHM duration of Tp  =  9.3 ps. Note that the 
experimental results of the autocorrelation measurements are 
discussed in section 5. The temporal amplitude profile of the 
incident pulse was assumed to Gaussian, A(z  =  0, t), and the 
corresponding FWHM pulse bandwidth Ωp in the frequency 
domain and the FWHM spectral bandwidth Λp were calculated 
according to equation (4). Hence, the well-known relations for 
transform-limited Gaussian pulse profiles were employed:

A(0, t) = e−2ln(2)t2/T2
p , a(0,Ω) =

∫
A(0, t)eiΩtdt =

=
2
√

2πln(2)
Ωp

e−2ln(2)Ω2/Ω2
p ∝ a(Λ) = e−2ln(2)Λ2/Λ2

p ,

Ωp = 4ln(2)/Tp, Λp = Ωpλ
2
0/(2πc).

�

(10)

For the given values of Tp and λ0, we obtained Λp  =  179 pm 
for the incident pulse. The corresponding Gaussian spectrum 
Ia(Λ)  =  a2(Λ) at z  =  0, which is adjusted to the theoretical 
spectrum of VBG, is presented in figure 1.

The energy efficiency η of the reflected pulse generation 
can be calculated simply using the VBG reflection spectrum 
R(Λ) obtained from equations (6) and (7), along with the arbi-
trary normalized incident pulse spectrum Ia(Λ)

η =

∫
R(Λ)Ia(Λ)dΛ/

∫
Ia(Λ)dΛ, Ia(Λ) = a2(Λ).� (11)

For the numerical values presented above, the theor
etical energy efficiency of the pulse reflection was equal to 
ηtheor  =  10.6%. However, the value η measured during the 
experiment could be slightly lower for various reasons, one 
of which is that the experimental R(Λ) of the actual VBG is 
slightly wider and lower than Rtheor (figure 1). As a result, 
the integration of a more extended VBG reflection spectrum 
with a Gaussian pulse spectrum yields a smaller value in the 
numerator of equation (11).

The temporal amplitude profile B(z  =  0,t) of a reflected 
pulse is calculated via the inverse Fourier transformation of its 
amplitude profile b(Ω), using equation (4), and this amplitude 
profile is determined in the frequency domain by the ampl
itude reflection coefficient r of the VBG, equation (7), where

b(0,Ω) = r(Φ(Ω))a(0,Ω), B(0, t) = 1
2π

∫
b(0,Ω)e−iΩtdΩ.

� (12)

In a similar manner, the temporal profile of a pulse transmit-
ted through the VBG and measured at the opposite side of the 
grating A(z  =  l, t) can be calculated using the transmission 
coefficient u from equation (7)

Figure 1.  Experimental reflection spectrum Rexpt of fabricated 
VBG (dotted line) and theoretical reflection spectrum Rtheor of 
corresponding uniform VBG (solid line) with adjusted spectrum Ia 
of incident short 9.3 ps Gaussian pulse (dashed line).
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a(l,Ω) = u(Φ(Ω))a(0,Ω), A(l, t) = 1
2π

∫
a(l,Ω)e−iΩtdΩ.

� (13)
The corresponding temporal intensity profiles of the incident 
IA(0, t), reflected IB(0, t), and transmitted IA(l, t) pulses are

IA(0, t) = |A(0, t)|2, IB(0, t) = |B(0, t)|2, IA(l, t) = |A(l, t)|2.
� (14)
Then, the same energy efficiency η of the reflected pulse gen-
eration given in equation  (11) can also be calculated in the 
time domain, according to

η =

∫
IB(0, t)dt/

∫
IA(0, t)dt.� (15)

The ηtheor value indicating the pulse reflection efficiency, 
10.6% is relatively small for the parameters of our experi-
ment, as a result, the shape of the IA(l,t) profile calculated 
at the opposite side of the VBG should be similar to that of 
the IA(0, t) profile, with an additional shift due to the time 
delay TVBG  =  n0l/c  =  38.5 ps of the propagation inside the 
grating. The results of the calculations performed using equa-
tions (12)–(14), which are presented in figure 2, confirm these 
conclusions regarding the shape of the transmitted pulse.

The IA(0, t) profile was obtained with the maximum ini-
tial value equal to unity, using equations  (10) and (14), and 
both the IA(0, t) and IA(l, t) profiles are presented in figure 2. 
A reduction factor of 50 was applied to these data in order to 
facilitate comparison between these profiles and that of IB(0, t).

In our experiment, we employed a VBG with a resonant 
reflectivity of less than 50%, because the pulse profile reflected 
from a significantly stronger grating would be more distorted 
and less transform-limited. This behavior is demonstrated via 
numerical simulation in the final section 6.

5.  Autocorrelation measurements of pulse 
durations

In the previous section, we calculated the profiles of pulses 
produced by a uniform VBG with the theoretical param
eters determined in section  3. In this section, the obtained 

numerical results are compared with experimental data for the 
pulse reflection efficiency and for pulse durations measured 
using an autocorrelation technique.

This experiment was performed using a compact commer-
cial picosecond laser Compiler (Passat, Inc.), which provided 
9 ps pulses at 1064 nm with a 400 Hz pulse repetition rate. This 
laser is based on Raman compression of nanosecond pulses 
at 1064 nm, followed by a frequency shift back to the fun-
damental wavelength and amplification in a multipass ampli-
fier [2]. The average energy of an incident pulse on the VBG 
was EA  =  485 µJ, and the average energy of a reflected pulse 
was EB  =  43 µJ; hence, the experimental reflected efficiency 
given by their ratio was ηexpt  =  EB/EA  =  8.9%. Note that this 
value is close to the theoretical value of 10.6% specified in 
section  4. Autocorrelation measurements were performed 
using non-collinear second harmonic generation (NSHG). A 
1064 nm beam was split in two, and there was a mechanically 
adjustable relative time delay τ between the resultant beams. 
Both beams were then focused and crossed at a small angle 
in a thin potassium titanyl phosphate (KTP) crystal of 1 mm 
thickness, in order to produce NSHG signals at 532 nm, which 
were measured for different τ. The radius of operated pulses 
was w0  =  1.9 mm describing the transverse Gaussian pro-
file of intensity as exp(−2r2/w2

0). With the laser power used, 
no distortions of transverse profiles of reflected pulses were 
detected which confirms the suitability of VBGs in PTR glass 
for reliable operation with different laser powers. Thus, we 
discuss theoretical and experimental results only within the 
framework of a 1D longitudinal approach in this paper.

The intensity autocorrelation functions for the IA(0, t) and 
IB(0, t) profiles are defined by

UA(τ) =

∫
IA(t)IA(t − τ)dt, UB(τ) =

∫
IB(t)IB(t − τ)dt.

� (16)

In these expressions, the zero z-coordinate of the pulse inten-
sities have been omitted in order to emphasize that our pri-
mary focus is analysis of the temporal dependences of the 
pulse intensities.

The experimental and theoretical results of the autocorre-
lation procedures are presented in figure 3. The dots indicate 
the experimental measurements of UA and UB for the IA(0,t) 
and IB(0,t) profiles, while the dotted lines are their Gaussian 
fits. In addition, the solid line is the simulation autocorrelation 
function UB(τ) calculated using equation (16), for the IB(0,t) 
obtained in the previous section and presented in figure 2.

The narrow Gaussian fit of the autocorrelation meas-
urements for the incident pulse shown in figure 3 yields an 
FWHM peak width equal to 13.2 ps. This value is 

√
2 times 

smaller than the FWHM pulse duration Tp  =  9.3 ps of IA(0,t), 
according to equations (10), (14), and (16):

IA(t) = e−4ln(2)t2/T2
p → UA(τ) ∝ e−2ln(2)τ 2/T2

p .� (17)

We used this value of Tp for the numerical simulations 
described above, beginning with the calculation of the inci-
dent pulse amplitude a(0, Ω) in the frequency domain accord-
ing to equation (10). Then, applying a(0, Ω) together with the 
amplitude reflection coefficient r(Ω) of a uniform VBG, from 

Figure 2.  Calculated temporal intensity profiles: IA of an incident 
pulse at z  =  0 (dotted line); IA of transmitted pulse at z  =  l (dashed 
line); and IB of a reflected pulse (solid line). Note that the magnitudes 
of the incident and transmitted profiles are reduced 50 fold.
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equations (7) and (6), we calculated the temporal amplitude 
profile B(0, t) of the reflected pulse using equation (12). The 
corresponding intensity profile IB(0,t) is shown in figure  2. 
Autocorrelation function UB(τ) was calculated using equa-
tion (16) and is depicted by a solid line in figure 3. It is appar-
ent that this simulation line is in a very good agreement with 
the independently measured experimental values indicated by 
the dots.

The IB(0, t) profile shown in figure 2 has a shape that is closer 
to rectangular than Gaussian. As result, the corresponding 
UB(τ) depicted by the solid line in figure 3 has a triangular 
shape, rather than the Gaussian fit indicated by the dotted line. 
This result follows mathematically from equation  (16) for 
rectangular pulse shapes. The FWHM width of the Gaussian 
fit of the experimental data for UB(τ) is 75.1 ps. Thus, the 
corresponding temporal FWHM duration of the possible fit 
Gaussian pulse should be smaller by a factor of 

√
2, according 

to equation (17), i.e. TG,fit  =  53.1 ps. In reality, the duration of 
the reflected pulse can be estimated as TR,estim  ≈  70 ps, from 
figure 2, and this value is close to twice the propagation time 
along the grating thickness 2TVBG  =  77 ps discussed in sec-
tion 4. The discrepancy between TG,fit and TR,estim is expected, 
because the actual shape of the reflected pulse is rectangular 
rather than Gaussian.

To conclude, we would like to emphasize that the good 
matching of the experimental measurements for UB(τ) with 
the independently calculated simulation curve in figure  3 
proves the validity of the analysis of reflection of short laser 
pulse by uniform VBGs.

6.  General discussion of pulse reflection by VBG

In the previous sections, we presented the results of our par
ticular experiment on pulse duration stretching using a uni-
form reflecting VBG. With supporting numerical simulations, 
we demonstrated strong self-consistency in our theoretical 
approach to this problem. Now, let us discuss the applicability 
ranges of the proposed method of temporal pulse stretching.

An extended pulse is generated through local Bragg reflec-
tion of a short incident pulse propagating in the modulated 
glass medium of a grating specimen. By the time the inci-
dent pulse reaches the end of grating, which occurs within the 
period TVBG  =  n0l/c since the moment of initial incidence, the 
front of the reflected pulse will have already propagated in the 
opposite direction for the same TVBG. As a result, the front and 
end of the reflected pulse are spatially separated by a distance 
equivalent to 2l in the glass medium, which has refractive 
index n0, and the corresponding duration of the reflected pulse 
TR,estm is double the TVBG of the propagation along l. Thus,

TR,estim ≈ 2TVBG, TVBG = n0l/c.� (18)

This is the basic estimation for the time duration of a pulse 
reflected by a uniform VBG with weak coupling, which does 
not significantly distort the incident pulse; hence, the reflected 
pulse has an approximately uniform rectangular shape.

The important practical parameter of the entire method 
is the diffraction energy efficiency η of the pulse reflection 
process. In contrast with CBGs, a uniform VBG does not 
transfer the entire spectral content into the reflected pulse. 
Instead, the spectral content is only partially transferred, and 
the transferred part is determined by the spectral bandwidth 
of the reflecting VBG. The method of passively generating 
spectrally narrowed pulses proposed in this study is charac-
terized by an inherently lower diffraction η compared with 
CBG-based methods. A numerical calculation of η can be per-
formed in accordance with equation (11), using the spectral 
content of the incident pulse and the VBG reflection spectrum. 
Now, we present a simple analytical expression for the esti-
mated efficiency ηestm, which could be useful for the initial 
design of such devices. For this purpose, we will approximate 
the exact reflection spectrum R(S,Φ) of a uniform VBG given 
in equation (7), using a Gaussian fit only and with a spectral 
width ΦVBG, such that

R = S2/Φ2 sin2Φ+ O(S4) ≈ tanh2S · Φ−2sin2Φ

→ ΦVBG ≈ π, Restm = tanh2S · e−4ln(2)Φ2/π2
.

� (19)

Here, a series expansion of R over S was employed, which 
gives the primary detuning dependence Φ−2sin2Φ. In addition, 
the normalization of the resonant reflection maximum, which 
is R0  =  tanh2S, was retained. The FWHM of the main lobe 
ΦVBG was estimated as π, which is half the detuning range 
between the two first zeros of Φ−2sin2Φ. Finally, we fit the 
reflection spectrum of the uniform VBG using a Gaussian 
curve Restm with this width.

The spectrum Ia of the incident Gaussian pulse given 
in equation  (10) can be presented in terms of the detuning 
parameter Φ used for analysis of the VBG spectral properties 
in equation (6), such that

Φ = TVBGΩ, ξ = TVBG/Tp, ΩpTp = 4ln(2),

Ia(Φ) = a2(Φ) ∝ e−4ln(2)Ω2/Ω2
p = e−Φ2/(4ln(2)ξ2) .

� (20)

Here, ξ is the ratio of the propagation time TVBG along a 
grating thickness l over pulse duration Tp. With the simpli-
fied estimated VBG spectrum Restm(Φ) obtained from equa-
tion  (19), the integration in equation  (11) can be performed 

Figure 3.  Normalized intensity autocorrelation functions UA and 
UB for short incident and extended reflected pulse profiles. The 
dots represent experimental data and the dotted lines represent 
corresponding Gaussian fits. The solid line is the calculated 
intensity autocorrelation function UB for the reflected pulse profile 
IB presented in figure 2.
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easily. Hence, we obtain the following estimation of the pulse 
reflection efficiency:

ηestm =
∫

Restm(Φ)Ia(Φ)dΦ/
∫

Ia(Φ)dΦ

= tanh2S/
√

1 + (4 ln(2)ξ/π )
2 ≈ πtanh2(S)/(4 ln(2)ξ).

� (21)

As the S defined in equation (6) is proportional to both l and 
n1, and as ξ is proportional to l itself, then according to equa-
tion  (21), for small S, ηestm is linearly proportional to l and 
quadratically proportional to n1. Last simplification in this 
equation is valid for large TVBG along the grating, relative to 
the incident pulse duration, i.e. for ξ  >  3 at minimum. This 
condition is intentional, as it allows the proposed realiza-
tion of the temporal pulse extension by the uniform VBG. In 
our case, ξ  =  4.14 for the TVBG  =  38.5 ps value given above 
and for Tp  =  9.3 ps. With tanh2S  =  R0,theor  =  38.8% being 
the value of the theoretical reflection maximum, we obtain 
ηestm  =  10.6%, which coincides with the ηtheor previously cal-
culated using equation (11). The factor tanh2S is kept equal to 
R0,theor  =  R(0) in equation (7), in order to emphasize that this 
value could differ from the experimentally measured value of 
R0,expt, because of the distortions in the reflection spectrum 
caused by the γ(z) discussed in section 2.

The temporal amplitude profile of a particular elongated 
reflected pulse B(t) can be calculated using equation (12), via 
the Fourier transform of the product of the r(Ω) given in equa-
tion (7) and the a(Ω) of equation (10). The shape of a reflected 
pulse and the efficiency of the reflection at the exact Bragg 
resonance are determined by two dimensionless parameters: S 
and ξ. On plots in the spectral domain similar to that shown in 
figure 1, S defines the shape of the theoretical reflection spec-
trum of a VBG with its maximum R0  =  tanh2S, and ξ defines 
how wide the spectrum of the incident pulse is in comparison 
with the VBG bandwidth. Thus, there is scalability in the 
mathematical description of this problem. If we have two grat-
ings with the same R0 but different TVBG, and if they are sepa-
rately exposed to pulses with respective durations of Tp1 and 
Tp2 that are in the same proportion to the grating propagation 
times, TVBG,1/Tp1  =  TVBG,2/Tp2, so that ξ is the same in both 
cases, the η values will be identical and the two pulse shapes 
will be similar to each other. The only differences between the 
reflected pulse shapes are their different time durations, which 
are proportional to the corresponding incident pulse durations.

Let us present the actual temporal intensity profiles IB(t) 
for different grating reflectivities tanh2S and ratios ξ, see equa-
tions  (6) and (20). A certain tunability of these parameters 
can be realized in particular grating designs, because of the 
presence of transverse degrees of freedom in operation with 
VBGs. For example, besides the standard resonant wave-
length shift with angular tuning of the reflective VBG [25], 
the variations in the grating parameters with parallel transla-
tion of the VBGs along the transverse coordinate have been 
used in [26], in order to tune the resonant wavelength, and in 
[27], so as to tune the transmission bandwidth of the resonant 
VBG cavity. The simplest approach to creating a VBG pro-
ducing a tunable pulse duration is to cut a VBG with varying 
length from a glass wafer using a recorded standard uniform 

modulation pattern, as shown on the right of figure 4. In this 
case, κ is constant and, according to equation  (6), S is pro-
portional to the grating length l(x), which in turn depends on 
the x-position of the pulse incidence. As the incident pulse 
propagates orthogonally to the front surface of the VBG and 
to the fringes of the Bragg pattern, the quality of the reflected 
beam is not distorted. The longitudinal shapes of the extended 
pulses reflected at three different transverse positions are pre-
sented in figure  4 for two trapezoid gratings with different 
Bragg couplings. Note that the time coordinate on the hori-
zontal axis is dimensionless and is measured in terms of the 
incident pulse width.

The calculated IB(t) exhibit durations close to the estimated 
values of the elongated pulse durations, TR,estm  ≈  2TVBG, from 
equation  (18). The corresponding factors 2ξ  ≈  TR,estm/Tp are 
marked on the horizontal time axis. When the grating thickness 
and the corresponding R0  =  tanh2S are increased, the reflected 
profile becomes less uniform and a secondary peak appears. 
This behavior indicates that it is preferable to use a grating 
with relatively low reflectivity, i.e. R0  <  50%. For intermediate 
incidence positions with reflectivity R0  =  tanh20.75  =  40.3%, 
the efficiency is equal ηtheor  =  12.1% and 6.4% for 
ξ  =  TVBG/Tp  =  3.75 and 7.5, respectively. These numerically 
calculated ηtheor are actually approximated with good accuracy 
by the values ηestm estimated from equation (21).

The simulations presented here show that it is feasible 
to increase the pulse duration by a factor of 10 from 10 ps 
through use of a reflective uniform VBG with a total efficiency 
η of almost 10%. This conclusion is also supported by our 
experimental results. At the beginning of section  1, it was 
mentioned that we consider pulses that are almost normally 
incident on the Bragg modulation planes of the grating refrac-
tive index. In the examined process involving 1D propagation, 
the transverse profiles of the incident and elongated reflected 
pulses are preserved.

Figure 4.  Modeled temporal intensity profile IA of incident pulse 
reduced by a factor of 40, and temporal intensity profiles IB of pulses 
reflected at points with different VBG thicknesses. These thicknesses 
correspond to reflection strengths S  =  0.5, 0.75, 1 and to grating 
propagation times defined by the ratios: (a) ξ  =  TVBG/Tp  =  2.5, 
3.75, 5; and (b) ξ  =  5, 7.5, 10. The 2ξ values are marked on the 
dimensionless time scale.
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7.  Conclusion

We theoretically analyzed and experimentally confirmed the 
stretching of high-power picosecond laser pulses with no spec-
tral chirp via reflection from a uniform VBG. This stretching 
process is important for cases in which it is not possible to 
fabricate CBGs with the required chirp rate. Simple analytical 
expressions for calculating the duration of the reflected pulses 
and the diffraction efficiency of pulse stretching via the uni-
form VBG were found. The increase in the pulse duration was 
shown to be proportional to the grating thickness; thus, the 
required stretching can be achieved simply, via an appropriate 
choice of VBG thickness.

In our experiment, 9.3 ps pulses with Gaussian profiles 
were stretched to 75 ps via reflection from a uniform VBG of 
7.8 mm in thickness. The reflected pulses were characterized 
by an almost rectangular shape, which is not typically achiev-
able using standard methods of laser pulse generation. The 
experimental energy efficiency of the diffraction was approxi-
mately 9%, which is close to the calculated theoretical value 
of 10.6%. The latter value was calculated considering the 
spectral narrowing of the reflected emission. We believe that 
the relatively low energy efficiency of the proposed method is 
more than offset by a number of its advantages in comparison 
with a surface diffraction grating based approach. They are the 
chirp-free spectrum of the stretched pulse, the compactness, 
robustness, and preservation of the alignment and beam qual-
ity, and the tolerance to high laser power. The amplification of 
pulses of several tens of picoseconds or longer does not usu-
ally require special measures to avoid undesirable non-linear 
effects. Therefore, the low diffraction efficiency can be easily 
compensated using standard methods of pulse amplification. 
A VBG element with variable thickness facilitates gradually 
varying pulse duration via transverse shifting of the VBG 
orthogonally to the incident beam.
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