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I. Introduction 

The nonlinear optical properties of semiconductors are among the first 
studied (Braunstein and Ockman, 1964) and continue to be extensively 
investigated (Haug, 1988; Miller et al., 1981a; Jain and Klein, 1983) and used 
for a variety of applications (e.g., optical switching (Stegeman and Wright, 
1990) and short pulse production (Keller et al., 1996; Kaetner et al., 1995) 
(See also Vol. 59, Chap. 4). Some of the largest nonlinearities ever reported 
have been in semiconductors (Miller and Duncan, 1987; Hill et al., 1982) 
and involve near-gap excitation. However, these resonant nonlinearities, by 
their nature, involve significant linear absorption (see Chap. 1 in this volume 
and Chap. 5 in Vol. 59), which is undesirable in many applications. In this 
chapter we concentrate on the nonlinear response in the transparency range 
of semiconductors, i.e., for photon energies far enough below the bandgap 
energy E,, that bound-electronic nonlinearities either dominate the nonlinear 
response or are responsible for initiating free-carrier nonlinearities (e.g., 
two-photon absorption-created carrier nonlinearities). The bound-elec- 
tronic nonlinearities of two-photon absorption (2PA) and the optical Kerr 
effect are the primary nonlinearities of interest. 

The nonlinear optical behavior in the transparency region of solids due 
to the anharmonic response of bound valence electrons has been studied 
extensively in the past (Adair et al., 1987, 1989; Akhmanov et al., 1968; 
Flytzanis, 1975). Nonlinear refraction associated with this process is known 
as the bound-electronic Kerr efect. It is described by a change of refractive 
index An = n , l ,  where 1 is the light irradiance (W/cm2) and n2(cm2/W) 
is the optical Kerr coefficient of the solid. This type of nonlinearity results 
from virtual intermediate transitions (Boyd, 1992) as opposed to real 
intermediate transitions that occur in resonant (electron-hole plasma) 
nonlinearities. In the language of quantum mechanics, a virtual carrier 
lifetime can be defined from the uncertainty principle as l/[co-cogl. 
Here, w is the optical frequency, and a,, = E,/h, where E,  is the band- 
gap energy of the solid, and h is  Planck’s constant. This equality means 
that in the transparency region where W K  o,, the response time is 
very fast (<< 10- I4s) and can be regarded as essentially instantaneous. 
This ultrafast response time has been exploited in applications such as 
soliton propagation in glass fibers (Agrawal, 1989) and in the genera- 
tion of femtosecond pulses in solid-state lasers (Kerr lens mode locking) 
(Spence et a/., 1991). Another significant application is the development 
of ultrafast all-optical-switching (AOS) devices (Gibbs, 1985). Although 
much progress has been made in this area, development of a practical 
switch has been hindered by the relatively small magnitude of bound- 
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electronic nonlinearities. The AOS issues are discussed in more detail in 
Section VII.1. 

The organization of this chapter is as follows: The next section (Section 
11) is intended to provide an elementary background in nonlinear optics and 
familiarize the reader with the basic definitions and relations pertaining to 
the ultrafast third-order nonlinear response ( x ' ~ ) )  in materials. Section 111 
contains a simple yet general semiclassical theory describing nonlinear 
absorption (NLA) and nonlinear refraction (NLR) in semiconductors. The 
key insight of this theory is the use of a Kramers-Kronig transformation to 
unite the refractive (Kerr effect) and absorptive (e.g., two-photon absorp- 
tion) components of the bound-electronic nonlinearities. A simple two- 
parabolic-band model describes the band structure of the solid. The simplic- 
ity of this model allows for great generality, making it applicable not only 
to semiconductors but to large-gap optical solids as well. The results of the 
extension of this theory to include active semiconductors are given in 
Section IV. In Section V, cumulative (slow) nonlinearities due to generation 
of free carriers are discussed. Section VI gives a brief description of 
experimental techniques including Z-scan (Sheik-Bahae et al., 1989, 1990b), 
wave-mixing schemes (Adair et al., 1989), and interferometric methods 
(LeGasse et al., 1990), while Section VII discusses a number of potential 
applications, namely, all-optical-switching and optical limiting. Finally, the 
conclusion of this chapter is presented in Section VIII. 

II. Background 

1. NONLINEAR ABSORPTION AND REFRACTION 

The processes of nonlinear absorption (NLA) and nonlinear refraction 
(NLR) in materials, in the most general case, can be considered as the inter- 
action of two light beams having distinct frequencies (0, and cob) in a 
nonlinear medium. In such an interaction, the two beams can alter each 
other's phase (NLR) or amplitude (NLA), the latter process requiring 
certain energy resonances. Note that in this type of wave mixing no new 
frequencies are generated. The preceding condition, known as the non- 
degenerate interaction, is the general case of the simpler degenerate situation 
where the two beams have the same frequency (0, = cob) .  Most convenient 
experimental arrangements, however, involve an even simpler degenerate 
geometry where both beams have the same vector as well as frequency. In 
this case, which is also known as nonlinear self-action, a single beam alters 
its own phase and/or amplitude through propagation in a nonlinear 
medium. 
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In the characterization of a nonlinear material, one determines the non- 
linear change of refractive index (An) and change of absorption coefficient 
(Aa)  of a material. Relations for these changes are 

and 

where I ,  and I ,  are the irradiances of the two beams. Here, n, and a, refer 
to the nonlinear refractive index and nonlinear absorption coefficients, 
respectively. For photon energies h o i  satisfying E g / 2  < h(w, + c o b )  < EB, a, 
accounts for 2PA and is often denoted by fi. Note that without loss of 
generality, we assume that the measurement is performed on beam 1, while 
beam 2 acts as an excitation source only. The first terms on the right-hand 
side of the preceding equations correspond to self-action (ie., single-beam 
experiments). The second terms correspond to the case of an excite-probe 
experiment provided that the two beams are distinguishable either by 
frequency and/or wavevector. The factor of 2 in front of the second term is 
a consequence of this distinguishability, since a higher degree of permutation 
is allowed in the nonlinear interaction process (Boyd, 1992). This stronger 
nondegenerate response is sometimes referred to as weak-wave retardation 
(Van Stryland et af., 1982). While most reported measurements and appli- 
cations involve degenerate self-action processes, in the theoretical treatment 
presented in this chapter we will consider the more general nondegenerate 
case while keeping in mind that the degenerate coefficients are merely the 
limit of the nondegenerate ones for w, = 0,. Aside from the generality 
argument, the reason for choosing this theoretical approach becomes more 
apparent when we discuss the use of Kramers-Kronig dispersion relations 
in relating the NLR and NLA. 

The nonlinear optical interactions presented in this chapter will be treated 
in two separate steps. The macroscopic propagation process (i.e., Maxwell 
equations) will be considered independently from the microscopic interac- 
tion that concerns the various mechanisms in the nonlinear response of the 
system. The propagation effects will be introduced first with the assumption 
that the nonlinear coefficients and their frequency dependence are known. 
The subsequent section will dwell on the microscopic calculation of the 
nonlinear coefficients using a simple, semiclassical two-band theory for 
semiconductors. 
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2. NONLINEAR POLARIZATION AND THE DEFINITIONS OF NONLINEAR 
COEFFICIENTS 

a. ‘Ihird-Order Nonlinearities 

As defined in most nonlinear optics texts, the total material polarization 
P that drives the wave equation for the electric field E is (ignoring 
nonlocality) (Boyd, 1992) 

where R(”) is defined as the nth-order, time-dependent response function or 
time-dependent susceptibility. The subscripts are polarization indices indica- 
ting, in general, the tensorial nature of the interactions. The summation over 
the various indices j, k, 1,. . . is implied for the various tensor elements of R(”). 
Ignoring the second-order effects [i.e., the second term on the RHS of Eq. 
(3)] corresponding to wave mixing and electro-optic processes in noncen- 
trosymmetric materials, we focus our attention on the third-order non- 
linearities. The third-order response is the first term that can directly lead 
to NLA or N L R .  Upon Fourier transformation, we obtain 

where 6 is the Dirac delta function. Here the nth-order susceptibility is 
defined as the Fourier transform of the nth-order response function: 
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For simplicity, we drop the polarization indices i, j, . . . and thus ignore the 
tensorial properties of x(") as well as the vectorial nature of the electric fields 
at this time. The polarization effects will be discussed briefly in Sections 111.3 
and VI.7. 

Assuming monochromatic fields, we take the general case involving the 
interaction of two distinct frequencies o,, and cob as 

' a  iw.t + 2 E eiwst + C.C. 
2 

E = - e  
2 

whose Fourier transform is 

Upon substituting this into Eq. (4) and separating only the polarization 
terms occurring at o,, we obtain 

X E,,EbEf 6(O - 0,) + { c . c . } ~ ( o  + 0,) I 
Examination of Eq. (8) indicates that we can introduce an effective suscep- 
tibility Xeff defined as 

where P = { ~ ~ ~ ~ f f E , , / 2 } 6 ( o  - o,,) + {c.c.}d(o + ma). Deriving the coeffi- 
cients of nonlinear absorption and refraction from Eq. (9) is now straight- 
forward. The complex refractive index is defined as 

Assuming that the nonlinear terms in Eq. (9) are small compared with the 
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linear term, we can expand Eq. (10) to obtain 

C C 
= n o  + i-a. + An + i -Aa 

2od 2wa 

where no = (1 + 9?e{X(1)))1”, and it is assumed that we are operating in the 
transparency regime where the background linear absorption coefficient is 
small, a. cc Y m { x ( * ) }  << @e{X(’ )} .  The presence of a nonzero a. in the 
transparency region may be due to processes such as band tailing, lattice 
absorption, and free carrier absorption. We can now arrive at Eq. (1) from 
Eq. (11) by using the irradiance I ,  = ic&,n0(wi)(Eil2 (i = a, b) and defining 

and 

The propagation through the nonlinear medium, ignoring the effect of 
diffraction and dispersion (i.e., pulse distortion) inside the nonlinear ma- 
terial, will be governed by the following equations describing the irradiance 
and phase of the probe beam: 

and 

In the literature, n2 is often used to describe the nonlinear index change due 
to many possible mechanisms ranging from thermal and molecular orienta- 
tional to saturation of absorption and ultrafast f 3 )  nonlinearities. Here we 
restrict the use of n,  to describe only the latter, i.e., the ultrafast bound- 
electronic nonlinear refraction. 
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Another commonly used coefficient for describing the nonlinear index is 
ii2, defined as 

where f i 2  is  usually given in Gaussian units (esu) and is related to n2 through 

where the right-hand side is all in mks units (SI). However, the reader must 
be made aware that in the literature various symbols and definitions 
different from those given here may be used to describe the nonlinear 
refractive index. Similarly for nonlinear absorption fl is often used for cc2 
when describing 2PA. The various mechanisms contributing to NLA pro- 
cesses, including 2PA, will be discussed in Section HI. 

Another important piece of information contained in this pair of equa- 
tions (Eqs. 12 and 13) is that since it is known that the real and imaginary 
parts of the linear susceptibilities are connected through causality by 
Kramers-Kronig relations, we expect that there should be an analogous 
connection between the real and imaginary parts of the nonlinear suscepti- 
bility. We discuss these relations and the associated physics next. 

6. Kramers-Kronig Relations 

The complex response function of any linear causal system obeys a 
dispersion relation that relates the real and imaginary parts via Hilbert 
transform pairs. In optics, these are known as Kramers-Kronig (KK) 
dispersion relations that relate the frequency-dependent refractive index n(w) 
to an integral over all frequencies of the absorption coefficient a(w), and vice 
versa, that is, 

where 9 denotes the Cauchy principal value. We drop the 9 notation in 
what follows for simplicity, although it is always implied. An interesting way 
of viewing these dispersion relations was given by Toll (1956), as shown in 
Fig. l(a). A wave train (a), consisting of a superimposition of many 
frequencies, arrives at an absorbing medium. If one frequency component 
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Transmitted Pulse 

FIG. I ,  Pictorial representation of the need for a relation between index and loss: (a) input 
pulse electric field in time; (b) absorption component in time. (c) (a) - (b). After Toll (1956). 

(b) is completely absorbed, we could naively expect that the output should 
be given by the difference between (a) and (b), as shown in (c). However, it 
can be seen that such an output would violate causality with an output 
signal occurring at times before the incident wave train arrives. In order for 
causality to be satisfied, the absorption of one frequency component must 
be accompanied by phase shifts of all the remaining components in just such 
a fashion that when the components are summed, zero output results for 
times before the arrival of the wave train. Such phase shifts result from the 
index of refraction and its dispersion. The KK relation is the mathematical 
expression of causality. We will start with a simple derivation of the linear 
KK relations and then proceed to obtain similar relations pertaining to 
nonlinear optics. 

Linear Kramers-Kronig relations. In a dielectric medium, the linear 
optical polarization P(t) can be obtained from Eq. (3) as 

P(t)  = Eg R"'(t)E(t - .) d. slh. (19) 
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The response function R(')(z) is equivalent to a Green's function, since it 
gives the response (polarization) resulting from a delta-function input 
(electric field). In the Fourier domain, as given in Eq. (4), we have 

where x(''(w) is the susceptibility defined in terms of the response function 
as 

[Note that ~ ( " ( w )  and R'"(7) are not an exact Fourier transform pair 
because of a missing 271.1 Causality states that the effect cannot precede the 
cause. In the preceding case this requires that E(t - z) cannot contribute to 
B(t) for t c ( t  - z). Therefore, in order to satisfy causality, R( l ) ( r )  = 0 for 
z < 0. An easy way to see this is to consider the response to a delta-function 
E(z) = E,d(z), where the polarization would follow R(')(t). This has import- 
ant consequences for the relation between the susceptiblity x(')(w) and the 
response function R")(t), since the integration needs to be performed only 
for positive times. Therefore, the lower limit in the integral in Eq. (21) can 
in general be replaced by zero. 

The usual method for deriving the KK relation from this point is to 
consider a Cauchy integral in the complex frequency plane. However, in the 
Cauchy integral method, the physical principle from which dispersion 
relations results (namely, causality) is not obvious. The principle of causality 
can be restated mathematically as 

i.e., the response to an impulse at t = 0 must be zero for t < 0. Here, @ ( t )  
is the Heaviside step function, defined as @ ( t )  = 1 for t > 0 and @ ( t )  = 0 
for t < 0. [It is also possible to use the "sign" function at this point or any 
other function that requires R"'(t) = 0 for t < 0.3 Upon Fourier transform- 
ing this equation, the product in the time domain becomes a convolution in 
frequency space: 
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which is the KK relation for the linear optical susceptibility. Thus the KK 
relation is simply a restatement of the causality condition (Eq. 22) in the 
frequency domain. Taking the real part, we have 

It is more standard to write the optical dispersion relations in terms of 
the more familiar quantities of refractive index n(o)  and absorption coeffi- 
cient a(w) (Price, 1964). These relations are derived in Hutchings et al. 
(1992) using relativistic arguments. However, if we assume dilute media with 
small absorption and indices, we obtain the identical result. By setting 
n - 1 = % ? e ( ~ ( ' ) ) / 2  and a = o A n { , y ( ' ) ) / c ,  we obtain 

a(0 ' )  do' 
n(o)  - 1 = - 

Since E(t) and P(t) are real, n( - o) = n ( o )  and a( - w) = a(o), which allows 
the integral in Eq. (25) to be written with limits from 0 to co giving the final 
result of Eq. (18). More rigorous derivation of Eq. (25) has been given by 
Toll (1956) and Nussenzweig (1972). 

Nonlinear Kramers-Kronig relations. Although dispersion relations for 
linear optics (i.e., KK relations) are well understood, confusion has existed 
about their application to nonlinear optics. Clearly, causality holds for 
nonlinear as well as linear systems. The question is: What form do the 
resulting dispersion relations take? The usual Kramers-Kronig relations are 
derived from linear dispersion theory, so it would appear impossible to 
apply the same logic to a nonlinear system (Hutchings et al., 1992). Since 
the birth of nonlinear optics, there have been numerous articles addressing 
the dispersion relations (Kogan, 1963; Caspers, 1964; Ridener and Goud, 
1975; Bassani and Scandolo, 1991). However, the usefulness of these 
relations was not fully appreciated and used until recently (Sheik-Bahae et 
al., 1990a, 1991). 

The simplest way to view this process is to linearize the problem. By 
viewing the material plus strong perturbing light beam as a new linear 
system on which we apply causality; we obtain a new absorption spectrum 
for the material, as illustrated in Fig. 2. 

The linear Kramers-Kronig relation can be applied both in the presence 
and in the absence of a perturbation and the difference taken between the 
two cases. This is to say that the system remains causal under an external 
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FIG. 2. (a) Linear system, material only, probed at  w' to determine the linear absorption 
spectrum. (b) The system is now the material plus strong light beam at o,, probed at w', to 
determine the changed "linear" absorption spectrum. 

perturbation. We can write down a modified form of the Kramers-Kronig 
relation (which we also derive below specifically for an optical perturba- 
tion): 

which after subtracting the linear relation between n and a leaves a relation 
between the changes in index and absorption: 

where [ denotes the perturbation. An equivalent relation also exists whereby 
the change in absorption coefficient can be calculated from the change in 
the refractive index, but this is rarely used for the reason described below. 
Note that it  is essential that the perturbation be independent of frequency 
of observation o' in the integral (i.e., the excitation [ must be held constant 
as o' is varied). This form of calculation of the refractive index for nonlinear 
optics is often more useful than the analogous linear optics relation. 
Absorption changes (which can be either calculated or measured) usually 
occur only over a limited frequency range, and thus the integral in Eq. (27) 
needs to be calculated only over this finite frequency range. In comparison, 
for the linear Kramers-Kronig calculation, absorption spectra tend to cover 
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a very large frequency range, and it is necessary to take account of this full 
range in order to obtain a quantitative fit for the dispersion. Unfortunately, 
the converse is not true, since refractive index changes are usually quite 
extensive in frequency. 

Equation (27) has been used frequently to determine refractive changes 
due to “real” excitations such as thermal and free-carrier nonlinearities in 
semiconductors (Haug, 1988; Miller et al., 1981a; Jain and Klein, 1983). In 
those cases, c denotes either AT (change in temperature) or AN (change in 
free-carrier density), respectively. For example, this method has been used 
to calculate the refractive index change resulting from an excited electron- 
hole plasma (Miller et al., 1981b) and a thermal shift of the band edge 
(Wherrett et d., 1988). For cases where an electron-hole plasma is injected, 
the subsequent change in absorption gives the plasma contribution to the 
refractive index. In this case, the [ parameter in Eq. (27) is taken as the 
change in plasma density regardless of the mechanism of generation of the 
plasma or the pump frequency. Van Vechten and Aspnes (1969) obtained 
the low-frequency limit of n2 from a similar KK transformation of the 
Franz-Keldysh electro-absorption effect. In this case, c is the dc electric field. 

Here we apply this formalism to the case where the perturbation is 
“virtual,” occurring at an excitation frequency wb. To the lowest order in the 
excitation irradiance I , ,  we write 

This leads to dispersion relations between a2 and n,: 

We note here that even when the degenerate n2 = n,(o,;  0,) is desired 
for a given w,, the dispersion relations require that we should know the 
nondegenerate absorption spectrum a,(o’; wb) at all frequencies o’. Also, the 
implication of Eq. (29) for the nonlinear susceptibility, on using Eqs. (12) 
and (13), is 
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which, using the symmetry properties of x ( ~ ) ,  also can be written as 

Another way of deriving Eq. (31) in a more general form is by applying 
the causality condition directly to the nonlinear response R". Starting with 
Eq. (S), causality implies that the nonlinear susceptibility can be determined 
by integration over positive times only: 

x exp[-i(w,z, + w 2 ~ 2  + + w,,r,)] (32) 

It is now possible to apply the method used earlier for the linear 
susceptibility in order to derive a dispersion relation for the nonlinear 
susceptibility. For example, we can write 

x(")(rl, z2,. . ., T") = X(")(Z,, r2,. . .) Z " ) @ ( T j )  (33) 

and then calculate the Fourier transform of this equation. Herej can apply 
to any one of the indices 1, 2,. . . , n. We also could use any number and 
combination of step functions; however, the simplest result is obtained by 
taking just one. 

Following the same procedure as for a linear response, we obtain 

where, by equating the real and imaginary parts on both sides, we get the 
generalized Kramers-Kronig relation for a nondegenerate nonlinear suscep- 
tibility: 

O3 9m{X(")(w1, w2,. . ., w',.. ., w")> dot we{  ~ ( " ' ( w  w2,. . . , w,)} = - = 's - m  w' - wj 

In particular, for x ( 3 )  processes having w1 = w,, w2 = wb, and w3 = -ab, 
this becomes identical to Eq. (31) derived earlier. When including harmonic- 
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generating susceptibilies, however, Eq. (35) can be further generalized as 
given in Hutchins et al., (1992). 

The key concept described by Eq. (29) is that once we calculate the 
change in absorption spectrum induced by an excitation at ob, the nonlinear 
refraction n, can be obtained by performing the KK dispersion integration. 
We emphasize again that even degenerate n 2 ( o ,  = ob) must be derived from 
a nondegenerate nonlinear absorption spectrum. In the following section, 
the calculation of a,(o,; wb) [equivalently Aa(w,; cob)]  using a two- 
parabolic-band (TPB) model for semiconductors is described. 

111. Theory of Bound-Electronic Nonlinearities Two-Band Model 

1. NONDEGENERATE NONLINEAR ABSORPTION 

In this section we calculate the nonlinear absorption originating from x ( 3 )  
by including 2-photon absorption (2PA), the AC Stark effect, and Raman 
contributions (Sheik-Bahae et al., 1991, 1994). Widely available experimen- 
tal results for degenerate 2PA serve as a calibration for the calculation. 
Analysis of 2PA processes requires that perturbation theory be taken to 
second order (Worlock, 1972). A variation of this is to use first-order 
perturbation theory with a “dressed’’ initial and final state where the effect 
of the acceleration of the electrons due to the oscillating electric field is 
already taken into account. We use the dipole approximation for the 
radiation interaction Hamiltonian: 

where 2 is the vector potential, p is the momentum operator, - e  is the 
electronic charge, and mo is the bare electron mass. We assume a two-beam 
interaction with both beams linearly polarized in the same direction. This 
last assumption allows us to write the following simple expression for 3: 

- 
A = iilAo, cos(o,t) + ii,A,,cos(w,t) (37) 

where A,, and A,, are the vector field amplitudes at frequencies o, and o,, 
respectively (Note: In this section we use w ,  and o, instead of w, and ob.) 
ii, and ii, are the polarization unit vectors and are taken parallel for the 
calculations presented in this section. The case of orthogonal polarization 
will be discussed briefly in Section 111.3. Following Keldysh (1965), Jones 
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and Reiss (1977), and Brandi and de Araujo (1983), the initial (valence 
band) and the final (conduction band) states can be approximated by 
Valkov-type wavefunctions (Volkov, 1935): 

$,.,(~, 3, t )  = u,,JX, 7 )  exp [- i k  -3 - - ; j; E,,,(T) dx ] (38) 

where uCJx -7) is the usual Bloch wavefunction for the conduction (c) or 
valence (0 )  band states, and the corresponding AC (or optical) Stark-shifted 
energy of the states are given by 

Within the effective mass approximation and using the two-parabolic- 
band (TPB) model, the unperturbed energies of the final and ground states 
are given by 

h2k2 
E,O = E ,  + - 

2mC 

and 

where k is an electron wavevector, and m, 
valence band effective masses, respectively. 
the energy bands is given by 

and m, are the conduction and 
The linear optical Stark shift of 

The quadratic optical Stark effect (QSE) resulting from the coupling 
between conduction and valence bands due to w2 is written as 

1 
AE,, = - AE,,,  = + 

E; - E: - hw, E: - E: + hw, 

where p,,. is the interband momentum matrix element: 
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In the TPB model using Kane’s k - p  theory, we have that 

m, = -mu x m,- EB 
EP 

(44) 

where E p  = 21pJk = 0) 12/mo x 21 eV is the Kane energy, which is essential- 
ly material-independent for most semiconductors (Kane, 1957, 1980). 

The transition rates are calculated using an S matrix formalism with (Wu 
and Ohmura, 1962) 

S = f s’ dt‘ jd3it,b:(x,7, r’)Hin,t,bu(l’,7, t ’ )  
h - m  

The transition rate W is then obtained from 

(45) 

The transition rate given by Eq. (46) is highly nonlinear and includes all 
N-photon transitions (N = 1, 2,. . . , 00) involving one virtual interband 
transition followed by N - 1 self-transitions. In this analysis, we are only 
concerned with the x ‘ ~ ’  processes. In the expansion of W therefore, we retain 
only the terms that are proportional to Ill? (where I j  = E ~ ~ ~ C O ~ A ~ ~ / ~ )  that 
involve the absorption of one photon with energy hw,. This gives the 
change of absorption at o1 due to the presence of 0,: 

‘ 1  

The physical processes emerging from this formulation are as follows. 
First, there is a nondegenerate 2PA that requires ho, + ho, 2 E,. Second 
is an electronic Raman transition for which Iho, - hw,I 2 E, is required. 
In the “dressed state” formalism, these two processes are a consequence of 
the first-order (time varying) AC Stark shift described by Eq. (41). In 
addition to the absorption of one photon at wl, there is simultaneous 
absorption (2PA) or emission (Raman) of a photon at the excitation 
frequency w2. A third process is due to a combination of linear and 
primarily quadratic AC Stark effects. These only affect the photon absorp- 
tion at w1 and hence occur for ho, 2 E,. This process can be viewed as 
saturation of absorption due to state blocking caused by virtual carriers 
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FIG. 3. Graphic representation of the processes involved in the nonlinear absorption in a 
two-band model. The small circles denote bound electrons. 

generated by 0,. This effect is also referred to as virtual band blocking. All 
three processes described here are depicted graphically in Fig. 3. 

The resulting representation of a, for 2PA has the simple form 

where K is a material-independent constant: 

The function F, involves only the parameters x I = Ao,/E, and x 2  = Am2/ 
E,  and reflects the band structure and intermediate states considered in the 
calculations. In our simple model, F ,  contains contributions from 2PA, 
Raman, and optical Stark effects. These different components are listed in 
Table I, and the function F ,  is plotted in Fig. 4 for different values of x 1  and 
x2. 

Of the nonlinear absorption processes described here, only 2PA has been 
studied extensively. For over three decades, the 2PA coefficient (j? = 

has been measured for semiconductors and other optical solids. More 
recently, the magnitude, band-gap scaling, and spectral variation of 2PA in 
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TABLE 1 

CONTRIBUTIONS To THE NONLINEAR ABSORPTION SPECTRAL FUNCTION F z ( X l ,  Xz) 

Contribution FAX 1. x2) 

2-photon + xz - 1)3/2 

absorption 
X I  + xz > 1 

1 XI 2 ( ~ ,  - 1Hx: + x:) 8(x1 - 1)’ 

- +-I x: 

AC Stark 
XI > 1 

semiconductors have been obtained using standard transmission measure- 
ments (Van Stryland et d., 1985b). The experimental data are in good 
agreement with the calculation presented here. We are now in a position to 
look at the spectral dependence of the degenerate 2PA. From Table I the 
2PA contribution to the nonlinear absorption for x1 = x2 = x is 

(2x - 1)3/2 

25x5 
F2 = 

0.3 I I 

FIG. 4. The nonlinear absorption spectral function F, showing the change of absorption at 
w ,  due to three different photon energies wz. 
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FIG. 5. The degenerate 2PA spectral function F,(hw/E,) along with data scaled according 
to Eq. (51). (Data using transmittance from Van Stryland et a/., 1985b.) 

The solid line in Fig. 5 shows this spectral dependence. This functional 
dependence, as well as the scaling, also can be derived directly from 
second-order perturbation theory (Wherrett, 1984). 

Comparison with experiment is done best by measuring the nonlinear 
absorption spectrum for individual materials. Unfortunately, there are few 
materials for which nonlinear spectra are known. One reason for this is that 
tunable sources with the required irradiance, pulse width, and beam quality 
are not typically available. Instead, we scale the material dependence using 
predictions of the two-band model [Eq. (48) with xI = x2 and Eq. (50)]. 
Now experimental data for B (B“) can be plotted by calculating the 
experimental value of the function F,, F;,  as given below. The absolute 
magnitude for this function is then a fitting parameter K: 

F;(hofE, )  = - 2 ~ 3 8 ’  

K A n 0  ’ 
Figure 5 plots scaled data for several semiconductors versus h o f E , ,  with 

the predicted dependence from the TPB model (Van Stryland et al., 1985b). 
Measurements of degenerate B on a number of 11-VI and 111-V semiconduc- 
tors fit this model using K = 3100cm GW-’ eV5” in units where E ,  and E, 
are in electronvolts (3.2 x 10-55mks) (Van Stryland et al., 1985a). This 
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FIG. 6.  Log-log plot of scaled jF as a function of E,. The straight line is of Eq. (51) showing 
the E9-3 dependence. Adapted from Van Stryland et al. (1988). 

compares favorably with the theoretical value of K = 1940cm GW-’ eV5’, 
(1.99 x mks) given by Eq. (49). We believe that the theory underesti- 
mates the empirical value because only one valence band (light-hole) has 
been considered, and the contribution of the heavy-hole band has been 
ignored. This figure shows 2PA turning on sharply at half the band-gap 
energy and then slowly decreasing for photon energies approaching the 
band gap. This behavior is similar to the behavior of linear absorption but 
shifted by a factor of 2 in wavelength. We will see later that the nonlinear 
refraction similarly mimics the linear refraction but shifted by a factor of 2 
in wavelength. The E; dependence of 2PA is better displayed on a log-log 
plot scaling the data with F,, as shown in Fig. 6. This shows that even 
dielectric materials follow the general trend predicted by Eq. (51). We also 
remark that the result derived for 2PA using first-order perturbation and 
dressed wavefunctions is identical to that obtained from a calculation using 
second-order perturbation theory (Wherrett, 1984). 

2. NONDEGENERATE NONLINEAR REFRACTION 

With the nondegenerate nonlinear absorption coefficient az(ol,  oz) 
determined, the next step is to perform the KK transformation of Eq. (29) 
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to obtain the n2 coefficient. The result of this calculation is 

where the dispersion function G, is given by 

and 

Using the function F, given in Table I, the integration in Eq. (53) can be 
performed analytically. In the low-frequency limit, however, it is found that 
G, diverges as x, tends to zero (equivalently, o, -, 0). This divergence is not 
unexpected, The transition rate calculation is based on A p perturbation 
theory, and it is well known that divergences of this order can be introduced. 
The equivalent E .  r perturbation approach, as was shown by Aversa et al., 
(1994) avoids such divergences at the expense of a more intensive calcula- 
tion. To examine the “infrared” divergences, the nonlinear refractive terms 
can be expanded in a Laurent series around w2 = 0. Because of their 
unphysical nature, it has been common practice to subtract the divergent 
terms in the series. This brute-force process of divergence removal effectively 
enforces a sum rule for the two-band system. The long-wavelength divergent 
terms for each contribution are removed separately, and the final results are 
set out in Table 11. 

The dispersion function G, is depicted in Fig. 7 as a function of 
x1  = h o , / E ,  for various excitation photon energies x2 = h o , / E , .  By 
examining the terms in Table I 1  individually, we can determine their relative 
contribution to n2 in different spectral regimes. A general trend is evident in 
all the curves: n2 is nondispersive in the infrared regime (hw, << Eg) ,  where 
the 2PA and Raman terms contribute ajmost equally. It then reaches a 
two-photon resonance at hw, + hw, z E,, where the peak positive value is 
attained. Above the two-photon resonance, n2 becomes “anomalously” 
dispersive and ultimately turns negative. The negative behavior of n, is 
caused primarily by the 2PA and quadratic AC Stark effect components as 
h a ,  approaches E,. Recent measurements of nondegenerate n2 with the 
semiconductors ZnS and ZnSe, as shown in Section VI.7, show excellent 
agreement with this predicted behavior (Sheik-Bahae et al., 1994, 1990a). 
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TABLE I1 

CALCULATED BY A KK TRANSFORMATION OF F ,  (Table I) 
THE NONDEGENERATE DISPERSION FUNCTION FOR THE ELECTRONIC KERR COMPONENT OF n2, 

1 
where H(x,, x ) - - - 26XfX24 

> 

AC Stark 

1 - 
29x:x: x1 fx2  

3 1  5 9 9 
-x:x: 16 + -x:x: 8 - -x2x: 4 - -x; 4 - - x1)-3/2 

1 1 4 4 x: [( l  - x1)-1/2 - (1 + x1)-1/21 

2 x: x: x, x: - x: 
-_-- +--- 

2~:(3~: - x:) + [(l - x p  + (1 + x2)’/2] 
x:(x: - x:)z 

2~:(3~: - x:) - [(l - x1)1/2 + (1 + x1)’/2] 
x:(x: - xi)’ 

Note: The infrared divergent terms associated with each contribution have been removed. The 
last term is due to the degenerate AC Stark effect, which is the limit of the nondegenerate 
GTS‘Prk as xt + x2. 

While knowledge of the dispersion of the nondegenerate n, may be useful 
for applications that employ harmonic generation crystals, for example, the 
major practical interest concerns the degenerate n2(w, = 0,). In the remain- 
der of this chapter we focus our attention on this quantity n2(o).  The 
dispersion and band-gap scaling of n 2 ( o )  are given by Eq. (52) with 
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FIG. 7. The nondegenerate dispersion function G,(x,, x2) as a function of probe photon 
energy (x ,  ), calculated for three excitation photon energies. 

w 1  = 0, = w and nol  = nol = no. As was the case with the nondegenerate 
n2, the two features of interest in the nz coefficient are the band-gap energy 
scaling and dispersion. The former is characterized by an EB4 scaling, while 
the latter exhibits a sign reversal as hw approaches E, and also a two- 
photon resonance enhancement. We can now use the results of the KK 
integral for G2(w1; 0,) to give the degenerate G, and compare with 
experimental data. 

As for /?, measuring the frequency dependence of n2 for a single material 
is very difficult, and few data exist. Scaling data according to Eq. (52) 
(degenerate x1 = x2 = x) allows us to compare experimental measurements 
made on different materials. Figure 8 shows the dispersion (GJ of n2 as 
predicted by Eq. (52) along with data (n5) from several experiments scaled 
according to Sheik-Bahae et al., (1991) 

It is worth mentioning that the band-gap scaling predicted by the TPB 
model also can be obtained using a quasidimensional analysis. Such an 
analysis was used by Wherrett to obtain the band-gap energy scaling of B. 
This scaling directly gives the Ei4 scaling of n,, since n2 is directly 
proportional to x t 3 ) ,  and Wherrett (1984) showed that f3)a Ei4.  
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FIG. 8. A plot of experimental values of the nonlinear refractive index n; scaled according 

to Eq. (55) versus x = ho/E,,. The solid line is the two-parabolic-band-model prediction for the 
dispersion function G,. (a) Circles from Adair (1989), diamond from Ross et al. (1990), and 
squares from Sheik-Bahae et al. (1991). (b) An extension of (a) for frequencies near the band 
edge (expanded scale); triangles from LaGasse et al. (1990). Adapted from Sheik-Bahae et al. 
(1991). 

The hidden Ei4 scaling can be displayed more conveniently on a log-log 
plot of n, scaled by the dispersion function G,, as in Fig. 9. Here it is seen 
that the nonlinear index varies from 7.6 x 10-”cm2/W for MgF, at 
1.06pm to -3.3 x 10-’2cmz/W for AlGaAs at 810nm and 2.8 x 
10-’3cmZ/W for Ge at 10.6pm. Note, for example, that although the 
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FIG. 9. Log-log plot of scaled n; as a function of E,  showing the El4 dependence (straight 

line). The AlGaAs data are taken from LaGasse et al. (1990), and much of the large-band-gap 
data are from Adair et a/. (1989). Adapted from Sheik-Bahae et al. (1991). 

measured values of n2 for ZnSe at 1.06 and 0.532pm have different signs, 
both measurements are consistent with the scaling law. 

The prefactor K' ,  as given by Eq. (54), is 3.2 x lo-" (mks units). If we 
use the K as determined by a best fit to the 2PA experimental data, we find 
K' zz 5 x lo-*' (mks). This compares well with K' ;2: 9 x lO-"(mks) de- 
termined by an overall best fit to the experimental values of n, in semicon- 
ductors, as shown in Fig. 9. As in the 2PA case, it is more convenient to 
define the K '  factor in mixed units such that n, is given by square 
centimeters per watt and E, and E,  are given in electronvolts. In this case, 
K' z 6 x lo-" ( c ~ ~ / W ) ( ~ V ) " ~  corresponds to the overall best fit to 
semiconductor n2 data. As pointed out for the 2PA case, the factor of 2 to 
3 discrepancy between theory and experiments can be attributed in part to 
using a single valence band (light hole) and ignoring the transition originat- 
ing from the heavy-hole valence band. Moreover, as described by Sheik- 
Bahae el a/. (1994), inclusion of electron-hole Coulomb interaction by 
multiplying the F ,  function by a generalized exciton enhancement factor will 
further improve the agreement between theory and experiment. 

A number of theoretical efforts to extend the simple TPB model to a more 
compex system have been reported. For example, Hutchings and Wherrett 
(1994, 1995) used a Kane four-band structure to calculate the dispersion of 
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n, in zinc blende semiconductors. Aversa et al. (1994), as mentioned earlier, 
used E . r instead of A * p perturbation to calculate n2 in order to avoid the 
unphysical infrared divergences. Interestingly, the resulting dispersion, mag- 
nitude, and scaling properties of the preceding theories are nearly identical 
to the simple TPB theory presented here. 

Efforts also have been made to extend the n, theory to include quantum- 
confined structures. Khurgin (1994) calculated n2 for quantum well and 
quantum wire structures by applying the KK transformation to the cal- 
culated two-photon absorption spectrum. Cotter et al. (1992) also calculated 
n, in quantum-confined semiconductor nanocrystals. They obtained a 
dispersion function that is similar to bulk materials but changes sign (i.e., 
becomes negative) at longer wavelengths due to an enhanced quadratic 
Stark effect. 

3. POLARIZATION DEPENDENCE AND ANISOTROPY OF X‘3’ 

The anisotropy of the band structure, reflecting the crystalline structure 
of a particular semiconductor, manifests itself in the NLO properties by 
making n, and a, (or /?) anisotropic as well. A number of theoretical 
considerations as well as experimental measurements have been reported 
dealing primarily with the anisotropy of two-photon absorption in semicon- 
ductors belonging to various symmetry groups (Rader and Gold, 1968; 
Dvorak et al., 1994; De Salvo et al., 1993; Balterameyunas et al., 1982). 

Even in an isotropic material, such as polycrystalline semiconductors, the 
effect of the polarization of the incident electric field can still be studied by 
conducting induced-anisotropy experiments. Such experiments include po- 
larization-dependent four-wave mixing, excite probe, and measurements of 
linear/circular dichroism. A simple extension of the TPB model of Section 
111, including the effect of the heavy-hole (hh) valence band, can provide the 
necessary insight into the observed polarization effects (Sheik-Bahae et al., 
1995). The basic principle behind this theory lies in the k-space orientation of 
the momentum matrix element pco with respect to the lattice wave vectorx. 
Within Kane’s k - p  formalism (Kane, 1980), xlljco for the light-hole-to- 
conduction-band (lh-c) transitions (as used in Section III.l), whilex I jco for 
the hh-c transitions. The latter orientation can be interpreted as the reason 
for the bare electron effective mass (mo) of the hh band because k - p  coupling 
between that band and the conduction band vanishes. The significance of 
this k-space symmetry becomes apparent if we examine the expression for the 
transition rate due to the Raman effect and 2PA as obtained from Eq. (46): 
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(56) 

where unit vectors Z, and Z, represent the polarization of the two optical 
fields at frequency wl and w2, respectively. The sequence of transitions in 
Eq. (56) is typical of a two-band case in which a photon is absorbed in an 
interband transition followed by an absorption (+ sign) or emission 
( -  sign) of the second photon in an intraband process (self-transition). 
Using the k-space orientation properties ofx  and pCu, as discussed earlier, 
Eq. (56) leads to distinctly different polarization dependences for the two 
band pairs. For example, for the hh-c system, the following relationship for 
the degenerate 9rn{~‘~’) is derived: 

whereas the Ih-c system follows the x1122 = x1212 = x l Z z l  = xll11/3 sym- 
metry. In contrast, the nondegenerate transition rate due to the QSE 
involves only interband transitions: 

WQSE a 1 \(a’* *PCU)ca2 .PC”),,)l2S(hO 1 - E , , ) d ~  (58)  

The lack of self-transitions makes the symmetry relations for xQSE the same 
( x l l t 2  = x~~~~ = x~~~~ = x1,11/3) for both band pairs. In adding up all the 
contributions of the two-band pairs for both refractive and absorptive 
processes, one obtains the dispersion of the x ‘ ~ ’  tensor for an isotropic 
three-band system. The result of this calculation can explain the observed 
polarization dependence in four-wave mixing and Z-scan experiments 
(Sheik-Bahae ef al., 1995). Figure 10 shows the calculated dispersion of 
circularflinear dichroism [defined as the ratio of n2 (circular pol.) to n2 (linear 
pol.)] as compared with experimental results obtained with some semicon- 
ductors as well as dielectrics. Similar dispersion of the dichroism also was 
derived by Hutchings and Wherrett (1994) using a Kane four-band model. 

IV. Bound-Electronic Optical Nonlinearities in Active Semiconductors 

The ultrafast NLA and NLR in semiconductor laser amplifier (SLA) 
waveguides have been the subject of recent studies using femtosecond 
self-phase modulation and pump-probe techniques (see Volume 59, Chap. 
2)(Hultgren and Ippen, 1991; Hultgren et al., 1992; Hall et a!., 1993; Fisher 
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FIG. 10. The dispersion of the polarization dichroism of n, measured using Z-scan. The 
solid line is from the three-band theory, and the dashed line represents the two-band model. 
The divergence near h o / E  z 0.65 corresponds to the zero crossing of n2 (linear polarization) 
at that wavelength. Figure from Sheik-Bahae et a/. (1991). 

et a/., 1993; Hong et al., 1994; Grant and Sibbet, 1991). These delicate 
measurements revealed some intriguing features, including large, near-in- 
stantaneous, bound-electronic nonlinear refraction as well as transient 
carrier effects. The fast, bound-electronic nonlinearity, coupled with the low 
loss associated with the SLA, makes this device very attractive for possible 
use in all-optical interchange applications. The SLA exploits ultrafast 
nonlinear refraction without suffering concomitant absorption that plagues 
the approaches based on passive materials. 

Since in this chapter our interest lies in the ultrafast n2, we are not 
immediately concerned with long-lived processes that result from net carier 
excitation or deexcitation. As discussed in Volume 59, Chapter 2, in practice, 
operating at the transparency point of the device, adjusting the wavelength, 
and/or controlling the injected current density of the SLA can turn off such 
processes. However, even at the transparency point ( h o  = Eg), there exist 
real excitation processes that accompany the bound-electronic component. 
These processes include spectral hole burning (SH B) and free-carrier ab- 
sorption, both of which lead to carrier heating that shifts the transparency 
point. 

Here we briefly discuss the results of the theory of bound-electronic n2 in 
active semiconductors (Sheik-Bahae and Van Stryland, 1994). This formal- 
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FIG. 1 I .  Calculated dispersion function G, for various injected current density levels. The 
dashed line is for passive material. The transparency point of each curve is marked with a 
vertical bar. Figure from Sheik-Bahae and Van Stryland (1994). 

ism is a simple extension of the TPB theory describing bound-electronic 
processes in passive semiconductors presented in Section 111. The nonlinear 
refractive index n, in the SLA is described by an equation similar to Eq. 
(52), except that the dispersion function depends not only on hw/E, but also 
on the lattice temperature (kT/E,), quasi-Fermi levels set by the injected 
current density, and broadening due to polarization dephasing (h/T,E,). 
Figure 11 depicts the calculated dispersion function G, for various current 
injection levels plotted as a function of photon energy normalized to the 
passive band gap. The dynamic transparency point changes with current 
density, as indicated by vertical bars in the figure. 

The sign and magnitude of the predicted n, values are in close agreement 
with existing experimental results (Haltgren and Ippen, 1991; Haltgren et al., 
1992; Grant and Sibbet, 1991). A straightforward comparison can be made 
between the calculated spectral dispersion function G ,  for a SLA at the 
transparency point and the value of G, for passive material operating just 
below half the band gap. The comparison indicates that more than an 
order-of-magnitude enhancement of this function can be obtained with 
active materials. Note, however, that the nonlinear refraction is determined 
by the product of the factors G, and E i 4 .  For a given wavelength, SLA 
operation requires a band gap that is smaller by about a factor of 2. 
Therefore, for a fixed wavelength, the two contributions will enhance n, for 
an SLA by more than 2 orders of magnitude compared with a half-band-gap 
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passive switch (see Section VII.l on all-optical switching). Recent optical 
switching experiments using SLA devices have indicated nearly an order of 
magnitude lower switching power compared with passive NLDC devices 
(Lee et al., 1994). Further optimization and systematic study of SLA 
nonlinearities are expected to lower the switching threshold further. Para- 
sitic effects arising from the dynamics discussed earlier introduce complica- 
tions that need to be considered. A comprehensive theory that self- 
consistently unifies bound-electronic effects with spectral hole burning and 
carrier heating is presently not at hand. 

V. Free-Carrier Nonlinearities 

Besides ultrafast bound-electronic nonlinear effects discussed so far, 
additional NLA and NLR effects can arise from free carriers generated by 
multiphoton absorption in the transparency region. These nonlinearities are 
distinguishable from f 3 )  effects because they are cumulative (with a decay 
given by the carrier lifetime) and appear as higher-order processes (if the 
carriers are produced by linear absorption, the resulting nonlinear response 
is third order, see Chap. 1 in this volume and Chap. 5 in Volume 59). In this 
chapter we discuss the free-carrier effects mainly to point out their role in 
complicating the f 3 )  measurement process. In fact, the discrepancies of 
measured values of 2PA coefficients reported in the literature often can be 
understood by understanding these effects (Van Stryland and Chase, 1994). 
For example, in a single-beam experiment, if significant carrier densities are 
created, the nonlinear absorption equation [Eq. (14) for a single beam] must 
be modified as follows: 

d l  
- = -aI - PI2 - @,ANe + ohAN,)I 
dz (59) 

where B , , ~  is the free-carrier absorption (FCA) cross section (units of square 
centimeters) for electrons and holes, respectively. In many semiconductors 
described by the Kane model, free-hole absorption dominates (i.e., o h  >> 0,) 

due to strong inter-valence band absorption. In a two-band approximation, 
we take ANe = A N h  = A N  and define CJ = B, + oh. Assuming 2PA is the 
only mechanism for generating carriers, and neglecting population decay 
within the pulse and spatial diffusion, the carrier generation rate is given by 

dAN PI2 
dt 2ho 
-- -- 

The combination of Eqs. (59) and (60) shows a fifth-order nonlinear 
response of the loss for carriers generated by 2PA (i.e., N is proportional to 
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12, leading to an Z3  dependence of the loss). The fifth-order response comes 
from the combination of Y r n ( ~ ( ~ ) )  followed by a ~ ( l )  process, either absorp- 
tion (Yrn{x"))) or refraction (We($'). Equation (60) is only valid for pulses 
short enough that carrier recombination, decay, and diffusion can be 
ignored. This shows one of the simplifications afforded by using short 
optical pulses for determining /3 (or n2). Another advantage is that short 
pulses minimize the effects of FCA (and the associated free-carrier refrac- 
tion), since the energy for a fixed irradiance is reduced [and the less energy, 
the fewer carriers created, as seen by the temporal integral of Eq. (60)]. The 
FCA term in Eq. (59) can range from negligible to dominant depending on 
the semiconductor, wavelength, irradiance, and temporal pulsewidth. For 
example, for InSb, the FCA terms in Eq. (59) actually dominate the overall 
loss even for 100-ps, 10.6-,urn pulses (Hasselbeck et al., 1997). 

Knowledge of the free-carrier absorption coefficient 0 allows relatively 
simple modeling of the overall loss; however, 0 often must be determined 
empirically. Even in situations where the free-carrier losses can be made 
negligible (e.g., for short pulses), index changes due to the carrier excitation 
(so-called free-carrier refraction, FCR) can still be significant. This FCR is 
not simply calculated via KK from the added FCA spectrum. This turns out 
to be a small contribution to the total NLR. The dominant NLR is instead 
calculated from the saturation of the interband linear absorption spectrum 
resulting from the redistribution of electron population. A similar process 
occurs in a laser where th6 index change due to gain saturation leads to 
frequency pulling of the cavity modes (Meystre and Sargent, 1991). The 
method of carrier excitation is irrelevant to the resulting index change. The 
removal of electrons from the valence band (creation of electrons in the 
conduction band) reduces the linear absorption for wavelengths near the 
band edge (band blocking). This is referred to as the dynamic Burnstein- 
Moss shift (Moss, 1980; Burstein, 1954). Carrier-carrier scattering tends to 
thermalize the carrier distribution on the time scale of -Ips, while 
recombination times are much longer. Therefore, there is a quasi-equilib- 
rium distribution of carriers that reduces the linear absorption by removing 
potential interband transitions and, via causality, changes the index. The 
NLR is calculated from the changed absorption spectrum according to Eq. 
(27). The free-carrier NLR has a negative sign in the transparency region of 
semiconductors (from the reduced absorption), leading to beam defocusing. 
In experiments where the carriers are created by linear absorption with 
near-gap excitation, this NLR can be huge (Miller and Duncan, 1987). Here, 
where the excitation is  by 2PA, we are well below the frequency where the 
index changes are large, but the effects can still be comparable or even larger 
than the effects from n,. The importance of understanding the free-carrier 
nonlinearities in the transparency region is twofold. On the one hand, it may 
be usefu) for applications such as optical limiting (see Section VIT.2). On the 
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other hand, it can complicate the measurement or mask the usefulness of the 
bound-electronic effect in ultrafast applications such as optical switching. 

The effect of these free 
density of created carriers: 

which includes the effects 

oscillators on the phase is proportional to the 

_.- - kn21 + ka,AN dCg 
dz 

of the bound-electronic n, as well as the free- 
carrier refractive coefficient r ~ ,  (units of cubic centimeters). The k in the 
second term is sometimes dropped to give the refractive cross section in 
units of square centimeters. This fifth-order nonlinear refraction can be seen 
in measurements of the induced phase distortion, as shown in Fig. 12. This 
figure shows the index change divided by the input irradiance I, as a 
function of I, in ZnSe at 532nm, where it exhibits 2PA. The index change 
is calculated from the measured phase distortion introduced on the beam 
through propagation in bulk samples. For a purely third-order response, 
An = n21,, this figure would show a horizontal line. The slope of the line in 
Fig. 12 shows a fifth-order response, whereas the intercept gives n2 (note 
here that it is negative). The interpretation of this fifth-order response as 
defocusing from carriers generated by 2PA is consistent with a number of 
experimental measurements including degenerate four-wave mixing 
measurements (Canto-Said el al., 1991) and 2-scan and time-resolved 
two-color Z-scan measurements, as discussed in Section VI (Sheik-Bahae et 
al., 1992; Wang et al., 1994). 

25 r 7 

0.0 0.5 1.0 1.5 2.0 2.5 

I ( GW/cm2) 

FIG. 12. A plot of the ratio of the change in refractive index to irradiance as a function of 
irradiance for 532-nm picosecond pulses in ZnSe. Figure from Said et a/. (1992). 
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We next look briefly at two different band-filling (BF) models describing 
this nonlinear refraction. The first model (BF1) is attributed to Aronov et 
al. (1968) and Auston et al. (1978), and the second is the dynamic 
Moss-Burstein model with Boltzmann statistics (BF2) (Moss, 1980; Miller 
et al., 1981b; Wherrett et al., 1988). In these theories, the change in refraction 
due to carriers is independent of the means of carrier generation (see Chap. 
5 in Volume 59 for more information on carrier nonlinearities). In the BF1 
model, the nonlinear refraction due to free carriers is calculated directly 
from the real part of the complex dielectric function. The creation of a 
density AN of free electrons in the conduction band is accompanied by an 
elimination of a density N of bound electrons in the valence band. The 
former is  often referred to as the Drude contribution, whereas the latter is 
referred to as a Lorentz contribution to the change in the dielectric constant. 
The overall change in the index of refraction is given by Auston et al. (1978) 

ANe’ E,2 An(w; AN) = a,AN = - 
2Eonow2m,, E,’ - ( h ~ ) ~  

where m,, is the reduced effective mass of the electrons in the conduction 
band and the holes in the valence band. 

In the BF2 model, as was originally introduced by Miller et al. (1981), the 
free carriers block the absorption at frequencies higher than the energy gap 
by filling the available states in the conduction and valence bands. This 
model uses a Kramers-Kronig integral on this change in absorption. The 
total change in the index of refraction using a three-band model, including 
contributions from electrons, heavy holes, and light holes, is given by 
(Wherrett ef al., 1988) as 

where 

x’ exp( - x’) 
J i i  = dx 

E - ham, ,  
” kBT mi 

a , .  = 9- 
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where mo is the free electron mass, k, is the Boltzmann constant, T is the 
temperature in degrees Kelvin, and E ,  = 21p,,(k = O))2/mo is the Kane 
energy, as discussed in Section 111.1, and is approximately 21 eV for most 
semiconductors (Kane, 1980) AN and AP represent the photogenerated 
electron and hole densities, and the subscripts c, h, and I represent the 
conduction, heavy-hole, and light-hole bands, respectively. Similarly, mi 
represents the effective mass of the band j, and mii denotes the reduced 
effective mass of the ij band pair. The dummy subscripts i and j represent c, 
h, or 1. APh and AP, are given by (Wherrett et al., 1988) 

Expression (63) (with Eq. 65) is an approximation adequate for near- 
resonance radiation. Off resonance, as in 2PA, we find that J ,  should be 
replaced by F,, where F is defined as 

mCi E - ho m,, E, + hw 
F i j =  - 2 J  ( ~ ~ T ) + J ( ~ ~ ) + J ( ~  -- k,T ) (68) 

For hw z EB and E, >> kBT, the first and third terms in Eq. (68) are very 
small compared with the second term; thus it is reasonable to neglect them 
(Miller et al., 1981; Wherrett et a/., 1988). In 2PA experiments, E, L ho is 
comparable with E,, and all three terms in Eq. (68) need to be retained. 

The electron's contribution to the index change is the first term in Eq. (63) 
(AN,), and this includes blocking caused by electron transitions from the 
heavy-hole band and the light-hole band in addition to the change in the 
electron population in the conduction band. The other two terms give the 
contributions of the holes. Calculations of the free-carrier refraction using 
both models give good agreement with data taken on the semiconductors 
GaAs and CdTe at 1.06 pm, and ZnSe at 532 nm using picosecond pulses 
(see Fig. 12) (Said et al., 1992). For these materials, both models work well, 
since the change in the index of refraction from transitions between the 
light-hole band and the conduction band (electron blocking, light-hole 
blocking, and free light-hole generation) contributes only about 30% for 
these semiconductors. Thus it is reasonable to use the approximation of a 
two-band model where only transitions from heavy-hole band to conduc- 
tion band are considered. For these materials, the low-temperature condi- 
tion or Ihw - E,I >> k,T is satisfied; for example, in the worst case of GaAs, 
Jhw - E,I = 0.25 eV, and at room temperature, k,T z 0.025 eV. Examining 
J ,  in Eq. (65), aij  >> 1, yielding .Iij z x"2/4a. Substituting this value for J ,  
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in Eq. (68), F ,  is proportional to x2/(1 - x’), where x = ha/E,.  Assuming 
a two-band model and substituting F ,  for J ,  in Eq. (65) shows that the 
change in the index of refraction due to the carrier transition blocking is 

1 
E,” - (ha)’ 

A n  cc 

having the same frequency dependence as the enhancement factor in the 
BF1 model. This is expected because the same physical mechanism is used 
in both calculations. Following the scaling rules applied for describing n ,  
and /3 in Section 111, it is helpful to write a similar relation for free-carrier 
refraction, namely, a,. For example, by replacing the effective mass par- 
ameter by moEg/E,, Eq. (62) can be reexpressed as (Wang et d., 1994) 

where A = h2e2/2com, = 3.4 x 10-”cm3eV2, and H(x) = [x’(x’ - 1)I-l  

is the free-carrier dispersion function. Figure 13 compares this dispersion 
function with some experimental data properly scaled using A “5 2.3 x 
10-22cm3eV2. The experimental procedure used for these measurements is 
given in Section VI.7. 

Another theory of free-carrier nonlinearities as given by Banyai and Koch 
(1986) includes the effects of electron-hole Coulomb interaction, plasma 
screening, and band filling. This theory has been shown to have good 

I 

FIG. 13. A plot of H ( x )  versus x showing free-carrier refraction for three semiconductors 
as compared with theory (solid line). Figure from Wang el al. (1994). 
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agreement for near-gap excitation. A quantitative comparison of the predic- 
tions of this theory with data taken at frequencies where the excitation is 
well below the band edge shows poorer agreement (Said ef al., 1992). 

VI. Experimental Methods 

There are a number of experimental difficulties that need to be addressed 
when attempting to determine the value of ultrafast nonlinearities, f l  = 
or n2. For example, an examination of the literature on reported values of 
j? for the single semiconductor GaAs shows well over a 2 order of magnitude 
variation in the reported value over the past four decades. As mentioned in 
the preceding section, competing effects of free carriers could easily lead to 
an overestimation of f l  as well as an incorrect value of n2. Using shorter 
optical pulses minimizes these and other possible cumulative effects; how- 
ever, even if the cumulative effects are negligible, nonlinear refraction from 
n2 can still affect measurements of fl, as can f l  in measurements of n2. In 
addition, laser output pulses having unknown temporal or spatial modula- 
tion can lead to an underestimation of the irradiance. Therefore, careful 
characterization of the laser output is necessary. In “thick” samples, beam 
propagation can lead to irradiance changes from induced phase shifts within 
the sample. This can be quite difficult to model and properly taken into 
account. It is normally advisable to work in the “external self-action” 
(Kaplan, 1969) regime or thin-sample limit so that beam propagation effects 
within the sample can be ignored. This greatly simplifies interpretation of 
data because the equation describing nonlinear absorption can be separated 
from that describing nonlinear refraction, as has been assumed previously 
in this chapter; i.e., these equations become Eqs. (14) and (15) [or Eqs. (59) 
and (61) if carrier nonlinearities are included]. Note that since the nonlinear 
phase shift depends on the irradiance, Eq. (14) (or 59) must first be solved 
for I(z) in order to solve Eq. (15) (or 61). Even if the sample satisfies the 
thin-sample approximation, nonlinear refraction has been known to refract 
light so strongly after the sample that the detector may not collect all the 
transmitted energy. This again leads to an overestimation of the nonlinear 
loss. All the preceding effects can contribute to erroneous values of the 
nonlinear coefficients. 

Several experimental techniques are available for measuring the bound- 
electronic nonlinear response of semiconductors, i.e., f l  and n2. We will only 
briefly discuss a few such methods: transmittance, beam distortion, degen- 
erate four-wave mixing (DFWM), pump/probe techniques, interferometry, 
and Z-scan along with its derivatives. In general, it is difficult, if not 
impossible, with any single technique to unambiguously separate the differ- 
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ent nonlinear responses. These techniques are sensitive to several different 
nonlinearities at once. Usually several different experiments are necessary, 
varying parameters such as irradiance and pulse width, to unravel the 
underlying physics. Clearly, reducing the pulse width, for ultrafast non- 
linearities should result in a measurement of the same value of /? and n, for 
the same irradiance, whereas slower nonlinear responses will change as the 
pulse width approaches the response time. Unfortunately, from the stand- 
point of characterization, ultrafast and cumulative nonlinearities often occur 
together in semiconductors, so a simple separation is not possible 

1. TRANSMIITANCE 

Single-beam direct transmittance measurements have been a primary 
method for determining fi in semiconductors (Van Stryland et al., 1985a; 
Bechtel and Smith, 1976). Plots of the inverse transmittance versus irra- 
diance are nearly straight lines with the intercept determined by a. and 
slope proportional to 8. This is seen by solving Eq. (59) neglecting carrier 
losses, i.e., a = 0, giving 

Integrals over the spatial and temporal beam profiles tend to slightly 
reduce the slope of these plots, as shown in Fig. 14. This figure shows the 
inverse transmittance of collimated 532-nm pulses incident on a 2.7-mm- 
thick sample of chemical vapor deposition grown ZnSe as a function of peak 
on-axis irradiance (Van Stryland et al., 1985a, 1985b). Great care must be 
taken to ensure that all transmitted light is collected. Two curves are shown 
for pulse widths of 40 and 120ps (FWHM). The fact that these two curves 
lie on top of one another indicates that the cumulative effects of free-carrier 
absorption are negligible for these pulse widths, and a value of /? can be 
reasonably deduced from these data as shown in Figs. 5 and 6. Longer pulse 
widths show a clear deviation due to FCA. 

2. BEAM DISTORTION 

Measurements of n, also can be performed in transmission by monitoring 
the beam distortion that occurs on propagation (Williams et al., 1984). 
Figure 15 shows the beam distortion in the near field introduced in ZnSe 
by picosecond 532-nm pulses by the combined effects of 2PA, bound- 
electronic n2, and free-carrier refraction (FCR). As determined from a series 
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of other experiments (Z-scan and DFWM), both n2 and the FCR lead to 
self-defocusing and contribute about equally to the self-lensing shown in 
Fig. 15 (the solid line is the theory using parameters deduced from other 
experiments). The sensitivity of this experiment is limited. For example, peak 
on-axis optical path length changes need to be greater than approximately 
,4/4 in order to see changes to a Gaussian beam when propagated to the far 
field. It is also difficult to separate these different contributions with only 
beam distortion measurements. Even 2PA alone leads to beam shape 
changes with propagation. For example, a Gaussian beam is spatially 
broadened after propagation through a 2PA material because the center 
portion of the beam is preferentially absorbed, and therefore, the diffraction 
is reduced. This effect could be mistaken for self-focusing. Sheik-Bahae er al. 
(1990) and Hermann and Wilson (1993) give details of the modeling of 
propagation for samples that satisfy the external self-action criteria. Where- 
as Chapple et al. (1994), Sheik-Bahae et al. (1990), Hermann and McDuff 
(1993), and Tian et al., (1995), give information on modeling methods for 
thick samples 

3. EXCITE-PROBE 

Pump-probe (or excitation-probe) measurements are useful for studying the 
temporal dynamics of nonlinear absorption (Shank er al., 1978). In these 
experiments, an excitation pulse (pump) excites the sample (changes its 
optical properties), and a probe pulse, spatially coincident with the pump, 
detects the changes in the optical properties as a function of time delay after 
the pump. The change in transmittance of a weak probe pulse as a function 
of time delay after excitation by a short optical pulse allows slow and “fast” 
nonlinear responses to be separated. The probe is usually derived from the 
excitation pulse. In the case of equal frequencies (degenerate), the probe is 
a time-delayed replica and must be separated from the pump either spatially 
or by using a different polarization. Nondegenerate 2PA can be determined 
by frequency shifting either the pump or probe, allowing spectral separation 
of the probe transmittance. Determining whether or not the “fast” response 
is due to 2PA depends on the laser pulse width used. For picosecond/ 
subpicosecond excitation, one can be reasonably certain that a signal is from 
multiphoton absorption if it follows the input pulse in time and shows an 
increasing loss. If in addition the loss vanes according to Eq. (70) (a 
third-order nonlinearity), it is likely due to 2PA. 

Nondegenerate nonlinear absorption spectra also have been measured, 
often using a fixed-frequency laser pump combined with a white-light probe 
such as the output of a flashlamp (Hopfield et al., 1963). In such a case, the 
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temporal extent of the white-light source is usually much longer than the 
laser pulse and is often measuring the spectrum of cumulative nonlinearities, 
which can be different from the initial 2PA spectrum. The advent of 
femtosecond white-light continuum generation has allowed nondegenerate 
spectra to be taken on short time scales, where the ultrafast response 
dominates (see Section VI.8) (Bolger et al., 1993). 

Again, interpretation of the nonlinear response is made difficult by the 
fact that these pump/probe methods are sensitive to any induced change in 
loss; however, most induced phase shifts will not give rise to a measurable 
signal. An experimental geometry that allows index changes to generate 
large signals is the optical Kerr-Gate. This is a form of pump/probe 
experiment where induced anisotropy leads to polarization changes (Maker 
et al., 1964). As discussed next, three-beam interactions can produce a fourth 
beam through NLA and/or NLR. 

4. FOUR-WAVE MIXING 

Four-wave mixing, where three beams are input to a material and a fourth 
wave (beam) is generated, can be used for determining the magnitude of a 
material’s nonlinear response and its response time. If the response is known 
to be third-order and ultrafast, 1 f 3 ) 1  can be determined along with some of 
its symmetry properties by varying the relative polarizations of the input 
beams (as well as by monitoring the polarization of the fourth wave). In 
addition, the frequencies of the input beams can be changed independently 
to determine the frequency dependence of the nonlinear response, but this 
can result in the need for a complex geometry to satisfy phase-matching 
requirements. Equal frequencies are often used, resulting in a much simpler 
geometry for phase matching, and this is referred to as degeneratefour-wave 
mixing (DFWM). Figure 16 shows one simple geometry for DFWM where 
two of the input beams (the forward and backward pumps) are oppositely 
directed. If these beams are nearly plane waves (i.e., well collimated), this 
geometry ensures phase matching for any third input beam (the signal). 
Introducing delay arms into each of the beams also allows the temporal 
dynamics of the nonlinearities to be measured for short optical input pulses. 
A particularly useful measurement (see Fig. 16) is to monitor the energy of 
the fourth beam (so-called phase-conjugate beam) as a function of the time 
delay of the perpendicularly polarized backward pump (signal and forward 
pump have the same linear polarization) (Fisher, 1983). 

Figure 17 shows the results of this experiment performed on a sample of 
ZnSe using - 30-ps, 0.532-pm pulses (Canto-Said et al., 1991). Clearly, two 
very distinct nonlinearities are evident from this figure. Near zero delay, a 
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FIG. 16. DFWM geometry to allow temporal dynamics measurements. Detector D, 
monitors the conjugate beam energy. Figure from Canto-Said et al. (1991). 

large, rapidly decaying signal is seen that follows the input pulse. At  longer 
delays, we observe a more slowly decaying signal. To better understand the 
two nonlinear regimes, irradiance-dependent experiments can be performed. 
The inset in Fig. 17 shows a log-log plot of the DFWM signal versus the 
total input irradiance (all three input beams are varied simultaneously) at 
two different delay times. The zero-delay curve gives a power dependence of 
3.1 +_ 0.2, indicative of a third-order nonlinearity. The curve for a delay of 
+ 200ps shows a power law dependence of 5.0 k 0.2. This is the fifth-order 
carrier nonlinear refraction discussed in Section V. Here, a modulated 
carrier density, created by 2PA from the interference of the copolarized 
forward pump and signal beam, creates a modulation of the refractive index 
(FCR) that scatters the backward pump into the fourth beam. In principle, 
free-carrier absorption also will contribute, but other experiments (see 
Section VI.7) have shown that FCR dominates for these pulse widths. For 
longer pulses, free-carrier absorption also would contribute to the fifth-order 
signal. The carrier grating then decays due primarily to diffusion of the 
carriers between interference fringes as well as some decay by recombina- 
tion. Studies in CdTe at 1.06pm, where this material exhibits 2PA, reveal 
the same basic behavior (Canto-Said et al., 1991). 

One of the difficulties in the interpretation of DFWM data for third-order 
nonlinearities is that the signal is proportional to Ix(3)12 = 
i P e ( ~ ' ~ ' )  + 4 m { ~ ' " ' j 1 ~ ,  and so 2PA and n, both contribute. Separating the 
effects is difficult without performing additional experiments. Also, as seen 
in Fig. 17, higher-order nonlinearities also can contribute, making separ- 
ation of absorptive and refractive effects difficult. 
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FIG. 17. DFWM signal in ZnSe for temporally coincident, copolarized, forward pump, and 
probe as a function of the time delay of the perpendicularly polarized backward pump. The 
inset shows a log-log plot of the output signal as a function of the input (all three inputs varied) 
for (a) zero temporal delay and (b) -200-ps delay. Figure from Canto-Said et al. (1991). 

5. INTERFEROMETRY 

A number of interferometric methods have been used to measure non- 
linearly induced phase distortion (Adair et al., 1989; Weber et al., 1978; 
Moran et al., 1975; Xuan et al., 1984). Often a sample is placed in one path 
(e.g., arm) of an interferometer, and the interference fringes are monitored 
as a function of irradiance. For example, if the interferometer is first set to 
give a series of straight-line interference fringes for low input (linear regime), 
the fringes become curves at high inputs near the central, high-irradiance 
portion of the beam. The addition of a streak camera can add time 
resolution to the analysis (Moran et al., 1975). Alternatively, a third beam 
pathway can be added so that fringes from two weak beams are monitored 
and the sample is in the path of one weak beam and the strong third beam. 
Then the fringe shift occurs when the strong beam is blocked and un- 
blocked, giving the optical path-length change from which the phase shift 
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can be determined (Xhan et al., 1984). Jnterferometric methods require good 
stability and precise alignment; however, such techniques using various 
modulation schemes have resulted in sensitivities of better than A/104 in the 
induced optical path-length changes. 

6. Z-SCAN 

Z-scan was developed for measuring nonlinear refraction (NLR) and 
determining its sign (Sheik-Bahae et al., 1989). It was soon realized that it 
also was useful for measuring nonlinear absorption (NLA) and separating 
the effects of NLR from NLA (Sheik-Bahae et al., 1990). We start by 
explaining its use for determining NLR. Using a single focused beam, as 
depicted in Fig. 18, we measure the transmittance of a sample through an 
aperture (Z-scan) or around an obscuration disk (EZ-scan) (Xia et al., 1994; 
Van Stryland et al., 1994), where either are positioned in the far field. The 
transmittance is determined as a function of the sample position Z measured 
with respect to the focal plane. Using a Gaussian spatial profile beam 
simplifies the analysis. The following example qualitatively describes how 
such data (2-scan or EZ-scan) are related to the NLR of the sample. 

Assume, for example, a material with a positive nonlinear refractive index. 

Detector I 1  
Sample 

FIG. 18. Z-scan geometry with reference detector to minimize background and maximize 
the signal-to-noise ratio. Figure adapted from Sheik-Bahae et al. (1989). 
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FIG. 19. Predicted Z-scan signal for positive (solid line) and negative (dashed line) 
nonlinear phase shifts. 

Starting the Z-scan (i.e., aperture) from a distance far away from the focus 
(negative Z), the beam irradiance is low, and negligible NLR occurs; hence 
the transmittance remains relatively constant. The transmittance here is 
normalized to unity, as shown in Fig. 19. As the sample is brought closer to 
focus, the beam irradiance increases, leading to self-focusing in the sample. 
This positive NLR moves the focal point closer to the lens, leading to a 
larger divergence in the far field. Thus the aperture transmittance is reduced. 
Moving the sample to behind the focus, the self-focusing helps to collimate 
the beam, increasing the transmittance of the aperture. Scanning the sample 
further toward the detector returns the normalized transmittance to unity. 
Thus the valley followed by peak signal is indicative of positive NLR, 
whereas a peak followed by a valley shows self-defocusing. Figure 19 shows 
the expected result for both negative and positive self-lensing. The EZ-scan 
reverses the peak and valley because, in the far field, the largest fractional 
changes in irradiance occur in the wings of a Gaussian beam. The EZ-scan 
can be more than an order-of-magnitude more sensitive than the Z-scan. 

We can define an easily measurable quantity ATp as the difference 
between the normalized peak and valley transmittance: T, - T,. The vari- 
ation of ATp is found to be linearly dependent on the temporally averaged 
induced phase distortion, defined here as Amo [for a bound-electronic n2, 
AQ0 involves a temporal integral of Eq. (61) without carrier refraction, i.e., 
cr, = 01 (Sheik-Bahae et af., 199Ob). For example, in a Z-scan using a small 
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aperture with a transmittance of S < lo%, 

assuming CW illumination. With experimental apparatus and data-acquisi- 
tion systems capable of resolving transmission changes ATpv z 1%, Z-scan 
is sensitive to less than ;1/250 wavefront distortion (i.e., Amo = 2n/250). The 
Z-scan has a demonstrated sensitivity to a nonlinearly induced optical 
path-length change of nearly A/103, whereas the EZ-scan has shown a 
sensitivity of /./lo4, including temporal averaging over the pulse width. Here 
the temporal averaging for an instantaneous nonlinearity and Gaussian 
temporal shape gives AOo = AQpeak/& whereas for a long-lived nonlinear- 
ity (much longer than the pulse width), AQo = AO/2 independent of the 
pulse shape. 

In the preceding picture we assumed a purely refractive nonlinearity with 
no absorptive nonlinearities such as 2PA that will suppress the peak and 
enhance the valley. If NLA and NLR are present simultaneously, a numeri- 
cal fit to the data can in principle extract both the nonlinear refractive and 
absorptive coefficients. However, a second Z-scan with the aperture re- 
moved and care taken to collect all the transmitted light can determine the 
NLA independently. For 2PA alone and a Gaussian input beam, the loss 
nearly follows the symmetric Lorentzian shape as a function of the sample 
position 2. The magnitude of the loss determines the NLA, e.g., f i  from Eq. 
(71). This so-called open aperture Z-scan is only sensitive to NLA. A further 
division of the apertured Z-scan data (referred to as closed-aperture Z-scan) 
by the open-aperture Z-scan data gives a curve that for small nonlinearities 
is purely refractive in nature (Sheik-Bahae et al., 1990b). In this way we have 
separate measurements of the absorptive and refractive nonlinearities with- 
out the need for computer fits of the 2-scans. Figure 20 shows such a set of 
Z-scans for ZnSe. Here the lines are numerical fits to the curves. Separation 
of these effects without numerical fitting for the EZ-scan is more compli- 
cated. 

7. EXCITE-PROBE Z-SCAN 

Excite-probe techniques in nonlinear optics ..ave been employed to 
deduce information that is not accessible with a single-beam geometry 
(Shank et al., 1978). By using two collinear beams in a Z-scan geometry, we 
can measure nondegenerate nonlinearities, we can temporally resolve these 
nonlinearities, and we can separate the absorptive and refractive contribu- 
tions. There have been several investigations that have used Z-scan in an 
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FIG. 20. Z-scans for ZnSe using picosecond 532-nm pulses: (a) open aperture; (b) closed 
aperture; (c) closed aperture data divided by open aperture data. Figure adapted from 
Sheik-Bahae er a/. (1991). 
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excite-probe scheme. Z-scan can be modified to give nondegenerate non- 
linearities by focusing two collinear beams of different frequencies into the 
material and monitoring only one of the frequencies (different polarizations 
can be used for degenerate frequencies) (Ma et al., 1991; Sheik-Bahae et al., 
1992). The general geometry is shown in Fig. 21. After propagation through 
the sample, the probe beam is then separated and analyzed through the 
far-field aperture. Due to collinear propagation of the excitation and probe 
beams, we are able to separate them only if they differ in wavelength or 
polarization. The former scheme, known as a two-color Z-scan, has been 
used to measure the nondegenerate n, and #? in semiconductors. Figure 22 
shows results of such experiments performed on ZnSe and ZnS samples with 
excitation at 1.06pm and probing at 532nm, i.e., p ( 2 q  o) and n,(2o; o) 
(Sheik-Bahae et al., 1994). The data are scaled as before (see Eqs. 51 and 5 5 )  
and plotted to show comparison with the TPB model for FzpA and G,. 

The most significant application of excite-probe techniques in the past 
concerned the ultrafast dynamics of nonlinear optical phenomena. The 
two-color Z-scan can separately monitor the temporal dynamics of NLR 
and NLA by introducing a temporal delay in the path of one of the input 
beams. These time-resolved studies can be performed in two fashions. In one 
scheme, Z-scans are performed at various fixed delays between excitation 
and probe pulses. In  the second scheme, the sample position is fixed (e.g., at 
the peak or the valley position), while the transmittance of the probe is 
measured as the delay between the two pulses is varied. Figure 23 shows the 
result of using this second method on ZnSe to separately determine the 
dynamics of the NLA and NLR (i.e., the time-dependent signal at the valley 
is subtracted from that at the peak) [Wang et al., 19943. The analysis of 

filter 

FIG. 21. Optical geometry for a two-color 2-scan. The filter blocks the pump beam. 
Adapted from Sheik-Bahae er 01. (1992). 
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FIG. 22. (a) The measured degenerate j (2w; 2 0 )  (open symbols) and nondegenerate j (2w; 
o) (solid symbols) for ZnSe (circles) and ZnS (triangles) using w = 2 m / I  with I = 1.06pm. The 
data are scaled according to Eq. (51) to compare with the TPB theory; F2(2x; x) (solid line) 
and F,(x; x )  dashed line. (b) The corresponding measured n2 values scaled according to Eq. 
(55) to compare with the TPB theory; G,(2x; x )  (solid line) and G,(x,x) (dashed line). Figure 
from Sheik-Bahae et al. (1992). 

two-color Z-scans is naturally more involved than that of a single-beam 
Z-scan. The measured signal, in addition to being dependent on the 
parameters discussed for the single-beam geometry, also will depend on 
parameters such as the excite-probe beam waist ratio, pulse-width ratio, and 
the possible focal separation due to chromatic aberration of the lens (Wang 
et al., 1994; Ma et af., 1991; Sheik-Bahae et al., 1992). Table 111 gives the 
results of data for ZnSe taken using transmittance, beam distortion, Z-scan, 
two-color Z-scan, and time-resolved excite-probe techniques. 

Another excite-probe technique based on Z-scan geometry is the method 
of Kerr-lens autocorrelation (Sheik-Bahae, 1997; Sheik-Bahae and Ebrahim- 
zadeh, 1997) suitable for measurements employing femtosecond laser pulses. 
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FIG. 23. Time-resolved Z-scan data on ZnSe using 532-nm, picosecond excitation pulses 
and probing at 1.06pn: (a) nonlinear refraction versus temporal delay; (b) nonlinear absorp- 
tion versus temporal delay. Figure from Wang et a/ .  (1994). 

TABLE 111 

DATA TAKEN ON CVD-GROWN ZNSE AND ZNS USING SEVERAL OF THE TECHNIQUES DISCUSSED 
IN THIS SECTION 

ZnSe ZnS 

b( 1.06; 1.06) 
p(0.532; 0.532) 
p(0.532; 1.06) 
/3( I .06; 0.532) 
py( 1.06; 0.532) 
n2(1.06; 1.06) 
~ ~ ( 0 . 5 3 2 ;  0.532) 
ti2(0.532; 1.06) 
n:'(0.532; I .06) 
n2( 1 .W, 0.532) 
(i.( 1.06) 
fl,( 1.06) 
L 

0 
5.8 f 1 cm/GW 
I5 k 3cm/GW 
4.6 f I cm/GW 
8.6 2 cm/G W 
(2.9 f 0.3) x 10-'4cm2/W 
(-6.8 +_ 1.4) x 10-14cm/W 
(-5.1 k0.5) x 10-15cmZ/W 
(-2.6 kO.3) x 10-'4cm2/W 

(4.4 f 1.3) x 1O-'*cm2 
(-6.1 & 1.5) x IO-''cm3 

( -9  f 5) x 1 0 - ~ 5 ~ m 2 / w  

- s 

0 
3.4 f 0.7 cm/GW 
0 
0 
0 
(6.3 k 1.4) x 10-'5cm2/W 
Not measured 
(1.7 k0.4) x 10-14cm2/W 
Not measured 

(7 2) x 10-l8cm2 
(5.2 & 1 . 1 )  x 1 0 - 2 2 ~ m 3  
re z 0.6 ns; T, = 0.8 ns 

< 1.5 x 10-14Cm2/w 

Note: The xy superscript indicates that the two beams in the two-color Z-scan were perpen- 
dicularly polarized. The T~ and 7, for ZnS indicate that the decays seen in the time-resolved 
two-color Z-scan for absorption and refraction were different. 

8. FEMTOSECOND CONTINUUM PROBE 

The development of high-irradiance, femtosecond pulsed laser systems has 
allowed a pump/probe experiment that automatically yields the non- 
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degenerate nonlinear absorption spectrum. In such an experiment, the 
femtosecond pulse is split in two, and one beam is used as the excitation, 
while the other beam is focused into a suitable material to produce a 
white-light continuum (Bolger et al., 1993). This white-light continuum is 
then used as the probe at all frequencies or in Eq. (29). Given a sufficiently 
broad spectrum, the KK integral can be applied to yield the nondegenerate 
n,. This method has not been applied to date over a broad spectral range. 
However, in principle, both nondegenerate B and n, can be obtained in a 
single shot measurement. 

9. INTERPRETATION 

The interpretation of NLA and NLR measurements is fraught with many 
pitfalls and great care must be taken. In extensive studies of a wide variety 
of materials, it is found that there is seldom a single nonlinear proces 
occurring. Often several processes occur simultaneously, sometimes in 
unison and sometimes competing. It is necessary to experimentally distin- 
guish and separate these processes in order to understand and model the 
interaction. There are a variety of methods and techniques for determining 
the nonlinear optical response, each with its own weaknesses and advan- 
tages. In general, it is advisable to use as many complementary techniques 
as possible over as broad a spectral range as possible to unambiguously 
determine the active nonlinearities. Numerous techniques are known for 
measurements of NLR and NLA in condensed matter, including the 
methods discussed earlier. Nonlinear interferometry (LaGasse et al., 1990; 
Weber et al., 1978; Moran et al., 1975; Xuan et al., 1984), degenerate 
four-wave mixing (DFWM) (Canto-Said et al., 1991; Fisher, 1983), nearly 
degenerate three-wave mixing (Adair et al., 1989), ellipse rotation 
(Owyoung, 1973), beam distortion (Williams, 1984), beam deflection (Be- 
rtolotti, 1988), and third-harmonic generation (Kajzar and Messier, 1987) 
are among the techniques frequently reported for direct or indirect determi- 
nation of NLR. Z-scan is capable of separately measuring NLA and NLR 
(Sheik-Bahae et al., 1989, 1990b). Other techniques for measuring NLA 
include transmittance (Bechtel and Smith, 1976), calorimetry (Bass et al., 
1979), photoacoustic (Bae et al., 1982; Van Stryland et al., 1980), and 
excite-probe (Shank et al., 1978) methods. 

VII. Applications 

Ultrafast nonlinearities in optical solids have been used for applications 
ranging from ultrashort laser pulse generation (Kerr-lens mode locking) to 
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soliton propagation in fibers over distances of the earth’s circumference. 
Here we briefly discuss two areas of research using optical nonlinearities in 
the transparency region of semiconductors: (1) all-optical switching, a 
potential device application in telecommunications switching and routing 
systems, and (2) optical limiting, primarily applicable to protecting optical 
sensors from high-irradiance inputs. 

1. ULTRAFAST ALL-OPTICAL SWITCHING USING BOUND-ELECTRONIC 
NONLINEARITIES 

An important application of the n2-j theory that was presented in Section 
111 is that it allows direct determination of the ideal operating point of a 
passive optical switch. Optical switch designers have established a figure of 
merit (FOM) for candidate materials, defined by the ratio nn,//?L = 1/T 
(where T is the FOM defined in Mizrahi er al., 1984). The goal of 
maximizing the FOM clearly shows the need for a large nonlinear phase 
shift (nnJ.2) while keeping the 2PA loss (B) small. By substituting Eqs. (48) 
and (52) in the FOM ratio, the theory can be used to obtain a universal 
FOM curve. This FOM is then given by xG2(x)/F2(x) = 1/T, where 
x = hO/EP.  Figure 23 depicts the calculated FOM and a comparison with 
experimental data obtained for several semiconductors (Sheik-Bahae er al., 
1991). The remarkable agreement between theory and experiment indicates 
that this quantity is indeed a fundamental property of semiconductors, 
depending only on the normalized optical frequency (ho/E, ) .  

The two horizontal lines in Fig. 24 represent the minimum acceptable 
FOM for nonlinear directional couplers (NLDC) and Fabry-Perot (FP) 
interferometers. Although it demands a larger FOM, the NLDC scheme is 
the preferred practical geometry. From Fig. 24 we see that the FOM 
requirement is satisfied either just below the 2PA edge or very near 
resonance (hw 5 E,). Since n2 a Eg-4, a low switching threshold at a given 
wavelength demands a material with the smallest possible band-gap energy. 
The theory then suggests that the ideal operating region is just below the 
band gap. However, operation near the band gap forces the designer to 
contend with increasing loss due to band-tail linear absorption, which 
makes this scheme unworkable at present (at least in passive material). If 
operation near the half band gap is contemplated instead, one must pay the 
penalty of reduced nonlinear refraction (- 16 times at a given wavelength). 
To compensate, the operating irradiance must be increased. At high irra- 
diance, however, nonlinear absorption associated with 2PA becomes an 
issue, making this option problematic as well. Therefore, passive all-optical 
switching presents fundamental constraints that cannot readily be solved by 
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AdE, 

FIG. 24. Ratio of n,/k/? (switching parameter or figure of merit) as a function of ho/E,. The 
solid line is predicted from the two-parabolic-band model. NLDC stands for nonlinear 
directional coupler, and FP stands for Fabry-Perot etalon. Figure from Sheik-Bahae et al. 
(1991). 

materials engineering. One method being pursued is operating just below 
the 2PA edge so that 3PA is the dominant loss mechanism. This has led to 
some promising results (Stegeman et al., 1996). Another method, as dis- 
cussed previously, is using semiconductor laser amplifiers (SLA), where 
parasitic linear loss can be mitigated, making near-gap operation a practical 
possibility. 

2. OPTICAL LIMITING 

Passive optical limiting uses a material’s nonlinear response to block the 
transmittance of high-irradiance light while allowing low-irradiance light to 
be transmitted (an operation similar to that of photochromic sunglasses). 
The primary application of optical limiting is to protect sensitive optical 
components from being damaged by the high-intensity input light. The ideal 
optical limiter has a high linear transmission for low inputs (e.g., energy), a 
variable limiting input energy, and a large dynamic range defined as the 
ratio of the linear transmittance to the minimum transmittance obtained for 
high input (prior to irreversible damage) (Crane et af., 1995; Sutherland et 
al., 1997). Since a primary application of optical limiting is to protect 
sensors, and fluence (energy per unit area) almost always determines 
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damage to detectors; this is the quantity of interest for the output of a 
limiter. Getting this type of response is possible using a wide variety of 
materials; however, it is very difficult to get the limiting threshold as low as 
is often required and at the same time have a large dynamic range. Because 
high transmission for low inputs is desired, we must have low linear 
absorption. These criteria lead to the use of materials displaying strong 2PA 
and nonlinear refraction. Devices based on these nonlinearities can be made 
to have low limiting thresholds, large dynamic ranges, and broad spectral 
responses; however, since 2PA and n2 are irradiance-independent, they work 
best for short input pulses (Hagan et al., 1988). For example, a monolithic 
ZnSe device limits the output fluence at input energies as low as lOnJ 
(300 W peak power) and has a dynamic range greater than lo4 for 532-nm, 
30-ps (FWHM) pulses, as shown in Fig. 25 (Van Stryland et al., 1988). 
While the nonlinear response of this device is initiated by 2PA, free-carrier 
defocusing greatly assists the limiting of the transmitted fluence and is 
responsible for increasing the dynamic range over which semiconductor 
limiting devices operate without damage. Since the light is focused in the 
bulk of the material (see inset of Fig. 25), the semiconductor could itself be 
damaged. However, at high inputs, the combination of 2PA loss and carrier 
defocusing that counteracts linear focusing protects the focal position from 
damage. For longer-pulse operation, however, the dynamic range is signifi- 
cantly reduced. This occurs because the energy input for the same irradiance 
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FIG. 25. Optical limiting data for the monolithic ZnSe lens ( -  3 an long) shown in the inset 
for picosecond, 532-nm pulses as a function of the input energy as measured though an aperture 
approximately 2.5m after the sample. Adapted from Van Stryland et al. (1988). 
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is increased for longer pulses. While more carriers are generated and 
free-carrier absorption also becomes significant, they may decay during the 
pulse, and the energy from nonlinear absorption heats the bulk of the 
sample. This heat raises the refractive index in most semiconductors. The 
increase in refractive index causes self-focusing that counteracts the free- 
carrier defocusing and the sample damages. As seen from the 2PA scaling 
relations, the 2PA can be greatly enhanced for infrared wavelengths where 
smaller band-gap energies can be used (fl oc EB3).  For example, InSb at 
10pm has B s lo4 cm/GW, and the free-carrier absorption and refraction 
are very large, dominating the nonlinear response. This material has great 
potential for sensor protection in the IR (Hasselbeck et al., 1993). 

VIII. Conclusion 

Since the advent of high-peak-power short-pulse lasers, numerous 
measurements of the ultrafast optical Kerr effect (n,) in many semiconduc- 
tors and large-gap dielectrics have been reported. The experimental tech- 
niques used for these measurements range from nonlinear wave mixing to 
nonlinear interferometry. Almost all the early measurements were obtained 
in the long-wavelength limit, where n2 is positive and nondispersive. More 
recent measurements have shown the dispersive nature of the nonlinear 
refraction (Sheik-Bahae et al., 1991). 

A simple two-band model calculation gives a universal band-gap scaling 
and dispersion of the electronic Kerr effect in solids. A direct relationship 
links the nonlinear refractive index n, to its nonlinear absorptive counter- 
parts: two-photon absorption, Raman, and AC Stark effects. This theory 
builds from a large base of existing calculations where nonlinear absorption 
is calculated by means of transition rates. An appropriate Kramers-Kronig 
transformation approach is used to obtain the nonlinear refraction in terms 
of this nonlinear absorption. The power of this approach is that it circum- 
vents the need for a direct calculation of the complex nonlinear susceptibil- 
ity. It is necessary, however, to know the nondegenerate nonlinear 
absorption coefficient in order to apply the Kramers-Kronig transformation, 
i.e., the nonlinear absorption in the material at all frequencies w ,  in the 
presence of a strong optical field at 0,. The n, calculation is also performed 
for the general nondegenerate case where an expression for n,(w,; 0,) is 
derived. This is the coefficient of nonlinear refractive index at w1 due to the 
presence of a strong optical excitation at 0,. The well-known and well- 
studied degenerate n2 is treated as a special case. Comparing the experimen- 
tally measured values of the degenerate n, with the theoretical dispersion, 
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there is good agreement obtained over a wide range of frequencies and 
materials with a single fitting parameter K‘. We note, however, that the 
theoretical value for this parameter is a factor of 2 to 3 smaller than the 
empirical value of K’. This underestimation may be expected because the 
heavy-hole valence band, as well as the electron-hole Coulomb (exciton) 
interaction, is ignored in this simple theory (Sheik-Bahae et al., 1994). It is 
also remarkable that the two-band theory gives reasonable agreement with 
data for large-gap dielectric materials. The theory for passive semiconduc- 
tors also can be extended to active semiconductor devices, semiconductor 
laser amplifiers (SLA). The measured sign and magnitude of n,, as well as 
the variation of n, with injection current density in SLA systems, is in good 
agreement with calculations. 

While the ultrafast nonlinearities of semiconductors can now be predicted 
with reasonable accuracy given the band-gap energy, linear index, and 
photon energy, other nonlinearities are often important for device applica- 
tions. In particular, free-carrier and thermal nonlinearities can significantly 
alter the nonlinear operation. In practice, the shorter the input pulse, the 
less these nonlinearities interfere with the simple modeling of the ultrafast 
response. This occurs because the shorter the pulse, the less energy for a 
given irradiance and, therefore, the fewer carriers are produced and the less 
heat is generated. 

We end our discussion with a reminder of the difficulties in characterizing 
the nonlinear optical properties of materials and in particular semiconduc- 
tors. For example, for photon energies near the band edge, there can be 
significant linear absorption, and this linear absorption leads to the creation 
of free carriers that can subsequently absorb and refract light. The refractive 
component is the more interesting for applications and this resonant 
nonlinear refraction gives one of the largest nonlinearities ever reported 
(Miller and Duncan, 1987). However, it and the associated NLA can interfere 
with the determination of either two-photon absorption or n2 (we restricted 
our definition of n, to the ultrafast optical Kerr effect from the bound 
electrons). Without knowledge of the temporal dynamics, both nonlinearities 
result in a third-order response. In a similar fashion, nonlinear absorption 
and nonlinear refraction from 2PA-generated carriers result in a fifth-order 
nonlinearity that is difficult to distinguish from three-photon absorption and 
“n3,” the fifth-order bound-electronic nonlinear refraction. In all of this, of 
course, are the problems associated with the interactions between nonlinear 
loss and nonlinear refraction with multiple sources of nonlinearities; e.g., 
nonlinear absorption leads to beam-profile changes that alter the propaga- 
tion, and nonlinear refraction through propagation alters the beam profile. In  
short, great care must be taken to determine the underlying physics 
associated with nonlinearities in semiconductors (and other materials). 
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L I ~  OF ABBREVIATIONS AND ACRONYMS 

2PA 
AOS 
BF 
cw 
DFWM 
FCA 
FCR 
FP 
FOM 

two photon absorption 
all-optical switching 
band-filling 
continuous wave 
degenerate four-wave mixing 
free-carrier absorption 
free-carrier refraction 
Fabry-Perot 
figure of merit 

hh 
KK 

NLA 
NLDC 
NLR 
QSE 
SLA 
TPB 

Ih-c 

heavy-hole 
Kramers-Kronig 
light-hole-to-conduction band 
nonlinear absorption 
nonlinear directional couplers 
nonlinear refraction 
quadratic optical Stark effect 
semiconductor laser amplifier 
two-parabolic band 

REFERENCES 

Adair, R., Chase, L. L., and Payne, S. A. (1987). “Nonlinear Refractive-Index Measurements of 

Adair, R., Chase, L. L., and Payne, S. A. (1989). “Nonlinear Refractive Index of Optical 

Agrawal, G. P. (1989). Nonlinear Fiber Optics, Academic Press. 
Akhmanov, S. A., Khokhlov, R. V., and Sukhorokov. A. P. (1968). “Self-Focusing and 

Diffraction of Light in a Nonlinear Medium,” Soc. Phys. Usp. 10.609. 
Aronov, A. G., Pikus, D. E., and Shekhter, D. S. (1968). ‘Quantum Theory of Free-Electron 

Dielectric Constant in Semiconductors,” Sou. Phys.-Solid State 10,645. 
Auston, D. H., McAffee, S., Shank, C. V., Ippen, E. P., and Teschke, 0. (1978). “Picosecond 

Spectroscopy of Semiconductors,” Solid State Electron. 21, 147- 150. 
Aversa, C., Sipe, J. E., Sheik-Bahae, M., and Van Stryland, E. W. (1994). “Third-Order Optical 

Susceptibilities in Semiconductors: The Two-Band Model,” Phys. Rev. B 50, 18073-18082. 
Bae, Y., Song, J. J., and Kim, Y. B. (1982). “Photoacoustic Study of Two-Photon Absorption in 

Hexagonal ZnS,” 3. Appl.  Phys. 53, 615. 
Balterameyunas, R., Vaitkus, Y., Vishchakas, Y., Gavryushin, V., Kubertavichyus, V., and 

Rachyukaitis, G. (1982). “Spectral and Polarization Investigations of Two-Photon Ab- 
sorption in Semiconductors of Group AZB6 Symmetry,” Izuestiya Akademii Nauk SSSR, 
Seriya Fizicheskaya, 46, 1442-1451. 

Banyai, L. and Koch, S. W. (1986). “A Simple Theory for the Effects of Plasma Screening on 
the Optical Spectra of Highly Excited Semiconductors,” Z. Phys. B 63,283-291. 

Glasses Using Three Wave Frequency Mixing,” J .  Opt. SOC. Am. B 4,875-881. 

Crystals,” Phys. Reu. B 39,3337-3350. 



314 MANSOOR SHEIK-BAHAE AND ERIC w. VAN STRYLAND 

Bass, M., Van Stryland, E., and Stewart, A. (1979). ”Laser Calorimetric Measurement of 
Two-Photon Absorption;” Appl. Phys.  Lett. 34, 142. 

Bassani, F. and Scandolo, S. (1991). “Dispersion Relations and Sum Rules in Nonlinear 
Optics,” Phys. Rev. B 44,8446-8453. 

Bechtel, J. H. and Smith, W. L. (1976). “Two-Photon Absorption in Semiconductors with 
Picosecond Pulses,” Phys. Reo. B 13, 351 5. 

Bertolotti, M.. Ferrari, A,, Sibilia, C., Suber, G., Apostol, D., and Jani, P. (1988). “Photothermal 
Deflection Technique for Measuring Thermal Nonlinearities in Glasses,” Appl. Phys. 27, 
181 1. 

Bolger, J., Kar, A. K., Wherrett. B. S., DeSalvo, R., Hutchings, D. C., and Hagan, D. J., (1993) 
“Nondegenerate Two-Photon Absorption Spectra of ZnSe, ZnS, and ZnO,” Optics 
Commun. 97, 203. 

Boyd, R. W. (1992). Nonlinear Optics. Academic Press, San Diego. 
Brand], H. S. and de Araujo, C. 8. (1983). ”Multiphoton Absorption Coefficients in Solids: A 

Braunstein, R. and Ockman, N. (1964). “Optical Double-Photon Absorption in CdS,” Phys. 

Burstein. E. (1954). Phys. Reu. 93, 632. 
Canto-Said, E. J., Hagan, D. J, Young, J., and Van Stryland, E. W. (1991). “Degenerate 

Four-Wave Mixing Measurements of High Order Nonlinearities in Semiconductors,” J. 
Quantum Electron. QE-27, 2274-2280. 

Caspers, P. J. (1964). “Dispersion Relations for Nonlinear Response,” Phys. Rev. A 133, 1249. 
Chapple, P. B., Staromlynska, J., and McDuff, R. G. (1994). ‘2-Scan Studies in the Thin- and 

the Thick-Sample Limits,” J. Opt. Soc. Am. B 11, 975-982. 
Cotter, D., Burt, M. G., and Manning, R. J. (1992). “Below Band-Gap Third-Order Optical 

Nonlinearity of Nanometer-Size Semiconductor Crystallites,” Phys. Rev. Lett. 68, 1200. 
Crane. R., Lewis, K., Van Stryland, E., and Khosnevisan, M. eds. (1995). Materialsjor Optical 

Limiting. Materials Research Society, Pittsburgh. 
DeSalvo, R., Sheik-Bahae. M., Said, A. A., Hagan, D. J., and Van Stryland, E. W. (1993). 

“Z-Scan Measurements of the Anisotropy of Nonlinear Refraction and Absorption in 
Crystals,” Opt. Lett. 18, 194-196. 

Dvorak, M. D., Schroeder, W. A., Anderson, D. R., Smirl, A. L., and Wherrett, B. S. (1994). 
“Measurement of the Anisotropy of Two-Photon Absorption Coefficient in Zincblende 
Semiconductors,” IEEE J. Quantum Electron. 30, 256. 

Universal Curve,” J. Phys. C 16, 5929-5936. 

Rev. 134, A499-A507. 

Fisher, R. A. (1983). Optical Phase Conjugation. Academic Press. 
Fisher, M. A., Wiches, H., Kennedy, G. T., Grant, R. S., and Sibbett, W. (1993). “Ultrafast 

Flytzanis, C. (1975). Quantum Electronics, (H. Rabin and C. L. Tang, eds.), Vol. I, Academic 

Gibbs, H. M. (1985). Optical Bistabiliry: Controlling Light with Light, Academic Press. 
Grant, R. S. and Sibbett, W. (1991). “Observation of Ultrafast Nonlinear Refaction in InGaAsP 

Hagan, D. J.. Van Stryland, E. W., Soileau, M. J., and Wu, Y. Y. (1988). ”Self-Protecting 

Hall. K. L., Darwish, A. M., Ippen, E. P., Koren, U., and Raybon, G. (1993). “Femtosecond 

Hultgren, C. T. and IppOen, E. P. (1991). “Ultrafast Refractive Index Dynamics in AlGaAs 

Hultgren, C. T. and Ippen, E. P. (1991). “Ultrafast Refractive Index Dynamicsin AlGaAs Diode 

Nonlinear Refraction in an Active MQW Waveguide,” Elecrr. Lett. 29, 1185-1 186. 

Press, p. 9. 

Optical Amplifiers,” Appl. Phys. Left. 58, t 119-1 122. 

Semiconductor Optical Limiters,” Opt. Lett. 13, 315. 

Index Nonlinearities in InGaAsP Optical Amplifiers,” Appl. Phys.  Lett. 62, 1320- 1323. 

Diode Laser Amplifiers,“ Appl. Phys.  Lett. 59, 635-638. 

Laser Amplifiers,” Appl. Phys. Lett. 59, 635-638. 



4 OPTICAL NONLINEARITIES IN BULK SEMICONDUCXORS 315 

Hasselbeck. M. P., Said, A. A., Sheik-Bahae, M., and Van Stryland, E. W. (1993). “Nonlinear 
Optical Materials at  1Opm: From Picoseconds to Nanoseconds,” Proc. I993 IRIS 
Specialty Group on Infrared Materials, Bed ford, MA. 

Hasselbeck, M. P., Van Stryland, E. W., and Sheik-Bahae, M. (1997). “Dynamic Band 
Unblocking and Leakage Two-Photon Absorption in InSb,” Phys. Reu. B 56,7395-7403. 

Haug, H. (1988). Optical Nonlinearities and Instabilities in Semiconductors. Academic Press. 
Hermann, J. A. and McDuff, R. G. (1993). “Analysis of Spatial Scanning with Thick Optically 

Nonlinear Media,” J. Opt. SOC. Am. B 10,2056-2064. 
Hermann, J. and Wilson, P. (1993). “Factors Affecting Optical Limiting and Scanning with 

Thin Nonlinear Samples,” Int. J. Nonlinear Opt. Phys. 2, 613-629. 
Hill, J. R., Parry, G., and Miller, A. (1982). “Nonlinear Refractive Index Changes in CdHgTe 

at  175 K with 10.6pm Radiation,” Opt. Commun. 43, 151. 
Hong, M. Y., Chang, Y. H., Dienes, A., Heritage, J. P., and Delfyett, P. J. (1994). “Sub- 

picosecond Pulse Amplification in Semiconductor Laser Amplifiers: Theory and Exper- 
iment,” lEEE J. Quantum Electron. QE30, 1122-1 131. 

Hopfield, J. J., Worlock, J. M., and Park, K. (1963). “Two-Quantum Absorption Spectrum of 
KI,” Phys. Rev. Lett. 11, 414. 

Hultgren, C. T., Dougherty, D. J., and Ippen, E. P. (1992). “Above- and Below-Band 
Femtosecond Nonlinearities in Active AlGaAs Waveguides,” Appl. Phys. Lett. 61, 2767- 
2769. 

Hutchings, D. C. and Wherrett, B. S. (1994). “Theory of the Dispersion of Ultrafast Nonlinear 
Refraction in Zinc-Blende Semiconductors below the Band Edge,” Phys. Rev. B 50, 

Hutchings, D. C. and Wherrett, B. S. (1994b). “Polarization Dichroism of Nonlinear Refraction 

Hutchings, D. C. and Wherrett, B. S. (1995). “Theory of the Anisotropy of Ultrafast Nonlinear 

Hutchings, D. C., Sheik-Bahae, M., Hagan, D. J., Van Stryland, E. W. (1992). “Kramers-Kronig 

Jain, R. K. and Klein, M. B. (1983). “Degenerate Four-Wave-Mixing in Semiconductors.” In 

Jones, H. D. and Reiss, H. R. (1977). “Intense-Field Effects in Solids,” Phys. Rev. B 16, 

Kaetner, F. X., Brovelli, L. R., Kopf, D., Kamp, M., Calasso, I. and Keller, U. (1995). “Control 
of Solid-state Laser Dynamics by Semiconductor Devices,” Opt. Eng. 34,2024-2036. 

Kajzar, F. and Messier, J. (1987). “Cubic Effects in Polydiacetylene Solutions and Thin Films.” 
In Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2, (D. S. Chemla 
and J. Zyss, eds.). Academic Press, Orlando, pp. 5 1-83. 

4622-4630. 

in Zinc-Blende Semiconductors,” Opt. Commun. 111, 507-512. 

Refraction in Zincblende Semiconductors,” Phys. Reu. B 52, 8 150-8 159. 

Dispersion Relations in Nonlinear Optics,” Opt. Quantum Electron. 24, 1-30. 

Optical Phase Conjugation, (R. A. Fisher, ed.), Academic Press, pp. 307-455. 

2466-2473. 

Kane, E. 0. (1957). “Band Structure of InSb,” J. Chem. Phys. Solids, 1, 249-261. 
Kane, E. 0. (1980). “Band Structure of Narrow Gap Semiconductors.” In Lecture Notes in 

Physics: Narrow Gap Semiconductors Physics and Applications, (W. Zawadski, ed.), Vol. 
133. Springer-Verlag, New York, pp. 13-31. 

Kaplan, A. E. (1969). “External Self-Focusing of Light by a Nonlinear Layer,” Radiophys. 
Quantum Electron. 12, 692-696. 

Keldysh, L. V. (1965). “Ionization in the Field of a Strong Electromagnetic Wave,” Sou. Phys. 

Keller, U., Weingarten, K. J., Kartner, F. X., Kopf, D., Braun, B., Jung, 1. D., Fluck, R., 
Honninger, C., Matuschek, N., and Aus der Au, J. (1996). “Semiconductor Saturable 
Absorber Mirrors (SESAMs) for Femtosecond to Nanosecond Pulse Generation in Solid 
State Lasers,” I E E E  J. Sel. Top. Quantum Electron. 2, 435-453. 

JETP 20, 1307-1314. 



316 MANSOOR SHEIK-BAHAE AND ERIC W. VAN STRYLAND 

Khurgin. J. B. (1994). ”Nonlinear Response of the Semiconductor Quantum-Confined Struc- 
tures Near and Below the Middle of the Gap,” J .  Opt .  Soc. B 11, 624-631. 

Kogan. S. M. (1963). “On the Electromagnetics of Weakly Nonlinear Media,” Sou. Phys. J E T P  
16, 217. 

LaGasse, M. J., Anderson, K. K., Wan& C. A., Haus, H. A., and Fujimoto, J. G. (1990). 
“Femtosecond Measurements of the Nonresonant Nonlinear Index in AIGaAs,” Appl. 

Lee, S. G., McGinnis, B. P., Jin, R., Yumoto, J., Khitrova, G., Gibbs, H. M.. and Peyghambar- 
ian, N. paper CtuC4, CLEO ‘94 Technical Digest. pp. 55. 

Ma, H., Gomez, A. S. L., and de Araujo, C. B. (1991). “Measurement of a Nondegenerate 
Optical Nonlinearity Using a Two-Color Single Beam Method,” Appl. Phys. Lett. 59,2666. 

Maker. P., Terhune, R., and Savage, C. (1964). “Intensity-Dependent Changes in the Refractive 
Index of Liquids,” Phys. Reo. Lett. 12, 507. 

Meystre, P. and Sargent, M. 111, (1991). Elements OfQuantum Optics, 2nd ed. Springer-Verlag. 
Miller, A. and Duncan, D. (1987). “Optical Nonlinearities in Narrow Gap Semiconductors.” In 

Optical Properties of Narrow-Gap Law-Dimensional Structures, (C. M. Sotomayer Torres, 
J. C. Portal, J. C. Mann, and R. A. Stradling, eds.), Plenum, New York. 

Miller, D. A. B., Seaton, C. T., Prise, M. E., and Smith, S. D. (1981). “Band-Gap Resonant 
Nonlinear Refraction in Ill-V Semiconductors,” Phys. Reo. Lett. 47, 197. 

Miller, A,, Miller, D. A. B., and Smith, S. D. (1981). “Dynamic Non-Linear Optical Processes in 
Semiconductors,” Ado. Phys. 30,697-800. 

Mizrahi, V., DeLong K. W., Stegeman, G. I., Saifi, M. A., and Andrejeco, M. J., (1989). 
Two-Photon Absorption as a Limit to All-Optical Switching,” Opt. Lett. 14, 1140- 1142. 

Moran, M. J., She, C.-Y., and Carmen, R. L. (1975). “lnterferometnc Measurements of the 
Nonlinear Refractive Index Coefficient Relative to CS, in the Laser System Related 
Materials,” IEEE J. Quantum Electron. 11, 259. 

Moss, T. S. (1980). “Theory of Intensity Dependence of Refractive Index,” Phys. Star. Solidi B 

Nussenzweig, H. M. (1972). Causality and Dispersion Relations, Academic Press, New York. 
Owyounb A. (1973). “Ellipse Rotation Studies in Laser Host Materials,” l E E E  J. Quantum 

Price, P. J. (1964). “Theory of Quadratic Response Functions,” Phys. Rev. 130, 1792. 
Rader, T. R. and Gold, A. (1968). “Polarization Dependence of Two-Photon Absorption in 

Solids,” Phys. Rev. 171, 997-1003. 
Kidener, F. L. Jr. and Good, R. H. Jr. (1975). “Dispersion Relations for Nonlinear Systems of 

Arbitrary Degree,” Phys. Reo. B 11, 2768. 
Ross, 1. N.. Toner, W. T., Hooker, C. J., Barr, J. R. M.. and Coffey, I. (1990). “Nonlinear 

Properties of Silica and Air for Picosecond Ultraviolet Pulses,” J. Mod. Opt. 37, 555-573. 
Said, A. A,. Sheik-Bahae, M., Hagan, D. J., Wei, T. H., Wang, J., Young, J., and Van Stryland, 

E. W. (1992). “Determination of Bound and Free-Carrier Nonlinearities in ZnSe, GaAs, 
CdTe, and ZnTe,” Opt. SOC. Am. B 9,405-414. 

Shank, C. V., Ippen, E. P., and Shapiro, S. L., eds. (1978). Picosecond Phenomenu. Springer- 
Verlag, for example. 

Sheik-Bahae, M. (1997). “Femtosecond Kerr-Lens Autocorrelation,” Opt. Lett. 22, 399-401. 
Sheik-Bahae. M. and Ebrahimzadeh, M. (1997). “Measurements of Nonlinear Refraction in the 

Second-Order f 2 ’  Materials KTiOPO,. KNbO,, B-BaB,O,, and LiB,O,,” Opt. Comun. 

Sheik-Bahae, M.. Hagan, D. J., and Van Stryland, E. W. (1990a). “Dispersion and Band-Gap 
Scaling of the Electronic Kerr Effect in Solids Associated with Two-Photon Absorption,” 
Phys. Rev. Lett. 65, 96-99. 

Phys. Lett. 56, 417-419. 

101, 555-561. 

Electron. QE-9, 1064. 

142, 294-298. 



4 OPTICAL NONLINEARKIES IN BULK SEMICONDUCTORS 317 

Sheik-Bahae, M., Hutchings, D. C., Hagan, D. J., and Van Stryland, E. W. (1991). “Dispersion 
of Bound-Electronic Nonlinear Refraction in Solids,” ZEEE J. Quantum Electron. QE-27, 

Sheik-Bahae, M., Said, A. A., Hagan, D. J., Soileau, M. J., and Van Stryland, E. W. (1990). 
“Nonlinear Refraction and Optical Limiting in Thick’ Media,” Opt. Eng. 30, 1228-1235. 

Sheik-Bahae, M., Said, A. A., and Van Stryland, E. W. (1989). “High Sensitivity, Single Beam 
n2 Measurements,” Opt. Lett. 14,955-957. 

Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J., and Van Stryland, E. W., (1990b). 
“Sensitive Measurements of Optical Nonlinearities Using a Single Beam,” IEEE J. 
Quantum Electron. QE-26, 760-769. 

Sheik-Bahae, M. and Van Stryland, E. W. (1994). “Ultrafast Nonlinearities in Semiconductor 
Laser Amplifiers,” Phys. Rev. B 50, 14171-14178. 

Sheik-Bahae, M., Wan& J., Canto-Said, E. J., DeSalvo, R., Hagan, D. J., and Van Stryland, E. 
W. (1995). “Polarization Dependent Four-Wave Mixing and Two-Photon Coherence in 
Solids,” IEEE J. Quantum Electron. QE-31, 1270-1273. 

Sheik-Bahae, M., Wang, J., DeSalvo, J. R., Hagan, D. J., and Van Stryland, E. W. (1992). 
“Measurement of Nondegenerate Nonlinearities Using a 2-Color Z-Scan,“ Opt. Lett. 17, 

Sheik-Bahae, M., Wan& J., and Van Stryland, E. W. (1994). “Nondegenerate Optical Kerr 
Effect in Semiconductors,” IEEE J. Quantum Electron. 30,249-255. 

Spence, D. E., Kean, P. N., and Sibbett, W. (1991). “Gfsec Pulse Generation From a 
Self-Mode-Locked Ti-Sapphire Laser,” Opt. Lett. 19, 4. 

Stegeman, G. I., Kang, J. U., Aitchison, J. S., Ironside, C. N., and Villeneuve, A. (1996). 
“AIGaAs Waveguides Below Half the Bandgap: A Laboratory for Nonlinear Optics.” In 
Notions and Perspectives o/ Nonlinear Optics, Nonlinear Optics Series, Vol. 3, (0. Keller, 
ed.). World Scientific, Singapore, pp. 428-457. 

Stegeman, G. 1. and Wright, E. M. (1990). “All Optical Waveguide Switching,” Opt. Quantum 
Electron 22,95- 122. 

Sutherland, R., Pachter, R., Hood, P., Hagan, D., and Perry, J. eds. (1997). Materials for Optical 
Limiting 11. Materials Research Society, Pittsburgh. 

Tian, J.-G., Zang, W.-P., Zhang, C.-Z., and Zhang, G. (1995). “Analysis of Beam Propagation in 
Thick Nonlinear Media,” Appl. Opt. 34,4331 -4336. 

Toll, J. S. (1956). “Causality and the Dispersion Relation: Logical Foundations,” Phys. Rev. 
104,1760. 

Van Stryland, E. W. (1996). “Third-Order and Cascaded Nonlinearities.” In Laser Sources and 
Applications, (A. Miller and D. M. Finlayson,eds.). IOP Publishing, Philadelphia, pp. 1 5- 62. 

Van Stryland, E. and Chase, L. (1994). ‘Two Photon Absorption: Inorganic Materials.” In 
Handbook of Laser Science and Technology, Suppl. 2: “Optical Materials,” (M. Weber, ed.). 
CRC Press, Section 8, pp. 299-328. 

Van Stryland, E. W., Sheik-Bahae, M., Xia, T., Wamsley, C., Wang, Z., Said, A. A., and Hagan, 
D. J. (1994). “Z-Scan and EZ-Scan Measurements of Optical Nonlinearities,” special issue 
of IJNOP on Novel Nonlinear Optical Polymers and Organic Materials, Int. J. Nonlinear 

Van Stryland, E. W., Smirl, A. L., Boggess, T. F., Soileau, M. J., Wherrett. B. S., and Hopf, F. 
(1982). “Weak-Wave Retardation and Phase-Conjugate Self-Defocusing in Si.” In 
Picosecond Phenomena I I I ,  (K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. 
Laubereau, eds.), Springer-Verlag, p. 368. 

Van Stryland, E. and Woodall, M. A. (1980). “Photoacoustic Measurement of Nonlinear 
Absorption in Solids.” In Laser-Induced Damage in Optical Materials, NBS Special 
Publication 620, 50. 

1296-1309. 

258-260. 

Opt. P h y ~ . ,  IJNOP, 34). 489-500. 



318 MANSOOR SHEIK-BAHAE AND ERIC W. VAN STRYLAND 

Van Stryland, E. W., Woodall, M. A.. Vanherzeele, H., and Soileau, M. J. 
Band-Gap Dependence of Two-Photon Absorption,” Opt. Lett. 10,490. 

Van Stryland, E. W., Wu, Y. Y., Hagan, D. J., Soileau, M. J., and Mansour, K. 
Limiting with Semiconductors,” J. Opr. Soc. Am. B 5, 1980- 1989. 

Van Vechten, J.  A. and Aspnes, D. E. (1969). “Franz-Keldysh Contribution 
&tical Susceptibilities.” Phys. Lett. A 30, 346. 

1985). “Energy 

1988). “Optical 

o Third-Order 

Van Stryland, E. W., Vanherzeele, H., Woodall, M. A., Soileau, M. J., Smirl, A. L., Guha, S. 
and Boggess, T. F. (1985a). “Two-Photon Absorption, Nonlinear Refraction and Optical 
Limiting in Semiconductors,” Opr. Eng. 24, 613. 

Volkov, D. M. (1935). “Concerning a Class of Solution of the Dirac Equation,” Z. Phys. 94, 

Wang, J., Sheik-Bahae, M., Said, A. A., Hagan, D. J., and Van Stryland, E. W. (1994). ‘Tirne- 
Resolved Z-Scan Measurements of Optical Nonlinearities,” J. Opt. Soc. Am. B11, 1009- 
1017. 

Weber, M. J., Milam, D., and Smith, W. L. (1978). “Nonlinear Refractive Index of Glasses and 
Crystals,” Opt. Eng. 17, 463. 

Wherrett, B. S. (1984). “Scaling Rules for Multiphoton lnterband Absorption in Semiconduc- 
tors,” J. Opr. SM. Am. B 1, 67-72. 

Wherrett, B. S., Walker, A. C., and Tooley, F. A. P. (1988). “Nonlinear Refraction for cw 
Optical Bistability.” In Optical Nonlineariries and Instabilities in Semiconductors, (H. Haug, 
ed.). Academic Press, New York, p. 239. 

Williams, W. E., Soileau, M. J., and Van Stryland, E. (1984). “Optical Switching and n2 
Measurements in CS,.” Opt. Commun. SO, 256. 

Worlock, J. M. (1972). ‘Two-Photon Spectroscopy.” In Laser Handbook, Vol. 2, (F. T. Arecchi 
and E. 0. Schulz-Dubois, eds), North-Holland, pp. 1223-1369. 

Wu, T.-Y. and Ohmura, T. (1962). Quantum Theory of Scattering. Prentice Hall, Englewood 
Cliffs, New Jersey. 

Xia, T., Hagan, D. J., Sheik-Bahae, M., and Van Stryland, E. W. (1994). “Eclipsing Z-Scan 
Measurement of &lo4 Wavefront Distortion,” Opt.  Lett. 19, 317-319. 

Xuan, M. P., Ferrier, J.-L., Gazengel, J., and Rivoire, G. (1984). “Picosecond Measurements of 
the Third-Order Susceptibility Tensor in Liquids,” Opt. Commun. 51, 433. 

250-260. 




