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ABSTRACT   

In this contribution we demonstrate the nonlinear pulse compression of an ultrafast thulium-doped fiber laser down to 
14 fs FWHM duration (sub-3 optical cycles) at a record average power of 43 W and 34.5 μJ pulse energy. To the best of 
our knowledge, we present the highest average power few-cycle laser source at 2 μm wavelength. This performance 
level in combination with GW-class peak power makes our laser source extremely interesting for driving high-harmonic 
generation or for generating mid-infrared frequency combs via intra-pulse frequency down-conversion at an 
unprecedented average power. 
The experiments were enabled by an ultrafast thulium-doped fiber laser delivering 110 fs pulses at high repetition rates, 
and an argon gas-filled antiresonant hollow-core fiber (ARHCF) with excellent transmission and weak anomalous 
dispersion, leading to the self-compression of the pulses. We have shown that ARHCFs are well-suited for nonlinear 
pulse compression around 2 μm wavelength and that this concept features excellent power handling capabilities. Based 
on this result, we discuss the next steps for energy and average power scaling including upscaling the fiber dimensions in 
order to fully exploit the capabilities of our laser system, which can deliver several GW of peak power. This way, a 
100 W-class laser source with mJ-level few-cycle pulses at 2 μm wavelength is feasible in the near future. 
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1. INTRODUCTION  
Ultrafast lasers emitting at around 2 μm wavelength have become important tools for lots of applications in 

spectroscopy [1], metrology [2] and material processing [3]. Recently, there has been a large effort aimed at scaling the 
performance of these laser systems to transform them into mature drivers for high-field experiments and nonlinear 
frequency conversion processes, which require high peak intensities. 

Such laser systems enable the generation of high harmonics (HHG) with high photon energies [4] because of the fact 
that the ponderomotive potential of the laser field is proportional to the square of its wavelength. One important 
requirement for a laser to efficiently drive high cut-off HHG is to deliver few-cycle pulses, because that allows focusing 
down to high peak intensities (leading to a high conversion efficiency and a high photon energy cut-off [5]) without 
losing the phase-matching by undesired ionization. Additionally, a few-cycle driver facilitates the generation of isolated 
attosecond pulses [6]. Resulting from the recent progress in laser development, HHG sources driven by few-cycle 2 μm 



 

laser systems have led to cutting-edge results such as the time-resolved observation of light-induced chemical reaction 
paths [7] and X-ray absorption edge spectroscopy of organic molecules [4]. 

Similarly, high-power 2 μm laser systems with few-cycle pulse durations are of paramount interest for generating 
ultra-broad mid-infrared (mid-IR) phase-stable frequency combs due to intra-pulse difference frequency generation 
(DFG) [8, 9]. It is important to start with very short pulses coming from the driving laser to provide chirp-free frequency 
components with wide spectral separation such that the generated mid-IR DFG spectra can extend to short wavelengths. 
With respect to the mid-IR bandwidth and power, it is very beneficial to drive the frequency conversion at around 2 μm 
wavelength, as this allows using non-oxide nonlinear crystals that offer high nonlinearity, broad phase-matching and, 
most importantly, excellent spectral transmission up to 20 μm wavelength. A laser source addressing such broad mid-IR 
spectral ranges with powerful, phase-stable ultrashort pulses is extremely interesting for high-sensitivity and high-
precision fingerprint absorption spectroscopy.    

Certainly, the always-growing number of applications that greatly benefit from intense few-cycle laser sources 
operating beyond the well-explored near-infrared wavelength region leads to a strongly increased demand for these 
sources to deliver more average power. In particular, the above-mentioned applications can be significantly improved 
(e.g. in terms of signal-to-noise ratio and data acquisition times) if higher HHG photon-flux or mid-IR power can be 
reached.  

The traditional approach for the generation of energetic few-cycle laser pulses at around 2 μm wavelength relies on 
nonlinear parametric amplification [10, 11]. However, scaling this concept to significantly more than ten watts has so far 
remained challenging because of the complexity of the pump sources, as well as due to the transmission and the 
properties of the oxide-based crystals. As opposed to that, we have recently introduced an alternative approach that is 
based on nonlinear compression of ultrashort pulses generated by high-repetition rate thulium-doped fiber laser systems 
[12, 13]. To date, these laser systems are capable of delivering ultrashort pulses with more than 100 W of average power 
[14] and GW-class pulse peak power with about 200 fs pulse duration [15]. In fact, nonlinear pulse compression (NPC) 
in the two micron wavelength region has also been investigated starting from solid-state and nonlinear parametric 
amplifiers [16, 17]. However, as mentioned above, the available average power was limited to a few watts by the driving 
laser.  

In this contribution, we report on nonlinear self-compression of ultrashort pulses from a thulium-doped fiber laser 
using a gas-filled antiresonant hollow-core fiber (ARHCF). The key features to the pulse evolution in the experiment 
presented herein are the broad gain bandwidth of the active medium [18], allowing for clean 110 fs pulses from the laser 
system itself as well as the excellent transmission and weak anomalous dispersion of the ARHCF, leading to self-
compression of the spectrally broadened pulses. We have generated 34.4 μJ-pulses with a FWHM duration of only 13 fs 
and a pulse peak power of 1.4 GW at a central wavelength of 1.82 μm. The combination of two average power scalable 
concepts for the generation and the post-compression of ultrashort pulses in this wavelength region is the key to high-
power operation, allowing for an average power of 43 W. This is, to the best of our knowledge, the highest average 
power reported for any two micron few-cycle laser source to date.  

2. EXPERIMENTAL SETUP 
A schematic of the experimental setup can be seen in Fig. 1. The laser source, which enabled the experiments 

presented herein, was a thulium-doped fiber chirped-pulse amplification system (Tm:FCPA) with an architecture similar 
to the one described in Ref. [15]. As compared to this earlier reported work, we have increased its spectral bandwidth to 
about 140 nm, which was possible thanks to an improved stretcher and compressor design as well as the broad gain-
bandwidth of thulium-doped silica. The spectrum was centered around 1920 nm wavelength, which ultimately means 
that detrimental propagation effects arising from the absorption lines of atmospheric water vapor have to be 
circumvented [19]. Regarding the thermal lens arising from water vapor absorption in a gaseous atmosphere, also 
described as thermal blooming, it was found that the best mitigation is to reduce the pressure of the medium in which the 
beam propagates [13]. Hence, the high-power sections of the laser system were enclosed in a vacuum chamber that was 
held at a pressure below 0.1 mbar.  When adapted for the nonlinear compression experiments, the Tm:FCPA delivered 
51 W of average power, corresponding to 41 μJ of pulse energy at a repetition rate of 1.25 MHz. Its output pulse 
duration (FWHM) was 110 fs. The measured pulse spectrum as well as an intensity autocorrelation trace are depicted in 
Fig. 2 and Fig. 3, respectively (orange line). 
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