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Liquid crystal display and organic light-emitting diode
display: present status and future perspectives

Hai-Wei Chen1, Jiun-Haw Lee2, Bo-Yen Lin2, Stanley Chen3 and Shin-Tson Wu1

Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated

debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we

review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next

we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime,

power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT)

and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines

the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intri-

guing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and con-

trast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including

high dynamic range, virtual reality/augmented reality and smart displays with versatile functions.
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INTRODUCTION

Display technology has gradually but profoundly shaped the lifestyle of
human beings, which is widely recognized as an indispensable part of
the modern world1. Presently, liquid crystal displays (LCDs) are the
dominant technology, with applications spanning smartphones, tablets,
computer monitors, televisions (TVs), to data projectors2–5. However,
in recent years, the market for organic light-emitting diode (OLED)
displays has grown rapidly and has started to challenge LCDs in all
applications, especially in the small-sized display market6–8. Lately, ‘LCD
vs. OLED: who wins?’ has become a topic of heated debate9.
LCDs are non-emissive, and their invention can be traced back to

the 1960s and early 1970s10–15. With extensive material research and
development, device innovation and heavy investment on advanced
manufacturing technologies, thin-film transistor (TFT) LCD technol-
ogy has gradually matured in all aspects; some key hurdles, such as the
viewing angle, response time and color gamut, have been overcome5.
Compared with OLEDs, LCDs have advantages in lifetime, cost,
resolution density and peak brightness16. On the other hand, OLEDs
are emissive; their inherent advantages are obvious, such as true black
state, fast response time and an ultra-thin profile, which enables
flexible displays8,9. As for color performance, OLEDs have a wider
color gamut over LCDs employing a white light-emitting diode
(WLED) as a backlight. Nevertheless, LCD with a quantum dot
(QD) backlight has been developed and promoted17–20. The full width

at half maximum (FWHM) of green and red QDs is only 25 nm. As a
result, a QD-enhanced LCD has a wider color gamut than an OLED.
Generally speaking, both technologies have their own pros and cons.
The competition is getting fierce; therefore, an objective systematic
analysis and comparison on these two superb technologies is in great
demand.
In this review paper, we present recent progress on LCDs and

OLEDs regarding materials, device structures to final panel perfor-
mances. First, in Section II, we briefly describe the device configura-
tions and operation principles of these two technologies. Then, in
Section III, we choose six key metrics: response time, contrast ratio,
color gamut, lifetime, power efficiency, and panel flexibility, to
evaluate LCDs and OLEDs. Their future perspectives are discussed
in Section IV, including high dynamic range (HDR), virtual reality/
augmented reality (VR/AR) and smart displays with versatile
functions.

DEVICE CONFIGURATIONS AND OPERATION PRINCIPLES

Liquid crystal displays
Liquid crystal (LC) materials do not emit light; therefore, a backlight
unit is usually needed (except in reflective displays) to illuminate the
display panel. Figure 1 depicts an edge-lit TFT-LCD. The incident LED
passes through the light-guide plate and multiple films and is then
modulated by the LC layer sandwiched between two crossed
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polarizers5. In general, four popular LCD operation modes are used
depending on the molecular alignments and electrode configurations:
(1) twisted nematic (TN) mode, (2) vertical alignment (VA) mode, (3)
in-plane switching (IPS) mode, and (4) fringe-field switching (FFS)
mode13–15,21. Below, we will briefly discuss each operation mode.

TN mode. The 90° TN mode was first published in 1971 by Schadt
and Helfrich13. In the voltage-off state, the LC director twists 90°
continually from the top to the bottom substrates (Figure 2a),
introducing a so-called polarization rotation effect. As the voltage
exceeds a threshold (Vth), the LC directors start to unwind and the
polarization rotation effect gradually diminishes, leading to decreased
transmittance. This TN mode has a high transmittance and low
operation voltage (~5 Vrms), but its viewing angle is somewhat
limited22. To improve the viewing angle and extend its applications
to desktop computers and TVs, some specially designed compensation
films, such as discotic film or Fuji film, are commonly used23,24.
Recently, Sharp developed a special micro-tube film to further widen
the viewing angle and ambient contrast ratio (ACR) for TN LCDs25.

VA mode. VA was first invented in 1971 by Schiekel and
Fahrenschon14 but did not receive widespread attention until the late
1990s, when multi-domain VA (MVA) mode was proposed to solve
the viewing angle problem26–28. In the VA mode, an LC with a
negative Δεo0 is used and the electric field is in the longitudinal
direction. In the initial state (V= 0), the LC directors are aligned in the
vertical direction (Figure 2b). As the voltage exceeds a threshold, the
LC directors are gradually tilted so that the incident light transmits
through the crossed polarizers. Film-compensated MVA mode has a
high on-axis contrast ratio (CR; 45000:1), wide viewing angle and
fairly fast response time (5 ms). Thus it is widely used in large TVs29,30.
Recently, curved MVA LCD TVs have become popular because VA
mode enables the smallest bending curvature compared with other
LCDs31,32.

IPS mode. IPS mode was first proposed in 1973 by Soref15 but
remained a scientific curiosity until the mid-1990s owing to the
demand of touch panels33,34. In an IPS cell, the LC directors are
homogeneously aligned and the electric fields are in the lateral
direction (Figure 2c). As the voltage increases, the strong in-plane
fringing electric fields between the interdigital electrodes reorient the
LC directors. Such a unique mechanism makes IPS a favorable
candidate for touch panels because no ripple effect occurs upon
touching the panel. However, the peak transmittance of IPS is
relatively low (~75%) because the LC molecules above the electrodes
cannot be effectively reoriented. This low transmittance region is
called a dead zone5.

FFS mode. FFS mode was proposed in 1998 by three Korean
scientists: SH Lee, SL Lee, and HY Kim21. Soon after its invention,
FFS became a popular LCD mode due to its outstanding features,
including high transmittance, wide viewing angle, weak color shift,
built-in storage capacitance, and robustness to touch pressure35–37.
Basically, FFS shares a similar working principle with IPS, but the pixel
and common electrodes are separated by a thin passivation layer
(Figure 2d). As a result, the electrode width and gap are able to be
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Figure 1 Schematic diagram of an LCD. BEF, brightness enhancement film;
BLU, backlight unit; DBEF, dual brightness enhancement film; LGP, light
guide plate.
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Figure 2 Schematic diagram of the (a) TN mode, (b) VA mode, (c) IPS mode and (d) FFS mode. The LC director orientations are shown in the voltage-off
(left) and voltage-on (right) states.
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much smaller than those of IPS, leading to much stronger fringe fields
covering both the electrode and gap regions. Thus the dead zone areas
are reduced. In general, both positive (p-FFS) and negative (n-FFS) Δε
LCs can be used in the FFS mode38,39. Currently, n-FFS is preferred
for mobile applications because its transmittance is higher than that of
p-FFS (98 vs. 88%)40.
As summarized in Table 1, these four LCD modes have their own

unique features and are used for different applications. For example,
TN has the advantages of low cost and high optical efficiency; thus, it
is mostly used in wristwatches, signage and laptop computers, for
which a wide view is not absolutely necessary. MVA mode is
particularly attractive for large TVs because a fast response time, high
CR and wide viewing angle are required to display motion pictures.
On the other hand, IPS and FFS modes are used in mobile displays,
where low power consumption for a long battery life and pressure
resistance for touch screens are critical.

Organic light-emitting diode
The basic structure of an OLED display, proposed by Tang and
VanSlyke41 in 1987, consists of organic stacks sandwiched between
anode and cathode, as shown in Figure 3a. Electrons and holes are
injected from electrodes to organic layers for recombination and light
emission; hence, an OLED display is an emissive display, unlike an
LCD. Currently, multi-layer structures in OLEDs with different
functional materials are commonly used, as shown in Figure 3b.
The emitting layer (EML), which is used for light emission, consists of
dopant and host materials with high quantum efficiency and high
carrier mobility. Hole-transporting layer (HTL) and electron-
transporting layer (ETL) between the EML and electrodes bring
carriers into the EML for recombination. Hole- and electron-
injection layers (HIL and EIL) are inserted between the electrodes
and the HTL and ETL interface to facilitate carrier injection from the
conductors to the organic layers. When applying voltage to the OLED,
electrons and holes supplied from the cathode and anode, respectively,
transport to the EML for recombination to give light.
Generally, each layer in an OLED is quite thin, and the total

thickness of the whole device is o1 μm (substrates are not included).
Thus the OLED is a perfect candidate for flexible displays. For an
intrinsic organic material, its carrier mobility (o0.1 cm2 Vs− 1) and
free carrier concentration (1010 cm− 3) are fairly low, limiting the
device efficiency. Thus doping technology is commonly used42,43.
Additionally, to generate white light, two configurations can be
considered: (1) patterned red, green and blue (RGB) OLEDs; and
(2) a white OLED with RGB color filters (CFs). Both have pros and
cons. In general, RGB OLEDs are mostly used for small-sized mobile
displays, while white OLEDs with CFs are used for large TVs.

The EML is the core of an OLED. Based on the emitters inside,
OLED devices can be categorized into four types: fluorescence, triplet-
triplet fluorescence (TTF), phosphorescence, and thermally activated
delayed fluorescence (TADF)41,44–47.

Fluorescent OLED. First, upon electrical excitation, 25% singlets and
75% triplets are formed with higher and lower energy, respectively. In
a fluorescent OLED, only singlets decay radiatively through fluores-
cence with an ~ns exciton lifetime, which sets the theoretical limit of
the internal quantum efficiency (IQE) to 25%, as shown in Figure 4a.

Triplet-triplet fluorescent OLED. Two triplet excitons may fuse to
form one singlet exciton through the so-called triplet fusion process,
as shown in Figure 4b, and relaxes to the energy from the singlet state,
called TTF, which improves the theoretical limit of the IQE to 62.5%.

Phosphorescent OLED. With the introduction of heavy metal atoms
(such as Ir and Pt) into the emitters, strong spin-orbital coupling
greatly reduces the triplet lifetime to ~ μs, which results in efficient
phosphorescent emission. The singlet exciton experiences intersystem
crossing to the triplet state for light emission, achieving a 100% IQE,
as shown in Figure 4c. Owing to the long radiative lifetime (~μs) in a
phosphorescent OLED, the triplet may interact with another triplet
and polaron (triplet-triplet annihilation and triplet-polaron annihila-
tion, respectively), which results in efficiency roll-off under high
current driving48. Such processes may create hot excitons and hot
polarons to shorten the operation lifetime, especially for blue-emitting
devices, as will be discussed in the next section49.

Thermally activated delayed fluorescent OLED. The energy between
the singlet and triplet can be reduced (o0.1 eV) by minimizing the

Table 1 Performance comparisons of four popular LCD modes

TN mode MVA mode IPS mode FFS mode

Transmittance (normalized to TN) 100% 70%–80% 70%–80% 88%–98%

On-axis contrast ratio ~1000:1 ~5000:1 ~2000:1 ~2000:1

LC mixture +Δε −Δε +Δε or −Δε +Δε or −Δε
Viewing angle Fair Good Excellent Excellent

Response time ~5 ms ~5 ms ~10 ms ~10 ms

Touch panel No No Yes Yes

Applications Wristwatches, signage, laptop

computers

TV, desktop computers Desktop computers,

pads

Smartphones, pads, notebook

computers

Abbreviations: FFS, fringe-field switching; IPS, in-plane switching; LCD, liquid crystal display; MVA, multi-domain vertical alignment; TN, twisted nematic; TV, television.
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Figure 3 Schematic diagram of an OLED. (a) Basic structure proposed by
Tang and VanSlyke in 1987. (b) Multi-layer structure employed in current
OLED products. EIL, electron-injection layer; ETL, electron-transporting layer;
EML, emitting layer; HTL, hole-transporting layer; HIL, hole-injection layer.

LCD and OLED: present and future
H-W Chen et al

3

Light: Science & Applicationsdoi:10.1038/lsa.2017.168

http://dx.doi.org/10.1038/lsa.2017.168


exchange energy50; thus the triplet can jump back to the singlet state
by means of thermal energy (reverse intersystem crossing) for
fluorescence emission, which is called TADF, as shown in Figure 4d.
Achieving a 100% IQE is possible for TADF emission without a heavy
atom in the organic material, which reduces the material cost and is
more flexible for organic molecular design.
In practical applications, red and green phosphorescent emitters are

the mainstream for active matrix (AM) OLEDs due to their high IQE.
While, for blue emitters, TTF is mostly used because of its longer
operation lifetime51. However, recently, TADF materials have been
rapidly emerging and are expected to have widespread applications in
the near future.
It is worth mentioning that, although IQE could be as high as 100%

in theory, due to the refractive index difference the emission generated
inside the OLED experiences total internal reflection, which reduces
the extraction efficiency. Taking a bottom emission OLED with a glass
substrate (n~1.5) and an indium-tin-oxide anode (n~1.8) as an
example, the final extraction efficiency is only ~ 20%52.

DISPLAY METRICS

To evaluate the performance of display devices, several metrics are
commonly used, such as response time, CR, color gamut, panel
flexibility, viewing angle, resolution density, peak brightness, lifetime,
among others. Here we compare LCD and OLED devices based on
these metrics one by one.

Response time and motion picture response time
A fast response time helps to mitigate motion image blur and boost
the optical efficiency, but this statement is only qualitatively correct.
When quantifying the visual performance of a moving object, motion
picture response time (MPRT) is more representative, and the
following equation should be used53–58:

MPRT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ð0:8T f Þ2

q
ð1Þ

where Tf is the frame time (e.g., Tf= 16.67 ms for 60 fps). Using this
equation, we can easily obtain an MPRT as long as the LC response

time and TFT frame rate are known. The results are plotted in
Figure 5.
From Figure 5, we can gain several important physical insights: (1)

Increasing the frame rate is a simple approach to suppress image
motion blur, but its improvement gradually saturates. For example, if
the LC response time is 10 ms, then increasing the frame rate from 30
to 60 fps would significantly reduce the MPRT. However, as the TFT
frame rate continues to increase to 120 and 240 fps, then the
improvement gradually saturates. (2) At a given frame rate, say
120 fps, as the LC response time decreases, the MPRT decreases
almost linearly and then saturates. This means that the MPRT is
mainly determined by the TFT frame rate once the LC response time
is fast enough, i.e., τ5Tf. Under such conditions, Equation (1) is
reduced to MPRT≈0.8Tf. (3) When the LC response is o2 ms, its
MPRT is comparable to that of an OLED at the same frame rate, e.g.,
120 fps. Here we assume the OLED’s response time is 0.
The last finding is somehow counter to the intuition that a LCD

should have a more severe motion picture image blur, as its response
time is approximately 1000× slower than that of an OLED (ms vs.
μs). To validate this prediction, Chen et al.58 performed an experiment
using an ultra-low viscosity LC mixture in a commercial VA test cell.
The measured average gray-to-gray response time is 1.29 ms by
applying a commonly used overdrive and undershoot voltage method.
The corresponding average MPRT at 120 fps is 6.88 ms, while that of
an OLED is 6.66 ms. These two results are indeed comparable. If the
frame rate is doubled to 240 fps, both LCDs and OLEDs show a much
faster but still similar MPRT values (3.71 vs. 3.34 ms). Thus the above
finding is confirmed experimentally.
If we want to further suppress image blur to an unnoticeable level

(MPRTo2 ms), decreasing the duty ratio (for LCDs, this is the on-
time ratio of the backlight, called scanning backlight or blinking
backlight) is mostly adopted59–61. However, the tradeoff is reduced
brightness. To compensate for the decreased brightness due to the
lower duty ratio, we can boost the LED backlight brightness. For
OLEDs, we can increase the driving current, but the penalties are a
shortened lifetime and efficiency roll-off62–64.

CR and ACR
High CR is a critical requirement for achieving supreme image quality.
OLEDs are emissive, so, in theory, their CR could approach infinity to
one. However, this is true only under dark ambient conditions. In
most cases, ambient light is inevitable. Therefore, for practical
applications, a more meaningful parameter, called the ACR, should be
considered65–68:

ACR ¼ Ton þ A

Toff þ A
ð2Þ

where Ton (Toff) represents the on-state (off-state) brightness of an
LCD or OLED and A is the intensity of reflected light by the display
device.
As Figure 6 depicts, there are two types of surface reflections. The

first one is from a direct light source, i.e., the sun or a light bulb,
denoted as A1. Its reflection is fairly specular, and in practice, we can
avoid this reflection (i.e., strong glare from direct sun) by simply
adjusting the display position or viewing direction. However, the
second reflection, denoted as A2, is quite difficult to avoid. It comes
from an extended background light source, such as a clear sky or
scattered ceiling light. In our analysis, we mainly focus on the second
reflection (A2).
To investigate the ACR, we have to clarify the reflectance first. A

large TV is often operated by remote control, so touchscreen
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Figure 4 Illustration of the emission mechanisms of OLEDs:
(a) fluorescence, (b) TTF, (c) phosphorescence, and (d) TADF. ISC,
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functionality is not required. As a result, an anti-reflection coating is
commonly adopted. Let us assume that the reflectance is 1.2% for
both LCD and OLED TVs. For the peak brightness and CR, different
TV makers have their own specifications. Here, without losing
generality, let us use the following brands as examples for comparison:

LCD peak brightness= 1200 nits, LCD CR= 5000:1 (Sony 75″ X940E
LCD TV); OLED peak brightness= 600 nits, and OLED CR= infinity
(Sony 77″ A1E OLED TV). The obtained ACR for both LCD and
OLED TVs is plotted in Figure 7a. As expected, OLEDs have a much
higher ACR in the low illuminance region (dark room) but drop
sharply as ambient light gets brighter. At 63 lux, OLEDs have the same
ACR as LCDs. Beyond 63 lux, LCDs take over. In many countries,
60 lux is the typical lighting condition in a family living room. This
implies that LCDs have a higher ACR when the ambient light is
brighter than 60 lux, such as in office lighting (320–500 lux) and a
living room with the window shades or curtain open. Please note that,
in our simulation, we used the real peak brightness of LCDs (1200
nits) and OLEDs (600 nits). In most cases, the displayed contents
could vary from black to white. If we consider a typical 50% average
picture level (i.e., 600 nits for LCDs vs. 300 nits for OLEDs), then the
crossover point drops to 31 lux (not shown here), and LCDs are even
more favorable. This is because the on-state brightness plays an
important role to the ACR, as Equation (2) shows.
Recently, an LCD panel with an in-cell polarizer was proposed to

decouple the depolarization effect of the LC layer and color filters69.
Thus the light leakage was able to be suppressed substantially, leading
to a significantly enhanced CR. It has been reported that the CR of a
VA LCD could be boosted to 20 000:1. Then we recalculated the ACR,
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and the results are shown in Figure 7b. Now, the crossover point takes
place at 16 lux, which continues to favor LCDs.
For mobile displays, such as smartphones, touch functionality is

required. Thus the outer surface is often subject to fingerprints, grease
and other contaminants. Therefore, only a simple grade AR coating is
used, and the total surface reflectance amounts to ~ 4.4%. Let us use
the FFS LCD as an example for comparison with an OLED. The
following parameters are used in our simulations: the LCD peak
brightness is 600 nits and CR is 2000:1, while the OLED peak
brightness is 500 nits and CR is infinity. Figure 8a depicts the
calculated results, where the intersection occurs at 107 lux, which
corresponds to a very dark overcast day. If the newly proposed
structure with an in-cell polarizer is used, the FFS LCD could attain a
3000:1 CR69. In that case, the intersection is decreased to 72 lux
(Figure 8b), corresponding to an office building hallway or restroom
lighting. For reference, a typical office light is in the range of 320–500
lux70. As Figure 8 depicts, OLEDs have a superior ACR under dark
ambient conditions, but this advantage gradually diminishes as the
ambient light increases. This was indeed experimentally confirmed by
LG Display71. Display brightness and surface reflection have key roles
in the sunlight readability of a display device.

Color gamut
Vivid color is another critical requirement of all display devices72.
Until now, several color standards have been proposed to evaluate
color performance, including sRGB, NTSC, DCI-P3 and Rec.
202073–76. It is believed that Rec. 2020 is the ultimate goal, and its
coverage area in color space is the largest, nearly twice as wide as that
of sRGB. However, at the present time, only RGB lasers can achieve
this goal.
For conventional LCDs employing a WLED backlight, the yellow

spectrum generated by YAG (yttrium aluminum garnet) phosphor is
too broad to become highly saturated RGB primary colors, as shown
in Figure 9a77. As a result, the color gamut is only ~ 50% Rec. 2020.
To improve the color gamut, more advanced backlight units have been
developed, as summarized in Table 2. The first choice is the RG-
phosphor-converted WLED78,79. From Figure 9b, the red and green
emission spectra are well separated; still, the green spectrum (gener-
ated by β-sialon:Eu2+ phosphor) is fairly broad and red spectrum
(generated by K2SiF6:Mn4+ (potassium silicofluoride, KSF) phosphor)
is not deep enough, leading to 70%–80% Rec. 2020, depending on the
color filters used.

A QD-enhanced backlight (e.g., quantum dot enhancement film,
QDEF) offers another option for a wide color gamut20,80,81. QDs
exhibit a much narrower bandwidth (FWHM~20–30 nm)
(Figure 9c), so that high purity RGB colors can be realized and a
color gamut of ~ 90% Rec. 2020 can be achieved. One safety concern
is that some high-performance QDs contain the heavy metal Cd. To
be compatible with the restriction of hazardous substances, the
maximum cadmium content should be under 100 ppm in any
consumer electronic product82. Some heavy-metal-free QDs, such as
InP, have been developed and used in commercial products83–85.
Recently, a new LED technology, called the Vivid Color LED, was

demonstrated86. Its FWHM is only 10 nm (Figure 9d), which leads to
an unprecedented color gamut (~98% Rec. 2020) together with
specially designed color filters. Such a color gamut is comparable to
that of laser-lit displays but without laser speckles. Moreover, the Vivid
Color LED is heavy-metal free and shows good thermal stability. If the
efficiency and cost can be further improved, it would be a perfect
candidate for an LCD backlight.
The color performance of a RGB OLED is mainly governed by the

three independent RGB EMLs. Currently, both deep blue fluorescent
OLEDs87 and deep red phosphorescent OLEDs88 have been developed.
The corresponding color gamut is 490% Rec. 2020. Apart from
material development89, the color gamut of OLEDs could also be
enhanced by device optimization. For example, a strong cavity could
be formed between a semitransparent and reflective layer. This selects
certain emission wavelengths and hence reduces the FWHM90.
However, the tradeoff is increased color shift at large viewing
angles91.
A color filter array is another effective approach to enhance the

color gamut of an OLED. For example, in 2017, AUO demonstrated a
5-inch top-emission OLED panel with 95% Rec. 2020. In this design,
so-called symmetric panel stacking with a color filter is employed to
generate purer RGB primary colors92. Similarly, SEL developed a
tandem white top-emitting OLED with color filters to achieve a high
color gamut (96% Rec. 2020) and high resolution density (664 pixels
per inch (ppi) simultaneously93.

Lifetime
As mentioned earlier, TFT LCDs are a fairly mature technology. They
can be operated for 410 years without noticeable performance
degradation. However, OLEDs are more sensitive to moisture and
oxygen than LCDs. Thus their lifetime, especially for blue OLEDs, is
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still an issue. For mobile displays, this is not a critical issue because the
expected usage of a smartphone is approximately 2–3 years. However,
for large TVs, a lifetime of 430 000 h (410 years) has become the
normal expectation for consumers.
Here we focus on two types of lifetime: storage and operational. To

enable a 10-year storage lifetime, according to the analysis94, the
water vapor permeation rate and oxygen transmission rate for

an OLED display should be o1× 10− 6 g (m2-day)− 1 and
1× 10− 5 cm3 (m2-day)− 1, respectively. To achieve these values,
organic and/or inorganic thin films have been developed to effectively
protect the OLED and lengthen its storage lifetime. Meanwhile, it
is compatible to flexible substrates and favors a thinner display
profile95–97.
The next type of lifetime is operational lifetime. Owing to material

degradation, OLED luminance will decrease and voltage will increase
after long-term driving98. For red, yellow and green phosphorescent
OLEDs, their lifetime values at 50% luminance decrease (T50) can be
as long as 480 000 h with a 1000 cd m− 2 luminance99–101. Never-
theless, the operational lifetime of the blue phosphor is far from
satisfactory. Owing to the long exciton lifetime (~μs) and wide
bandgap ( ~3 eV), triplet-polaron annihilation occurs in the blue
phosphorescent OLED, which generates hot polarons (~6 eV; this
energy is higher than some bond energies, e.g., 3.04 eV for the C-N
single bond), leading to a short lifetime. To improve its lifetime,
several approaches have been proposed, such as designing a suitable
device structure to broaden the recombination zone, stacking two or
three OLEDs or introducing an exciton quenching layer. The
operation lifetime of a blue phosphorescent OLED can be improved
to 3700 h (T50, half lifetime) with an initial luminance of 1000 nits.
However, this is still ~ 20× shorter than that of red and green
phosphorescent OLEDs101–103.
To further enhance the lifetime of the blue OLED, the NTU group

has developed new ETL and TTF-EML materials together with an
optimized layer structure and double EML structure104. Figure 10a

Table 2 Comparison of different light sources in LCD backlights

YAG WLED KSF WLED QDEF a

Vivid Color

LED

FWHM 4100 nm 55 nm for green

2 nm for red (5

peaks)

20–30 nm 10 nm

Tunability No No Yes Yes

Color

gamut

~50% Rec.

2020

70%–80% Rec.

2020

80%–90% Rec.

2020

490% Rec.

2020

Efficiency High High Moderate Low

Cost Low Moderate High High

Stability Excellent Good Good Excellent

RoHS Yes Yes Cd-based Yes

Abbreviations: FWHM, full width at half maximum; KSF, potassium silicofluoride; LED, light-
emitting diode; QDEF, quantum dot enhancement film; RoHS, restriction of hazardous
substances; WLED, white light-emitting diode; YAG, yttrium aluminum garnet.
aHere we only consider Cd-based quantum-dots (QDs). For heavy-metal-free QDs, e.g., InP QD,
the FWHM is broader (40–50 nm) and color gamut is 70–80%. Their optical efficiency is
slightly lower than that of Cd-based QDs.
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shows the luminance decay curves of such a blue OLED under
different initial luminance values (5000, 10 000, and 15 000 nits).
From Figure 10b, the estimated T50 at 1000 nits of this blue OLED is
~ 56 000 h (~6–7 years)104,105. As new materials and novel device
structures continue to advance, the lifetime of OLEDs will be gradually
improved.

Power efficiency
Power consumption is equally important as other metrics. For LCDs,
power consumption consists of two parts: the backlight and driving
electronics. The ratio between these two depends on the display size
and resolution density. For a 55″ 4K LCD TV, the backlight occupies
approximately 90% of the total power consumption. To make full use
of the backlight, a dual brightness enhancement film is commonly
embedded to recycle mismatched polarized light106. The total effi-
ciency could be improved by ~ 60%.
The power efficiency of an OLED is generally limited by the

extraction efficiency (ηext ~ 20%). To improve the power efficiency,
multiple approaches can be used, such as a microlens array, a
corrugated structure with a high refractive index substrate107, replacing
the metal electrode (such as the Al cathode) with a transparent metal
oxide108, increasing the distance from the emission dipole to the metal
electrode109 or increasing the carrier concentration by material
optimizations110. Experimentally, external quantum efficiencies as
high as 63% have been demonstrated107,108. Note that sometimes
the light-extraction techniques result in haze and image blur, which
deteriorate the ACR and display sharpness111–113. Additionally, fabri-
cation complexity and production yield are two additional concerns.
Figure 11 shows the power efficiencies of white, green, red and blue
phosphorescent as well as blue fluorescent/TTF OLEDs over time. For
OLEDs with fluorescent emitters in the 1980s and 1990s, the
power efficiency was limited by the IQE, typically o10 lmW− 1

(Refs. 41,114–118). With the incorporation of phosphorescent emit-
ters in the ~ 2000 s, the power efficiency was significantly improved
owing to the materials and device engineering45,119–125. The photonic
design of OLEDs with regard to the light extraction efficiency was
taken into consideration for further enchantment of the power
efficiency126–130. For a green OLED, a power efficiency of 290 lmW− 1

was demonstrated in 2011 (Ref. 127), which showed a 4100×
improvement compared with that of the basic two-layer device
proposed in 1987 (1.5 lmW− 1 in Ref. 41). A white OLED with a
power efficiency 4100 lmW− 1 was also demonstrated, which was
comparable to the power efficiency of a LCD backlight. For red and

blue OLEDs, their power efficiencies are generally lower than that of
the green OLED due to their lower photopic sensitivity function, and
there is a tradeoff between color saturation and power efficiency. Note,
we separated the performances of blue phosphorescent and fluores-
cent/TTF OLEDs. For the blue phosphorescent OLEDs, although the
power efficiency can be as high as ~ 80 lmW− 1, the operation lifetime
is short and color is sky-blue. For display applications, the blue TTF
OLED is the favored choice, with an acceptable lifetime and color but
a much lower power efficiency (16 lmW− 1) than its phosphorescent
counterpart131,132. Overall, over the past three decades (1987–2017),
the power efficiency of OLEDs has improved dramatically, as
Figure 11 shows.
To compare the power consumption of LCDs and OLEDs with the

same resolution density, the displayed contents should be considered
as well. In general, OLEDs are more efficient than LCDs for displaying
dark images because black pixels consume little power for an emissive
display, while LCDs are more efficient than OLEDs at displaying
bright images. Currently, a ~ 65% average picture level is the
intersection point between RGB OLEDs and LCDs134. For color-
filter-based white OLED TVs, this intersection point drops to ~ 30%.
As both technologies continue to advance, the crossover point will
undoubtedly change with time.

Panel flexibility
Flexible displays have a long history and have been attempted by many
companies, but this technology has only recently begun to see
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commercial implementations for consumer electronics135. A good
example is Samsung’s flagship smartphone, the Galaxy S series, which
has an OLED display panel that covers the edge of the phone.
However, strictly speaking, it is a curved display rather than a flexible
display. One step forward, a foldable AM-OLED has been demon-
strated with the curvature radius of 2 mm for 100 000 repeated
folds136. Owing to the superior flexibility of the organic materials, a
rollable AM-OLED display driven by an organic TFT was
fabricated137. By replacing the brittle indium-tin-oxide with a flexible
Ag nanowire as the anode, a stretchable OLED for up to a 120% strain
was demonstrated138.
LCDs have limited flexibility. A curved TV is practical but going

beyond that is rather difficult with rigid and thick glass substrates139.
Fortunately, this obstacle has been removed with the implementation
of a thin plastic substrate140–142. In 2017, a 12.1″ rollable LCD using
organic TFT, called OLCD, was demonstrated, and its radius of
curvature is 60 mm143. To maintain a uniform cell gap, a polymer wall
was formed within the LC layer144. Additionally, it is reported that
LCDs could be foldable with a segmented backlight. This is a good
choice, but until now, no demo or real device has been demonstrated.
Combining two bezel-less LCDs together is another solution to enable
a foldable display, but this technology is still under development145.

Others
In addition to the aforementioned six display metrics, other para-
meters are equally important. For example, high-resolution density has
become a standard for all high-end display devices. Currently, LCD is
taking the lead in consumer electronic products. Eight-hundred ppi or
even 41000 ppi LCDs have already been demonstrated and commer-
cialized, such as in the Sony 5.5″ 4k Smartphone Xperia Z5 Premium.
The resolution of RGB OLEDs is limited by the physical dimension of
the fine-pitch shadow mask. To compete with LCDs, most OLED
displays use the PenTile RGB subpixel matrix scheme146. The effective
resolution density of an RGB OLED mobile display is ~ 500 ppi. In the
PenTile configuration, the blue subpixel has a larger size than the
green and red subpixels. Thus a lower current is needed to achieve the
required brightness, which is helpful for improving the lifetime of the
blue OLED. On the other hand, owing to the lower efficiency of the
blue TTF OLED compared with the red and green phosphorescent
ones, this results in higher power consumption. To further enhance
the resolution density, multiple approaches have been developed, as
will be discussed later.
The viewing angle is another important property that defines the

viewing experience at large oblique angles, which is quite critical for
multi-viewer applications. OLEDs are self-emissive and have an
angular distribution that is much broader than that of LCDs. For
instance, at a 30° viewing angle, the OLED brightness only decreases
by 30%, whereas the LCD brightness decrease exceeds 50%. To widen
an LCD’s viewing angle, three options can be used. (1) Remove the
brightness-enhancement film in the backlight system. The tradeoff is
decreased on-axis brightness147. (2) Use a directional backlight with a
front diffuser148,149. Such a configuration enables excellent image
quality regardless of viewing angle; however, image blur induced by a
strong diffuser should be carefully treated. (3) Use QD arrays as the
color filters20,150–152. This design produces an isotropic viewing cone
and high-purity RGB colors. However, preventing ambient light
excitation of QDs remains a technical challenge20.
In addition to brightness, color, grayscale and the CR also vary with

the viewing angle, known as color shift and gamma shift. In these
aspects, LCDs and OLEDs have different mechanisms. For LCDs, they
are induced by the anisotropic property of the LC material, which

could be compensated for with uniaxial or biaxial films5. For OLEDs,
they are caused by the cavity effect and color-mixing effect153,154. With
extensive efforts and development, both technologies have fairly
mature solutions; currently, color shift and gamma shift have been
minimized at large oblique angles.
Cost is another key factor for consumers. LCDs have been the topic

of extensive investigation and investment, whereas OLED technology
is emerging and its fabrication yield and capability are still far behind
LCDs. As a result, the price of OLEDs is about twice as high as that of
LCDs, especially for large displays. As more investment is made in
OLEDs and more advanced fabrication technology is developed, such
as ink-jet printing155–157, their price should decrease noticeably in the
near future.

FUTURE PERSPECTIVES

Currently, both LCDs and OLEDs are commercialized and compete
with each other in almost every display segment. They are basically
two different technologies (non-emissive vs. emissive), but as a display,
they share quite similar perspectives in the near future. Here we will
focus on three aspects: HDR, VR/AR and smart displays with versatile
functions.

High dynamic range
HDR is an emerging technology that can significantly improve picture
quality158–160. However, strictly speaking, HDR is not a single metric;
instead, it is more like a technical standard or a format (e.g., HDR10,
Dolby Vision, etc.), unifying the aforementioned metrics. In general,
HDR requires a higher CR (CR≥ 100 000:1), deeper dark state, higher
peak brightness, richer grayscale (≥10 bits) and more vivid color.
Both LCD and OLED are HDR-compatible. Currently, the best

HDR LCDs can produce brighter highlights than OLEDs, but OLEDs
have better overall CRs thanks to their superior black level. To
enhance an LCD’s CR, a local dimming backlight is commonly used,
but its dimming accuracy is limited by the number of LED
segmentations161–163. Recently, a dual-panel LCD system was pro-
posed for pixel-by-pixel local dimming164,165. In an experiment, an
exceedingly high CR (41 000 000:1) and high bit-depth (414 bits)
were realized at merely 5 volts. In 2017, such a dual-panel LCD was
demonstrated by Panasonic, aiming at medical and vehicular applica-
tions. At 2018 consumer electronics show, Innolux demonstrated a
10.1″ LCD with an active matrix mini-LED backlight. The size of each
mini-LED is 1 mm and pitch length is 2 mm. In total, there are 6720
local dimming zones. Such a mini-LED based LCD offers several
attractive features: CR41 000 000:1, peak brightness= 1500 nits,
HDR: 10-bit mini-LED and 8-bit LCD, and thin profile.
Also worth mentioning here is ultra-high brightness. Mostly, people

pay more attention to the required high CR (CR4100 000:1) of HDR
but fail to notice that CR is jointly determined by the dark state and
peak brightness. For example, a 12-bit Perceptual Quantizer curve is
generated for a range up to 10 000 nits, which is far beyond what
current displays can provide166,167.
The peak brightness of LCDs could be boosted to 2000 nits or even

higher by simply using a high-power backlight. OLEDs are self-
emissive, so their peak brightness would trade with lifetime. As a
result, more advanced OLED materials and novel structural designs
are highly desirable in the future. Another reason to boost peak
brightness is to increase sunlight readability. Especially for some
outdoor applications, such as public displays, peak brightness is critical
to ensure good readability under strong ambient light. As discussed in
the section of ‘CR and ACR’, high brightness leads to a high ACR,
except that the power consumption will increase.
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Virtual reality and augmented reality
Immersive VR/AR are two emerging wearable display technologies
with great potential in entertainment, education, training, design,
advertisement and medical diagnostics. However, new opportunities
arise along with new challenges. VR head-mounted displays require a
resolution density as high as 42000 ppi to eliminate the so-called
screen door effect and generate more realistic immersive experiences.
An LCD’s resolution density is determined by the TFTs and color

filter arrays. In SID 2017, Samsung demonstrated an LCD panel with a
resolution of 2250 ppi for VR applications. The pitches of the sub-
pixel and pixel are 3.76 and 11.28 μm, respectively. Meanwhile, field
sequential color provides another promising option to triple the LCD
resolution density168,169. However, more advanced LC mixtures and
fast response LCD modes are needed to suppress the color breakup
issue170–179. For OLED microdisplays, eMagin proposed a novel direct
patterning approach to enable 2645 ppi RGB organic emitters on a
CMOS backplane180. Similar performance has been obtained by Sony.
They developed a 0.5-inch AM-OLED panel with 3200 ppi using well-
controlled color filter arrays181.
As for AR applications, lightweight, low power and high brightness

are mainly determined by the display components. LC on silicon can
generate high brightness182, but its profile is too bulky and heavy with
the implementation of a polarization beam splitter. Removing the
polarization beam splitter with a front light guide would be the
appropriate solution183. However, integrating RGB LEDs with this
light guide remains a significant challenge. Additionally, RGB LEDs,
especially green LEDs, are not efficient enough. OLEDs have thin
profiles, but their peak brightness and power efficiency are still far
from satisfactory, especially for such AR devices, as they are mostly
used outdoors, meaning high brightness is commonly required to
increase the ACR of displayed images.

Smart displays with versatile functions
Currently, displays are no longer limited to traditional usages, such as
TVs, pads or smartphones. Instead, they have become more diversified
and are used in smart windows, smart mirrors, smart fridges, smart
vending machines and so on. They have entered all aspects of our
daily lives.
As these new applications are emerging, LCDs and OLEDs have new

opportunities as well as new challenges. Let us take a vehicle display as
an example: high brightness, good sunlight readability, and a wide
working temperature range are required184. To follow this trend, LC
mixtures with an ultra-high clearing temperature (4140 °C) have
been recently developed, ensuring that the LCD works properly even
at some extreme temperatures185. OLEDs have an attractive form
factor for vehicle displays, but their performance needs to qualify
under the abovementioned harsh working conditions. Similarly, for
transparent displays or mirror displays, LCDs and OLEDs have their
own merits and demerits186–189. They should aim at versatile functions
based on their own strengths.

CONCLUSION

We have briefly reviewed the recent progress of LCD and OLED
technologies. Each technology has its own pros and cons. For example,
LCDs are leading in lifetime, cost, resolution density and peak
brightness; are comparable to OLEDs in ACR, viewing angle, power
consumption and color gamut (with QD-based backlights); and are
inferior to OLED in black state, panel flexibility and response time.
Two concepts are elucidated in detail: the motion picture response
time and ACR. It has been demonstrated that LCDs can achieve
comparable image motion blur to OLEDs, although their response

time is 1000× slower than that of OLEDs (ms vs. μs). In terms of the
ACR, our study shows that LCDs have a comparable or even better
ACR than OLEDs if the ambient illuminance is 450 lux, even if its
static CR is only 5000:1. The main reason is the higher brightness of
LCDs. New trends for LCDs and OLEDs are also highlighted,
including ultra-high peak brightness for HDR, ultra-high-resolution
density for VR, ultra-low power consumption for AR and ultra-
versatile functionality for vehicle display, transparent display and
mirror display applications. The competition between LCDs and
OLEDs is still ongoing. We believe these two TFT-based display
technologies will coexist for a long time.
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