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Abstract. Volume Bragg grating (VBG) with refractive index modulation (RIM) apodized with sinusoidal semi-
period profile is studied theoretically and experimentally. An apodized VBG of this type was fabricated with
a sequential recording of two VBGs with slightly different resonant Bragg wavelengths in the same glass wafer.
As a result, a moiré pattern was produced with a constant average refractive index and a slow sinusoidal
envelope of RIM. Modeling showed that an apodized VBG with a sinusoidal semiperiod has provided a sup-
pression of the sidelobes in the reflection spectrum. The experimental measurements are in good agreement
with the theoretical predictions. This type of VBG is suitable for high-resolution spectroscopy applications due to
a significant reduction of sidelobes. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.3.037106]
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1 Introduction
Volume Bragg gratings (VBGs) with spatially uniform
refractive index modulation (RIM) are usually characterized
by narrow reflection bandwidth and large aperture. VBGs
fabricated in photo-thermo-refractive (PTR) glass demon-
strate low optical losses and are impervious to high power
laser irradiation.1 As a result, VBGs with these advantages
are used for narrowing spectra of various types of high-
power lasers.2,3 These gratings are used as well as narrow-
band filters in different optical setups, and in particular, in
spectroscopic applications.4 The main quantitative character-
istic of a reflective narrow-band filter is its signal-to-noise
ratio (SNR) for a particular spectral range. This ratio is
defined as the ratio of the maximum reflected intensity
for the given spectral range to the maximum reflected inten-
sity out of this spectral range. The reflection spectrum of a
typical VBG with uniform RIM consists of a main peak with
maximum reflectivity at the resonant Bragg wavelength and
secondary reflection lobes decreasing rapidly with detuning
from the resonant Bragg wavelength.5 The SNR can be
enhanced with sequential reflections from several uniform
VBGs.6 In this paper, we are discussing a VBG element with
apodized sinusoidal RIM, which demonstrates an enhance-
ment in the SNR in comparison with a uniform VBG.

VBGs are recorded in PTR glass by illuminating a glass
wafer with periodically modulated UV light. Spatially modu-
lated UV pattern is generated holographically by overlapping
two coherent beams obtained after splitting a UV laser
beam with a flat top profile. After thermal development of
the exposed glass wafer, the high intensity part of the inter-
ference fringes acquires a negative refractive index change
(RIC) due to photochemical processes inherent to the multi-
component PTR glass.7 Such a standard holographic record-
ing method provides uniform RIM inside the exposed and
developed wafer. It is well-known from coupled wave theory

describing the process of reflection by Bragg gratings that
the apodization of the RIM leads to suppression of the sec-
ondary lobes in the reflection spectrum.8 The apodization is
represented by the smooth reduction of the amplitude of RIM
from the middle of the grating to both its front and rear sides.

Fiber Bragg gratings can be straightforwardly apodized
during the manufacturing process due to their simple one-
dimensional geometry.9–12 In contrast, VBGs are fabricated
only by holographic recording, so the apodized profile of
RIM inside the volume of a glass sample is challenging
to create. One approach for apodization of VBGs is based
on the recording of an interference pattern crated by the over-
lapping of Gaussian beams. The obtained RIM profile in
this case will vary not only along the longitudinal direction
but also across the aperture of the VBG, which will cause
deterioration of the beam quality of the reflected beam.
Also, the average background refractive index inside such
VBG will vary along the longitudinal direction of the gra-
ting, which will lead to significant undesirable distortions in
the reflection spectrum.13 Another possible approach for
apodization is the reduction of RIM by overexposing the
front and the back areas of a VBG.14 This method will
again lead to variation of the background refractive index
inside the VBG and also to the additional increase of losses
in overexposed parts.

The apodization method discussed in this paper is based
on sequential recording of two interference patterns with
slightly different periods, with the same modulation ampli-
tudes and with grating vectors along the same direction.
As a result, a moiré pattern of RIM with constant average
refractive index along the direction of beam propagation
is produced. Such method of moiré apodization was imple-
mented before for fiber Bragg gratings.15,16 After thermal
development, the apodized VBG is completed by cutting
the sample to a size so it includes only one semiperiod of
the RIM sinusoidal envelope. The two following sections
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of the paper provide the theoretical foundations necessary for
modeling the reflection spectrum of uniform and apodized
VBGs. In the fourth section, our experimental results are
compared with the numerical calculations.

2 Coupled Wave Theory for Bragg Reflection
The reflection of beam occurring inside VBG is described by
coupled wave theory originally formulated by Kogelnik.17

In the presented analysis, we will reproduce the main
results of this theory in one-dimensional approach with wave
propagation normal to the fringes of RIM inside VBG.

Let us consider a monochromatic plane wave of wave-
length λ, with electric field amplitude EðzÞ, propagating
in glass medium along the z-direction of a small modulation
of refractive index nðzÞ. The propagation of this wave with
linear polarization perpendicular to the propagation direction
is described by the wave equation:
EQ-TARGET;temp:intralink-;e001;63;443½d2∕dz2 þ nðzÞ2ω2∕c2�EðzÞ ¼ 0; ω ¼ 2πc∕λ;

nðzÞ ¼ n0 þ n1ðzÞ cosðQzÞ;
jn1ðzÞj ≪ n0 → n2ðzÞ ≈ n20 þ n0n1ðzÞðeiQz þ e−iQzÞ. (1)

In the last expression, the amplitude of modulation n1ðzÞ
is assumed to be much smaller than the background refrac-
tive index of glass n0, and the periodic RIM is presented in
terms of complex waves. In case of a uniform VBG, the
amplitude of RIM is constant n1.

The electric field amplitude EðzÞ can be represented as
a sum of two counter-propagating waves with slow varying
envelopes AðzÞ and BðzÞ (see Fig. 1):
EQ-TARGET;temp:intralink-;e002;63;288

EðzÞ ¼ ½AðzÞeikz þ BðzÞe−ikz� þ c:c:; k ¼ n0ω∕c;

jdA∕dzj ≪ kjAj; jdB∕dzj ≪ kjBj: (2)

Wave A is propagating in a positive z-direction since we
assume the time dependence of the complex amplitude of the
electric field as expð−iωtÞ. The last inequalities describe the
variations of both envelopes, which are much slower than
the wave oscillation itself, and they can be generalized to
second-order derivatives:
EQ-TARGET;temp:intralink-;e003;63;174jd2A∕dz2j ≪ kjdA∕dzj ≪ k2jAj →

d2

dz2
½AðzÞeikz� ¼ eikzd2A∕dz2 þ 2ikeikzdA∕dzþ k2eikzA

≈ 2ikeikzdA∕dzþ k2eikzA: (3)

By substituting EðzÞ in form of Eq. (2) into the wave
Eq. (1) and taking into account Eq. (3), we get after
simplifications:

EQ-TARGET;temp:intralink-;e004;326;752ð2ikeikzdA∕dz − 2ike−ikzdB∕dzþ c:c:Þ þ k2n1ðzÞ∕n0
× ðeiQz þ e−iQzÞ½AðzÞeikz þ BðzÞe−ikz þ c:c:� ¼ 0. (4)

The efficient transfer of power between the counter-
propagating waves occurs in the vicinity of the Bragg reso-
nant condition 2k ¼ 4πn0∕λ0 ¼ Q, where λ0 is the Bragg
resonant wavelength for normal incidence at a VBG with
unslanted fringes. Thus, assuming k ≈Q∕2 and assembling
the terms at the corresponding oscillating factors expð�ikzÞ,
we obtain a system of two coupled wave equations:

EQ-TARGET;temp:intralink-;e005;326;632(
2ieikzdA∕dzþ kn1ðzÞ∕n0BðzÞeiðQ−kÞz ¼ 0;

−2ie−ikzdB∕dzþ kn1ðzÞ∕n0AðzÞeiðk−QÞz ¼ 0;
→

(
dA∕dz ¼ iκðzÞBðzÞe−2iDz; κðzÞ ¼ πλ−1n1ðzÞ;
dB∕dz ¼ −iκðzÞAðzÞe2iDz; D ¼ k −Q∕2;

(5)

where κðzÞ is a coupling coefficient and D is detuning
coefficient. The exact resonant Bragg condition occurs at
D ¼ 0.

In the case of a uniform VBG with constant coupling,
after proper phase redefinition of envelope amplitudes, sys-
tem Eq. (5) can be represented as system of linear differential
equations with constant coefficients. Introducing dimension-
less coordinate 0 < ς ¼ z∕l < 1, where l is the thickness of
VBG, allows the system of equations to be written in the
following matrix form:
EQ-TARGET;temp:intralink-;e006;326;434

d
dς

�
a

b

�
¼

�
iΦ iS

−iS −iΦ

��
a

b

�
;

a ¼ AeiΦς; b ¼ Be−iΦς; ς ¼ z∕l; S ¼ κl ¼ πn1l∕λ0;

Φ ¼ Dl ¼ 2πn0lðλ−1 − λ−10 Þ ¼ −2πn0lλ−20 ðλ − λ0Þ. (6)

Here, two dimensionless parameters are introduced:
the strength of reflection S and the phase detuning Φ.
Since we are studying the narrow spectral region of
strong coupling, λ ≈ λ0, we used the value of resonant
Bragg wavelength λ0 in the definition of S, and Φ was
rewritten to be proportional to the wavelength shift.

The solution of the linear differential system in Eq. (6)
with constant coefficients is known in analytical form.18

In terms of amplitudes A and B, it is

EQ-TARGET;temp:intralink-;e007;326;254

�
Al

Bl

�
¼ M̂

�
A0

B0

�
; M̂ ¼

�
e−iΦ 0

0 eiΦ

��
m 11 m 12

m 21 m 22

�
;

m 22 ¼ m�
11 ¼ cosh G − i

Φ
G
sinh G;

m21 ¼ m�
12 ¼ −i

S
G
sinh G; G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 −Φ2

p
. ð7Þ

Here, A0 and B0 are the amplitude values at the front
side of the VBG at z ¼ 0 and Al and Bl are the amplitude
values at the back side of the VBG at z ¼ l.

The amplitude reflection coefficient r is defined as the
ratio of the reflected amplitude B0 to the incident amplitude
A0 with the assumption of no wave B entering the grating
from the rear side, Bl ¼ 0. We assume VBG with anti-
reflection-coated surfaces, so Fresnel reflections are not

l

A

B

z
0

Fig. 1 Scheme of one-dimensional propagation of monochromatic
incident wave A and reflected wave B in VBG with the varying
amplitude n1ðzÞ of RIM.
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considered. As a result, the condition Bl ¼ M21A0 þ
M22B0 ¼ 0 for the second equation in Eq. (7) provides
the following analytical expressions for the reflection
coefficient and the reflectivity R:
EQ-TARGET;temp:intralink-;e008;63;708

r ¼ B0

A0

����
Bl¼0

¼ −
M21

M22

¼ iS∕G sinh G
cosh G − iΦ∕G sinh G

;

R ¼ jr2j ¼ sinh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 −Φ2

p

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 −Φ2

p
−Φ2∕S2

: (8)

We have obtained the formula for the reflection spectrum
RðλÞ of a uniform Bragg grating, which depends on the gra-
ting parameters n0, n1, λ0, and l in accordance with Eq. (6).

At the exact Bragg resonance Φ ¼ 0, the reflectivity
equals R0 ¼ tanh2S. At the spectral edge of the reflection
band Φ ¼ S, the expression for reflectivity in Eq. (8)
resolves to RðΦ ¼ SÞ ¼ S2∕ð1þ S2Þ. In the next section, we
will make a comparison between the reflection spectrum of
a uniform VBG and the reflection spectrum of an apodized
VBG.

3 Theoretical Modeling of Apodized Volume Bragg
Grating

The PTR glass is photosensitive to UV exposure at wave-
length λUV ¼ 325 nm. After UV exposure with a given dos-
age and a thermal development, RIC of up to 2000 ppm
(0.002) in PTR glass can be achieved. Applying a particular
thermal treatment regime and using small exposure dosages,
a linear dependence of the RIC from the dosage is observed,
whereas with significant increase of the dosage, RIC starts to
saturate to its maximum achievable value. The dependence
of the RIC on dosage is described actually by saturation
curve of hyperbolic type.19 For recording VBGs, the UV
light is modulated along a single direction with a period
corresponding to the desired resonant Bragg wavelength λ0.
Such modulation is formed holographically by overlapping
two coherent UV waves as we mentioned before.

Let us consider two coherent UV waves with wavevectors
k1 and k2, propagating in plane with z-axis and x-axis ori-
ented, as shown in Fig. 2. These waves are incident on a glass
sample with front surface plane at x ¼ 0. If these UV waves
have TE polarization and angle of incidences α, then the
created interference pattern in space is described by a phase
function ΨðzÞ, which is the same in glass or air due to phase-
matching conditions at the air–glass boundary:
EQ-TARGET;temp:intralink-;e009;63;246

k1;2 ¼ 2πλ−1UVð�ez sin α − ex cos αÞ;
jeik1r þ eik2rj2 ¼ 2ð1þ cos ΨÞ;
Ψ ¼ ðk1 − k2Þr ¼ 4πλ−1UVz sin α: (9)

Exposure with such interference pattern transfers as
a periodic modulation of the dosage gained by the glass
over the time of UV exposure. This dosage modulation
will be imprinted as RIM defined by cosðQzÞ in Eq. (1) after
the thermal treatment in the regime of linear photosensitivity.
So, according to the resonant Bragg condition D ¼ 0
in Eq. (5), the incidence angle α required in holographic
setup for recording VBG with resonant Bragg wavelength
λ0 is determined as follows:

EQ-TARGET;temp:intralink-;e010;326;433Qz ¼ Ψ ¼ 4πλ−1UVz sin α;

D ¼ 0 ¼ 2πn0λ−10 −Q∕2 → α ¼ arcsinðn0λUV∕λ0Þ: ð10Þ

Two sequential holographic UV exposures of specimen
with slightly different modulation periods will create a moiré
pattern of dosage, which produces corresponding moiré
pattern of RIM inside the glass.

The two modulations defined by resonant Bragg
wavelengths λ1 and λ2 with small difference Δλ between
them and with the same modulation amplitude n1 will create
moiré pattern with parameters following from a well-known
trigonometric identity illustrated in Fig. 2(b):
EQ-TARGET;temp:intralink-;e011;326;293

cos αþ cos β ¼ 2 cos½ðαþ βÞ∕2� cos½ðα − βÞ∕2�;
n1 cosðQ1zÞ þ n1 cos ðQ2zÞ ¼ N1 cosðqzÞ cos ðQzÞ;
N1 ¼ 2n1; Q1;2 ¼ 4πn0∕λ1;2; Δλ ¼ λ2 − λ1 ≪ λ1;2;

λ0 ≅ ðλ1 þ λ2Þ∕2; Q ¼ 4πn0∕λ0; q ¼ 2πn0Δλ∕λ20: (11)

Here, λ0 is the resonant Bragg wavelength of the com-
bined moiré pattern equal to the average of the two close to
each other particular Bragg wavelengths, where q is the
wavector of the slow periodic envelope of the moiré pattern.

The thickness lm of the VBG with RIM apodized by
semiperiod of the moiré envelope is determined according
to Eq. (11) by the semiperiod π-phase condition:

EQ-TARGET;temp:intralink-;e012;326;138qlm ¼ 2πn0Δλlm∕λ20 ¼ π → lm ¼ λ20∕ð2n0ΔλÞ: (12)

The necessary wavelength difference Δλ is determined
by predefined thickness lm of an apodized VBG, and the
required difference Δα between angles of the two holo-
graphic recordings can be derived from Eq. (10).

α
z

x

+

=

1st pair of beams

2nd pair of beams

(a)

(b)

Fig. 2 (a) Recording of moiré pattern of RIM inside PTR glass sample
by using two sequential holographic UV exposures. (b) Formation of
the moiré pattern by overlapping two uniform periodic patterns with
slightly different periods.
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The apodized RIM n1mðzÞ along the semiperiod of the
moiré pattern is defined according to Eqs. (11) and (12):
EQ-TARGET;temp:intralink-;e013;63;730

nmðzÞ ¼ n0 þ n1mðzÞ cosðQzÞ;
n1mðzÞ ¼ N1 sinðπz∕lmÞ; 0 ≤ z ≤ lm: (13)

For convenience of notations, here, we have introduced
the semiperiod as sin-function for n1mðzÞ instead of cos-
function as in Eq. (11).

For an apodized VBG, coupled wave equations in Eq. (5)
contain a varying ampliude n1mðzÞ of RIM from Eq. (13):

EQ-TARGET;temp:intralink-;e014;63;627�
dA∕dz ¼ iκmðzÞBðzÞe−2iDz; 0 ≤ z ≤ lm ;

dB∕dz ¼ −iκmðzÞAðzÞe2iDz; κmðzÞ ¼ πλ−10 n1mðzÞ;
n1mðzÞ ¼ N1 sinðπz∕lmÞ; D ¼ 2πn0ðλ−1 − λ−10 Þ. (14)

By using dimensionless coordinate 0 < ς ¼ z∕lm < 1 and
performing phase redefinition of the envelope amplitudes A
and B, coupled wave equations in Eq. (14) can be repre-
sented in modified form similar to Eq. (6):

EQ-TARGET;temp:intralink-;e015;63;508

d
dς

�
a

b

�
¼
�

iΦ iSmðπ∕2Þ sinðπςÞ
−iSmðπ∕2Þ sinðπςÞ −iΦ

��
a

b

�
;

a¼ AeiΦς; b¼ Be−iΦς; Sm ¼ 2N1lm∕λ0; ς¼ z∕lm;

Φ¼Dlm ¼ −2πn0lmλ−20 ðλ− λ0Þ. (15)

Here, the dimensionless phase detuning Φ is the same as
in Eq. (6). We also introduced the dimensionless strength of
reflection Sm, which is convenient for describing the reflec-
tion by an apodized VBG, especially in the case of exact
Bragg resonance Φ ¼ 0.

Since the coefficients of the linear differential equations
system in Eq. (15) are not constant, specifically, off-diagonal
coupling terms are varying as sin-function; there is no
analytical solution for this system. Only at the exact
Bragg resonance Φ ¼ 0, the system Eq. (15) can be inte-
grated analytically. The propagation matrix in this case, for
amplitudes A and B determined at the incident side of
the apodized VBG, z ¼ 0, and at the back side, z ¼ lm, is
as follows:

EQ-TARGET;temp:intralink-;e016;63;269Φ ¼ 0∶
�
Alm
Blm

�
¼

�
cosh Sm i sinh Sm

−i sinh Sm cosh Sm

��
A0

B0

�
;

(16)

where Sm is defined in Eq. (15).
Reflectivity of an apodized VBG at the exact Bragg

resonance is calculated using the same boundary condition
Blm ¼ 0 as in Eq. (8) and applied now to Eq. (16):
EQ-TARGET;temp:intralink-;e017;63;167

Φ ¼ 0∶ r ¼ B0

A0

����
Blm¼0

¼ i sinh Sm
cosh Sm

; R0 ¼ jr2j ¼ tanh2 Sm:

(17)

In the case of arbitrary wavelength detuning Φ ≠ 0, the
reflectivity R can be obtained by numerically calculating
the propagation matrix similarly to (7,8). This matrix follows

from numerical integration of the system of equations in
Eq. (14) or the equivalent system in Eq. (15):
EQ-TARGET;temp:intralink-;e018;326;730�
a1
b1

�
¼

�
m11 m12

m21 m22

��
a0
b0

�
∶

�
a0
b0

�
¼

�
1

0

�
→

�
m11

m21

�
¼

�
a1
b1

�
;

�
a0
b0

�
¼

�
0

1

�
→

�
m12

m22

�
¼

�
a1
b1

�
: (18)

The propagation matrix m̂ transforms amplitudes a and b
at the front side of grating with ς ¼ 0 to amplitudes at the
back side with ς ¼ 1. Starting with the initial conditions
a0 ¼ 1 and b0 ¼ 0, integration of the system of differential
equations in Eq. (15) provides amplitudes a1 and b1 equal to
the corresponding matrix elements m11 and m21 according to
Eq. (18). Similarly, integration of Eq. (15) with initial con-
ditions a0 ¼ 0 and b0 ¼ 1 provides matrix elements m12

and m22.
The calculated matrix elements of the propagation matrix

m̂ for a particular wavelength λ determine the amplitude
reflection coefficient r and the reflectivity R using the
condition of absence of wave B at the end of the grating,
b1 ¼ 0, which was already used in Eq. (8) for the case of
a uniform grating:
EQ-TARGET;temp:intralink-;e019;326;456

b1 ¼ m21a0 þm22b0 → r ¼ B0

A0

����
Blm¼0

¼ b0
a0

����
b1¼0

¼ −
m21

m22

;

R ¼ jr2j ¼
����m21

m22

����2: (19)

Figure 3 shows the reflection spectrum RðΦÞ numerically
calculated in accordance with (15,18,19) for apodized
VBG with maximum resonant reflectivity R0 ¼ 99%. The
corresponding strength of reflection based on Eq. (17) is
Sm ¼ 2.99. The dimensionless detuning parameter Φ can
be expressed through the wavelength shift for the particular
grating. For example, if the background refractive index
is n0 ¼ 1.485, the resonant Bragg wavelength is λ0 ¼
1.064 μm, and the thickness of the VBG lm is 5 mm,
then, according to the definition of Φ in Eq. (15), the
wavelength shift equals λ − λ0 ¼ −24.3 · Φ pm. For such
parameters λ0 and lm, according to Eq. (15), the maximum
amplitude of apodized RIM required to obtain the mentioned
Sm is N1 ¼ 318 ppm. Figure 3 also presents the spectrum of
a uniform VBG calculated from the analytical expression
Eq. (8) with the same maximum reflectivity R0 ¼ 0.99
and correspondingly the same value of S ¼ 2.99. For the
same n0, λ0, l ¼ lm, the detuning parameter Φ has the same
definition for both apodized (15) and uniform (6) types of
VBGs, and the wavelength shift λ − λ0 depends on Φ in
the same manner mentioned above.

The reflection spectrum of an apodized VBG demon-
strates significant suppression of secondary lobes in com-
parison with the spectrum of a uniform volume grating.
Precise cutting of the sample at the exact locations of
moiré envelope zeros is crucial for fabricating of apodized
VBG. If the cut is not properly done at the zeros of the
envelope, then the achieved apodization would not be accu-
rate and the reflection spectrum will show higher secondary
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parasitic lobes. In order to demonstrate this effect of inaccu-
rate apodization, in Fig. 3, we have included the spectrum of
a VBG with the same length lm of the moiré semiperiod
but with 10% relative mismatch in the locations of envelope
zeros. The corresponding RIM of this flawed apodized VBG
is described by n1mðzÞ ¼ N1 sin½πðz∕lm þ 0.1Þ�, having the
additional term of 0.1 in comparison to the flawless apodiza-
tion description given by Eq. (14).

From Fig. 3, we can see that the width of the main reflec-
tion peak of an apodized VBG is wider than the main peak of
a uniform VBG. This is because the effective thickness of an
apodized VBG is smaller than the thickness l of a uniform
VBG. It is well-known that the reflection bandwidth of
a Bragg grating is inversely proportional to its length. This
basic fact can be proven from the mathematical expression
for detuning jΦj ¼ 2πn0lðλ − λ0Þ∕λ20 from Eq. (6). For
detuning value jΦj ¼ S ¼ 2πn0lΔλS∕λ20 with corresponding
wavelength shift ΔλS, the reflectivity is equal to RS ¼
S2∕ð1þ S2Þ, as it was mentioned in Eq. (8). This reflectivity
value RS for grating with larger l will be achieved at smaller
wavelength shift ΔλS in order to keep the same detuning
value jΦj ¼ S. So, the larger peak width of an apodized
VBG in comparison with the peak width of a uniform VBG
with the same thicknesses l ¼ lm can be explained actually
by the smaller effective thickness of the apodized VBG.
For the presented spectra with 99% maximum reflectivity,
the FWHM width of the apodized VBG is ΔΦFWHM;m ¼
10.35, at the level of 49.5%. This width is 1.37 times larger
than the width of ΔΦFWHM ¼ 7.53 of the uniform VBG,
which is also equal to ΔλFWHM ¼ 183 pm if using the
modeling numerical parameters n0, l, λ0 mentioned earlier.
Despite of the larger width of the main reflection peak,
the apodized VBG could be more suitable for spectroscopic
measurements. In spectroscopic applications, the main
design goal is to achieve the best SNR over certain band-
width using a narrow-band filter, and in this sense, the apo-
dized VBG with significantly suppressed parasitic secondary
lobes of reflection demonstrates better performance than
the ordinary uniform VBG.

In our theoretical analysis, we considered the propagation
of incident and reflected waves along the same z-direction
normal to the planes of RIM fringes and VBG surfaces.

In the case of skew incidence at a small angle θair to the
normal of the VBG surface, the incident wave will propagate
inside VBG glass medium at a refracted angle θin. Thus, the
Bragg resonant condition defined by zero detuning D ¼ 0
pointed out below Eq. (5) should be adjusted by substituting
the wavevector k by its z-component kz. This will lead to
maximum reflectivity at a new resonant wavelength λres
slightly different from the Bragg wavelength λ0 for normal
incidence:
EQ-TARGET;temp:intralink-;e020;326;653

D ¼ kz −Q∕2 ¼ 0; kz ¼ 2πn0 λres−1 cos θin →

λres ¼ λ0 cos θin ≈ λ0ð1 − θ2in∕2Þ ¼ λ0½1 − θ2air∕ð2n20Þ�:
(20)

So, the wavelength of resonant Bragg reflection λres can
be slightly decreased by angular detuning from normal inci-
dence. With such angular detuning, the maximum reflectivity
will not change significantly, because the coupling parameter
κðzÞ in Eq. (5) should be divided by cos θin and, in the case
of TM polarization, additionally multiplied by cosð2θinÞ.

4 Experimental Reflection Spectrum of Apodized
VBG

Our initial experiments with moiré patterns in PTR glass
dealt with the reflection and transmission properties of
moiré VBG with a full period of the slow sinusoidal envelope
of RIM.20,21 Two envelope semiperiods of such VBG contain
an intrinsic π-phase shift between them. At Bragg resonant
wavelength, this VBG system behaves in a way similar to
a Fabry–Perot filter, and it demonstrates a very narrow
transmission peak with bandwidth of tens of pm. In this
paper, we are presenting the results for a moiré VBG with
only one semiperiod of the sinusoidal envelope profile of
RIM. The main objective of studying this apodized VBG
is to demonstrate the enhanced suppression of secondary
lobes in the reflection spectrum if compared to a similar
uniform VBG.

To create an apodized VBG, a PTR glass specimen was
sequentially exposed with two UV interference patterns
according to the schematic illustration in Fig. 2. Each pattern
was designed to have a uniform RIMs with a resonant Bragg
wavelengths close to λ0 ¼ 1.064 μm. The background
refractive index of the PTR glass at wavelength λ0 is
n0 ¼ 1.485. Typical thicknesses of high-aperture uniform
reflective VBGs used in spectroscopy applications are 2
to 5 mm. The change Δα of the angle of holographic record-
ing presented in Fig. 2 was made at the minimum achievable
level of 0.1 mrad in our experiment. According to Eq. (10),
this value corresponding to the small difference Δλ between
the resonant wavelengths equals approximately 200 pm, and
the corresponding semiperiod lm was estimated to be less
than 2 mm from Eq. (12). The sample was thermally devel-
oped to imprint the moiré pattern created by double UV
exposure into a permanent moiré pattern of RIM. The semi-
period lm of the fabricated slow moiré envelope was deter-
mined by testing the Bragg diffraction in transmission
regime using an argon ion laser operating at 488 nm. The
longitudinal periodicity of the intensity of the transmitted
light directly corresponds to lm. The measured value of
the semiperiod was lm ¼ 1.635 mm. An apodized VBG
with a thickness of lm was then cut from the wafer.
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Fig. 3 Dependence of reflectivity R on dimensionless detuning Φ for
different VBGs: apodized VBG (solid line), uniform VBGwith the same
maximum reflection 99% (dashed line), and apodized VBG with 10%
cut mismatch in the apodization profile (dotted line).
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The reflection spectrum of the apodized VBG with anti-
reflection coated surfaces was measured with a tunable laser
source with beam diameter 1 mm and subpicometer line-
width. Figure 4 shows the experimental reflection spectrum
in logarithmic scale along with the associated theoretical
curve. The maximum value of the RIM of the moiré envelope
defined in Eq. (11) was determined to be N1 ¼ 430 ppm by
matching the response from the theoretical fit. The strength
of reflection is Sm ¼ 1.32 according to Eq. (15), which gives
a maximum of reflectivity R0 ¼ tanh2Sm ¼ 75%. Figure 4
also includes the modeling of a reflection spectrum of a
uniform VBG with the same parameters S ¼ Sm, n0, λ0,
and l ¼ lm.

The use of a logarithmic scale in Fig. 4 clearly shows the
enhanced suppression of secondary lobes in the spectrum of
an apodized VBG in comparison with lobes in spectrum of a
similar uniform VBG. In case of the apodized VBG, SNR is
equal to 45 dB over a 3-nm spectral range with the maximum
reflectivity in the middle of it, whereas in the case of a uni-
form VBG, SNR is equal to 25 dB over the same spectral
range. Our experimental measurements are in good agree-
ment with theoretical simulations.

It is instructive to provide analytical estimations for the
decrease of reflectivity as a function of wavelength detuning
for both apodized and uniform VBGs. At large wavelength
detuning, when the wavelength λ of the incident wave is very
far from the Bragg resonant wavelength λ0, the reflection
value R, which defines the intensity of the reflected wave
B, is very small. Therefore, we can apply the Born approxi-
mation to the system of coupled differential equations in
Eq. (5) for a uniform VBG, or to the system Eq. (14) for
an apodized VBG. In this approximation, the incident
wave A is considered not to be disturbed, so B ¼ 0 is
assumed in the differential equation for A, and we have to
find the solution for the generated wave B from its corre-
sponding differential equation consisting of the already
known expression for the undisturbed wave A. With this
approximation, system Eq. (5) is simplified to one differen-
tial equation for B. As a result, with a boundary condition
at the rear side of the grating BðlÞ ¼ 0 already discussed
above for a wave reflected from the front side of grating,
we obtain reflectivity Ru of a uniform VBG in the Born
approximation:

EQ-TARGET;temp:intralink-;e021;326;752

AðzÞ ¼ Að0Þ∶ dB∕dz ¼ −iκAð0Þe2iDz;

BðlÞ ¼ 0 → BðzÞ ¼ þiκAð0Þ
Z

l

z
e2iDz 0dz 0;

ru ¼ Bð0Þ∕Að0Þ ¼ iκ
Z

l

0

e2iDzdz ¼ ieiΦS∕Φ · sinΦ;

Ru ¼ S2∕Φ2 · sin2Φ; hRui ¼ S2∕ð2Φ2Þ: (21)

The definitions of the dimensionless detuning Φ and the
strength of reflection S are specified in Eq. (6). Equation (21)
represents the averaged expression hRui of reflectivity over
several periods of Φ, and it was obtained by substituting the
periodic factor sin2Φ with its average value of ½. These
results show that the reflectivity of a uniform VBG decreases
with detuning as Φ−2.

Similarly, we can find asymptotic behavior of the reflec-
tivity of an apodized VBG when operating at a large out-of-
Bragg resonance detuning. By applying the Born approxima-
tion to system Eq. (14), which means the amplitude of wave
A is kept unchanged, we can find the approximate solution
for small amplitude of the reflected wave B. The boundary
condition BðlmÞ ¼ 0 leads to amplitude reflection coefficient
and reflectivity of an apodized VBG:
EQ-TARGET;temp:intralink-;e022;326;492

AðzÞ¼Að0Þ∶ d
dz

B¼−i
πN1

λ0
sin

�
πz
lm

�
Að0Þe2iDz;

BðlmÞ¼ 0→BðzÞ¼ i
πN1

λ0
Að0Þ

Z
lm

z
sin

�
πz 0

lm

�
e2iDz 0dz 0;

rm ¼Bð0Þ
Að0Þ ¼ i

πN1

λ0

Z
lm

0

sin

�
πz
lm

�
e2iDzdz¼−iπ2SmeiΦ cosΦ

4Φ2−π2
;

Rm ¼ π4S2mcos2Φ
ð4Φ2−π2Þ2 ; hRmi¼

π4S2m
2ð4Φ2−π2Þ2 : (22)

The strength of reflection Sm of an apodized VBG is
defined in Eq. (15). Rm is the reflectivity of an apodized
VBG in the Born approximation, and hRmi is the value with
averaging of the periodic factor cos2Φ. Thus, for an apodized
VBG, the asymptotic dependence of reflectivity from
wavelength detuning is proportional to Φ−4. This power
dependence provides very fast reduction of the secondary
reflection lobes in comparison with the dependence Φ−2

obtained previously for an ordinary uniform VBG.
Successive reflection of a laser beam by a pair of uniform

VBGs is determined by the product of two reflectivities of
individual gratings, and the total reflectivity is described by
asymptotic dependence Φ−4 similar to the reflectivity of
apodized VBG. The enhancement of spectral selectivity by
utilization of one apodized VBG instead of consecutive
implementation of two uniform VBGs preserves the robust-
ness of optical setup.

5 Conclusions
We presented the coupled wave equations necessary for the
theoretical modeling of the reflectivity of apodized VBGs
produced by holographic recording of moiré patterns and
derived asymptotic formulas for the decrease of the reflec-
tivity for both uniform and apodized VBGs as the wave-
length of an incident beam is detuned far from the resonant
wavelength. The reflectivity of the uniform grating decreases
inversely proportional to the square of the detuning while
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Fig. 4 Experimental reflection spectrum of apodized VBG (dots
connected by thick line), its theoretical fit (thin line), and theoretical
reflection of referent uniform VBG (dashed line).
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the reflectivity of an apodized grating decreases inversely
proportional to the fourth power of detuning. An apodized
VBG was manufactured based on the moiré principle by
recording two uniform gratings with slightly different
periods in one wafer. The apodized grating demonstrated
efficient suppression of secondary lobes in the reflection
spectrum. The fabricated apodized VBG had resonance at
1064 nm, was 1.6 mm long, had 75% maximum reflectivity,
and showed 45-dB suppression in side lobe reflectivity over
3-nm spectral range centered at the resonant wavelength.
By comparison, the standard uniform VBG with the same
thickness and maximum reflectivity provides only 25-dB
contrast over the same 3-nm spectral range. The experimen-
tal results were in good agreement with the numerical calcu-
lations. The results summarized above demonstrate that
an apodized grating is compact and robust optical element
with superior side lobe suppression in comparison with com-
pound schemes based on a pair of uniform gratings providing
the same level of contrast.
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