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Abstract: A reconfigurable metasurface made of Ge2Sb2Te5 phase-change material was 
experimentally demonstrated in the 1.55 μm wavelength range. A nanostructured Ge2Sb2Te5 
film on fused silica substrate was optimized to switch from highly transmissive (80%) to 
highly absorptive (76%) modes with a 7:1 contrast ratio in transmission independent of 
polarization, when thermally transformed from the amorphous to crystalline state. The 
metasurface was designed using a genetic algorithm optimizer linked with an efficient full-
wave electromagnetic solver. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Initial work on metamaterials focused on the development of structures based on metallic 
resonators [1] that has resulted in the fabrication of left-handed materials with negative 
effective permittivity and permeability. By now, the study of metamaterials and their two-
dimensional counterparts, known as metasurfaces, has grown to encompass various 
macroscopic composites of periodic or non-periodic subwavelength structures whose function 
arises from a combination of the metamaterial structure and constituent materials composition 
and properties [2–4]. Recently, nanofabrication techniques have enabled the creation of 
metamaterials operating in the optical (near infrared (IR)) frequency range [5]. Unique 
properties of the optical metamaterials have been investigated with the aim to create perfect 
lenses [6,7], flat collimating lenses [8], invisibility cloaks [9,10], near perfect absorbers 
[11,12], and other devices for light propagation control [5]. 

Expanding upon the variety of metamaterials with static responses, there is a growing 
interest in developing reconfigurable metamaterials that would provide an alterable 
electromagnetic response as a result of changing the properties of a component material (see. 
e.g., reviews [13,14]). The availability of such reconfigurable metamaterials would greatly 
enhance the possibility of their employment in practical applications. As an intermediate step 
on the way from metamaterials with fixed frequency response to fully reconfigurable 
artificially structured materials, tunable metamaterials have been created with a limited range 
of the adjustable frequency response. In the mid- or near IR, the frequency response of the 
metamaterials was controlled using liquid crystals [15–19] or phase change materials (PCM) 
such as vanadium oxide [20–23] or chalcogenide alloys (e.g., refs [24–30].). Some limitations 
of these previous designs stem from the choice of the tuning constituents used in fabrication. 
For instance, liquid crystal devices have relatively slow switching speeds and demonstrate 
strong anisotropic behavior. VO2 exhibits a very fast insulator-to-metal phase transition but 
has a low (68 °C) phase switching temperature. In comparison with other PCMs, 
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chalcogenide alloys offer a number of benefits. Many chalcogenide alloys can undergo 
thermally, electrically, or optically controlled reversible phase transitions between amorphous 
and crystalline states with an associated large change in the optical and electrical 
characteristics. Chalcogenide alloys also offer advantages for fabrication due to their thermal 
and environmental stability, a broad operating temperature range, and the adjustability of their 
properties and operational wavelengths through composition modification, as dictated by a 
specific application [31–33]. 

A distinctive feature shared by most of the previously engineered tunable structures 
utilizing PCMs based on chalcogenide alloys, is that their tuning components (continuous 
layers of PCM) were hybridized with the metamaterials, i.e., they only changed the resonance 
conditions of the framework metamaterials (e.g., refs [24–28].). Here, we adopt another 
approach to making a reconfigurable photonic metasurface, in which the resonating medium 
is the nanostructured Ge2Sb2Te5 (GST) chalcogenide alloy layer itself and another medium is 
not required to change the resonance. A similar approach was utilized in [29] where a one-
dimensional metasurface was etched in the GST film. In [30], the simulations of a two-
dimensional metasurface based on the GST film were presented. A unique optical response of 
the structure in the near IR is achieved in the present work [34], which demonstrates two 
disparate filter functions as a result of changing the structural phase of the chalcogenide film. 
Employment of the amorphous (dielectric) GST material where displacement currents act 
similarly to conduction currents in metallic metamaterial structures allows avoidance of 
losses inherent to metals at optical frequencies [35]. 

2. Ge2Sb2Te5 film deposition and characterization 

The reconfigurable near-IR metasurface involves a nanostructured GST PCM film on a 
double side polished fused silica wafer. The 150-nm-thick GST films were deposited by 
thermal evaporation of ground pieces of the GST ingot at room temperature at a rate of 0.15 ÷ 
0.25 nm/s. The GST ingot for the evaporation was fabricated from high purity chemical 
elements (99.999% each, Alfa Aesar) batched into a fused silica ampoule inside a nitrogen-
purged glove box. Prior to sealing, the material components and silica ampoule were kept 
under high vacuum (~10−4 Torr) at 90 °C for 4 hours in order to remove any residual 
moisture. The sealed ampoule was heated to 950 °C and then kept at that temperature for 15 
hours in a rocking furnace to provide homogenization of the melt. The ampoule was 
quenched in liquid nitrogen that produced a polycrystalline ingot. 

The elemental composition of the films determined by energy-dispersive X-ray 
spectroscopy (EDS) was found to be the same as the composition of the bulk target alloy from 
which they were prepared. EDS was performed using a Hitachi S-3400-2 Variable Pressure 
SEM with a liquid nitrogen cooled EDS attachment using an accelerating voltage of 20 kV. 

As-deposited GST thin films were amorphous as verified by X-ray diffraction (XRD) and 
electrical resistance measurements. The XRD patterns of the films were collected in the 
Bragg-Brentano configuration using a PANalyticalX’Pert Pro Materials Research 
Diffractometer with Cu-Kα radiation. To induce a phase transformation from amorphous to 
one of the crystalline states, the films were subjected to a heat treatment using Alwin 21 
AG610 Rapid Thermal Annealing (RTA) System in N2 flow for 10 sec. Figure 1(a) shows the 
XRD scans for the as-deposited amorphous GST film (lower spectrum) as well as for the 
films crystallized by RTA at 170 °C (middle spectrum) and at 370 °C (upper spectrum). The 
curves are shifted along the vertical axis for clarity. The reflections in the middle spectrum 
correspond to the face-centered cubic (fcc) structure (Fig. 1(b)) [36, 37], whereas the 
reflections in the upper spectrum match the hexagonal structure of the GST material [38]. 
Only (00l) reflections are present in the spectrum for the film with hexagonal lattice, 
indicating a preferred (c-axis) orientation of the crystalline structure. 

The GST thin films in the amorphous and crystalline states were also studied using Raman 
scattering in a micro-Raman configuration. The studies were performed using a Bruker 
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on an optical model consisting of a semi-infinite fused silica substrate / GST film / surface 
roughness. The surface roughness was represented by a Bruggeman effective medium 
approximation of 0.5 void + 0.5 film material fractions. The parameterization of N included 
combinations of Sellmeier, Lorentz, Tauc-Lorentz, Gaussian, and Drude (for the films in the 
crystalline state) oscillators. Oscillator parameters as well as thicknesses of the GST film and 
the surface roughness layer were used as fitting parameters. Figure 1(d) shows the wavelength 
dependence of n and k for the amorphous and fcc crystalline states of the films that agree well 
with the GST material parameters reported in Ref [43]. Here, the crystalline phase has higher 
values of n and k than the amorphous phase, which corresponds to differences in the chemical 
bonding in the films before and after the phase transition [32,43–45]. It should be noted that 
some change in the surface roughness (~7 nm increase) of the GST films after the phase 
transformation from the amorphous to crystalline state was determined using ellipsometry. 
This increase of the surface roughness is too small to influence the optical properties of the 
films at the device working wavelength. 

3. Metasurface design and fabrication 

A large difference in the complex index of refraction for the amorphous and crystalline 
phases of the GST PCM can be leveraged to create reconfigurable metamaterials or 
metasurfaces with specific properties that depend on the state of the constituent PCM [46]. 
The specific goal in the present study was to design a metasurface whose response in the IR 
(1.55 μm wavelength range) could be reconfigured from high transmission when the PCM is 
in the amorphous state to high absorption when it is in the fcc crystalline state. To achieve 
this goal, a robust genetic algorithm (GA) optimizer [47] was employed to create a pixelized 
pattern in the GST layer deposited on the fused silica substrate. Within the periodic unit cell, 
the PCM layer was subdivided into an 8 × 8 grid of pixels and represented by 10 unique 
binary bits using 8-fold symmetry. Enforcing 8-fold symmetry in the design maintains 
polarization independence and contracts the parameter search space by reducing the number 
of bits required to encode the unit cell pattern. The encoding for a single triangle in the 8-fold 
symmetric unit cell shown in Fig. 2(a) is “0011,001,01,1,” where “0” represents a “No GST” 
pixel and “1” represents a “GST” pixel. Furthermore, fabrication constraints that remove 
isolated pixels and diagonal connections in the geometry were enforced on the unit cell 
structure. The Cost function used in the GA to evaluate the overall performance of the 
metasurface structure is given by 

 { ( )} { 1 ( ) ( )}Cost dB T Am dB R Cr T Cr= − − − −  (1) 

where the transmittance T and reflectance R for amorphous Am and fcc crystalline Cr phases, 
respectively, were calculated for the infinite planar array of unit cells by linking the optimizer 
with an efficient full-wave electromagnetic solver based on the periodic finite element-
boundary integral (PFEBI) method [48]. In addition, the Cost function was calculated for a 
range of wavelengths around 1.55µm, recording the best value in the range. The measured n 
and k values for the amorphous and fcc crystalline phases shown in Fig. 1(d) were used to 
model the PCM film in the Cost evaluation. 

The GA evolved the unit cell size, GST layer thickness, and pattern, converging to a 
structure illustrated in Fig. 2(a,b) as the best candidate design for a reconfigurable 
transmission/absorption metasurface subject to the fabrication constraints and the Cost 
function defined in (1). The predicted scattering spectra from the metasurface shown in Fig. 
2(c,d) reveal a high transmission peak of 82.1% in the amorphous state of the PCM and a 
high absorption maximum of 82.4% in the fcc crystalline state, indicating that the optimized 
structure meets the specified reconfigurable metasurface design criteria. 

The 4 × 4 mm2 samples of the GST-based metasurface with the pattern optimized by the 
GA as shown in Fig. 2(a,b), were fabricated using e-beam lithography and lift-off techniques. 
The patterns were exposed on a positive electron beam resist (Nippon ZEP 520A) spun onto a 
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The resonant increase of transmission in the structure (Fig. 3(a)) when the GST material is 
in the amorphous state is determined by a leaky guided mode resonance induced by the 
periodic pattern of air voids within the GST PCM layer [49,50]. The average dielectric 
constant of the patterned PCM layer is higher than those of the cover (air) and the substrate, 
therefore the patterned layer acts simultaneously as a diffraction grating and a waveguide. 
Inside the patterned GST layer, the first diffracted orders ( ± 1) excite guided modes when 
proper phase matching conditions [51] are met (Fig. 3(d)). The grating formed by patterning 
the GST layer makes the guided modes leaky which brings about a radiation from the PCM 
layer extending into the air and substrate [52]. As a result of the interaction between the 
incident wave, waveguide modes, and radiation fields, as well as the wavelength-dependent 
probability of the guided mode excitation, the structure provides a resonant response. The 
structure period, L, satisfies the conditions: λR/navg < L < λR/ns, λR/nc, where λR is the resonance 
wavelength, navg is the average index of the patterned GST layer, and ns and nc are refractive 
indices of the substrate and cover (air). Thus, the patterned GST layer is a high spatial 
frequency grating and there are no diffraction orders (except for the zeroth order) in the 
transmitted light which improves the filter efficiency. The two-dimensionality of the pattern 
with 90° rotational symmetry makes the response polarization-independent. 

 

Fig. 4. Reflectance and transmittance spectra of the 300 × 300 µm2 metasurface patterns 
formed in the amorphous Ge2Sb2Te5 films using: (a), (b) different e-beam exposure doses (the 
same structure period) and (c), (d) different pixel sizes (variable structure period) as indicated 
in the insets. The spectra were taken at 20° incidence using the FT-IR microscope. 

As noted above, the metasurface pattern design was optimized in such a way that the 
reflectance is low in both amorphous and crystalline states. This is achieved by shifting the 
reflection peak to the longer wavelengths upon transforming the patterned GST layer to the 
crystalline state (see Fig. 3(e,f) where the transmittance and reflectance spectra are shown in a 
broader wavelength interval compared to Fig. 3(a-c)). The transmission peak also becomes 
red-shifted and decreases due to higher absorption in the crystalline GST material. In the fcc 
crystalline phase the GST is conducting – a resistivity ρ = 2.4 mΩ-cm was found using the 
Drude term in the dielectric function determined by ellipsometry. The red-shift of the 
transmittance and reflectance maxima represents approximately a 1.3 times increase in the 
vacuum wavelength. This increase is associated with the change in the guided mode 
wavelength that was brought about by the increase in the refractive index induced by the 
phase transformation from amorphous to crystalline states. However, the change in the 
refractive index alone (~1.85 times) would produce a still higher red-shift. It is moderated by 
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the structure when the PCM is in the amorphous (dielectric) state. The distribution of electric 
and magnetic field maxima is commensurate with the period of the structure. At λ = 1.7 μm, 
the electric field maxima are at the ridges of the holes and the electric field penetrates through 
the holes (see electric field distributions in Fig. 6, panel c, and in the vertical slice under panel 
c) providing an increase in the transmission. At higher wavelengths (~1.85 μm) where 
transmission is low, the reflection from the structure is at a maximum (see Fig. 2(c)). Here, 
the absorption is relatively small (less than 20%) in the wavelength range of 1.4 – 2 μm. In 
the crystalline state of the PCM, an increased intrinsic loss has the effect of reducing the field 
intensities in the structure as shown for all three wavelengths in Fig. 6(b,d,f), thereby 
damping the resonant transmission at the corresponding wavelengths. As a result, the 
absorption increases throughout the band as shown in Fig. 2(d). Thus, the simulations of the 
electric and magnetic field distributions using a full-wave electromagnetic computational 
model also attest that the structure provides switching from high transmission to high 
absorption upon inducing the amorphous to crystalline phase transition in the patterned GST 
layer. 

5. Conclusion 

We have presented the design and experimental realization of a reconfigurable metasurface 
based on a nanostructured Ge2Sb2Te5 PCM that changes its response from being highly 
transmissive to highly absorptive in the near-IR (1.55 µm) wavelength range independent of 
polarization. Fabrication of the novel design generated using a GA in which the patterned 
GST layer itself acts as a metasurface demonstrates a considerable improvement in the 
transmission (80%) of the structure with the GST layer in the amorphous state as compared to 
previous works. After thermal switching of the nanostructured GST layer to the crystalline 
state, a high absorption (76%) is attained. A 7.5:1 contrast ratio in transmittance and a 5.4:1 
contrast ratio in absorptance were observed while maintaining a low reflectance (5.7% and 
13.5% in the amorphous and crystalline states, respectively). This reconfigurable metasurface 
demonstration using the nanostructured GST film shows great promise as a platform for 
developing other reconfigurable metasurface devices, as the metasurface response for each 
PCM state can be tailored by GA optimization according to the application requirements. 
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