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Abstract: Space-time (ST) wave packets are pulsed beams in which the spatial frequencies and
wavelengths are tightly correlated. Proper design of the functional form of these correlations
results in diffraction-free and dispersion-free axial propagation; that is, propagation invariance in
free space. To date, observed propagation distances of such ST wave packets has been on the
order of a few centimeters. Here we synthesize an ST wave packet in the form of a pulsed optical
sheet of transverse spatial width ∼200 µm and spectral bandwidth of ∼2 nm, and observe its
diffraction-free propagation for approximately 6 meters. For such ST wave packets, we identify
the spectral uncertainty–the precision in associating the spatial and temporal frequencies–as a
critical parameter in determining the propagation-invariant distance. We present a design strategy
and an experimental methodology that enables further increase in the diffraction-free length.
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1. Introduction

The demonstration of monochromatic quasi-diffraction-free Bessel beams by Durnin et al. [1]
fueled tremendous interest in devising optical fields that are propagation invariant [2, 3]. The
transverse spatial profile of such beams are eigenfunctions of the Helmholtz equation in various
coordinate systems [4–6]; see [7] for a classification of all such solutions. There has been similar
interest in synthesizing propagation-invariant pulsed beams (or wave packets) that are diffraction-
free and dispersion-free in free space [8, 9]. Despite the identification of several analytical
solutions to the wave equation that satisfy these criteria [10–14], the precise experimental
realization of such wave packets has proven to be challenging [15, 16].
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Recent theoretical investigations of propagation-invariant wave packets have helped cast new
light on the potential for synthesizing such optical fields, specifically by investigating wave packets
having a fixed axial wave number [17, 18]. Subsequently, an experimental strategy for the precise
and efficient synthesis of propagation-invariant wave packets in the form of (2 + 1)D pulsed light
sheets was devised [19] to produce a variety of wave packets, including hollow beams [19] and
non-accelerating Airy wave packets [20] in which one transverse dimension is held uniform. This
synthesis approach makes use of the fundamental principle underlying the characteristics of such
propagation-invariant wave packets: the existence of tight correlations between the spatial and
temporal frequencies constituting the pulsed beam [21,22], which we thus refer to as ‘space-time’
(ST) wave packets. Combining techniques from spatial beam modulation [23,24] and ultrafast
pulse shaping [25,26] carried out jointly with a spatial light modulator (analogous to 4 f pulse
shaping in multidimensional spectroscopy [27–29]) can help produce these unique optical fields.
This work has been extended to the synthesis of broadband ST wave packets using refractive
phase plates in transmission mode [30], a demonstration of their self-healing properties [31], and
a classification of all families of ST wave packets [32]. Furthermore, these recent experimental
results have been accompanied by several new theoretical investigations [33–39].

Most previous work has focused on the synthesis and propagation of ST wave packets having
narrow spatial profiles, which inherently travel for short distances before diffractive spreading
dominates. Typical propagation distances are on the order of a few millimeters or centimeters.
For example, in our recent work we demonstrated 7-µm-wide and 14-µm-wide ST wave packets
propagating axially for 25 mm and 100 mm, respectively [19]. Achieving such performance
requires introducing a tight spectral uncertainty on the order of ∼ 30 pm in assigning each
wavelength to a spatial frequency.

Here we show that precise spatio-temporal spectral engineering allows for the synthesis of ST
wave packets in the form of (2 + 1)D pulsed light sheets that can travel for many meters. After
identifying the critical ST wave-packet parameters that dictate its ‘propagation-invariant’ (or
‘diffraction-free’) distance, we outline our design strategy to realize the required beam parameters.
We find that it is not the size of the spatial profile or spectral bandwidth that solely determine the
propagation distance, but that the most influential factor is the width of the uncertainty in the
spatio-temporal spectral correlations introduced into the field. We synthesize a ST wave packet
with the sought-after characteristics, record its spatio-temporal spectral intensity, and confirm its
axial propagation invariance over the course of 6 m in agreement with computational predictions.
This paper is organized as follows. First, we describe a theoretical framework for expressing

ST wave packets in a plane-wave expansion incorporating judicious spatio-temporal spectral
correlations, which also reveals the impact of the spectral uncertainty on the propagation-invariant
distance. Based on this framework we design the parameters for a ST wave packet to travel for
several meters guided by numerical simulations. We next describe the experimental setup used in
the synthesis and characterization of the ST wave packets before presenting our measurement
results.

2. Theory

A generic (2 + 1)D pulsed beam or wave packet E(x, z; t)=ψ(x, z; t)ei(koz−ωot) – in which one
transverse dimension is held uniform, ψ(x, z; t) is a slowly varying envelope, and ko =

ωo
c is a

fixed wave number – has a plane-wave expansion of the form

E(x, z; t) = ei(koz−ωot)
∫∫

dkx dω ψ̃(kx, ω − ωo) ei {kx x+(kz (kx,ω)−ko)z−(ω−ωo)t }, (1)

where ψ̃(kx, ω) is the two-dimensional Fourier transform of ψ(x, 0; t), x and kx are the spatial
coordinate and component of the wave number in the transverse direction, respectively, z and
kz are the corresponding axial quantities, and c is the speed of light in vacuum. The spatial
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Fig. 1. Concept of a ST light sheet. (a) Geometric representation of the free-space light-cone
k2
x + k2

z = (ω/c)2. The spectral locus of an ST wave packet lies at the intersection of the
light-cone with a spectral hyperplane that is tilted an angle θ with respect to the (kx, kz )-plane,
is parallel to the kx-axis, and passes through the point (kx, kz, ωc )= (0, ko, ko). This spectral
hyperplane intersects with the (kz, ωc )-plane in a straight line. (b) Calculated projection of a
section of the spatio-temporal spectral curve in (a) onto the (kx, λ)-plane. The spatio-temporal
spectrum has the form of a product of two Gaussian functions, one in kx and the other in λ
whose width is δλ; the temporal bandwidth is ∆λ=1 nm (FWHM), the spatial bandwidth
is ∆kx = 250 rad/mm (HWHM), and θ = π

3 . The spectral hyperplane intersects with the
light-cone in a hyperbola, a section of which is shown here. Note that shorter wavelengths
(higher temporal frequencies) are associated with higher spatial frequencies because θ >45◦,
in contrast with θ <45◦ (the spectral hyperplane intersects with the light-cone in an ellipse) as
used in our experiment, whereupon the association between spatial and temporal frequencies
is reversed.

bandwidth is ∆kx and the temporal bandwidth is ∆ω, which can in general be set independently
of each other. In free space we have the dispersion relation k2

x + k2
z = (ωc )2, which corresponds

to the surface of a cone that we refer to henceforth as the ‘light-cone’; Fig. 1(a). As such, the
spectrum of a generic wave packet is determined by two independent parameters: kx and ω, the
spatial and temporal frequencies, respectively, and kz is a function of these two variables. The
locus of the spatio-temporal spectrum ψ̃(kx, ω) in general is thus a 2D patch on the surface of the
light-cone [17, 19].
The propagation-invariant ST wave packets we consider here take an alternate form,

E(x, z; t) = ei(koz−ωot)
∫

dkx ψ̃(kx) ei {kx x+[kz ( |kx |)−ko]z−[ω( |kx |)−ωo]t }, (2)

where we now have a one-dimensional spectrum ψ̃(kx) with kx being the only free parameter, and
the value of the temporal frequency ω(|kx |) – which is no longer an independent parameter – is
determined by |kx |. In this setting, kz is also determined solely by |kx |, and the spatial bandwidth
∆kx is now correlated to the temporal bandwidth ∆ω [Fig. 1(b)]. The reduction of the number of
integrals in Eq. (2) with respect to that in Eq. (1) thus reflects the reduced dimensionality of the
spatio-temporal spectrum. By properly engineering the function ω(|kx |), we can enforce a linear
relationship between ω and kz of the form ω

c = ko + (kz − ko) tan θ, where ko=
ωo
c is a fixed wave

number, and θ is the tilt of this line in the (kz, ωc )-plane with respect to the kz-axis. In this case,
the wave packet in Eq. (2) takes the form

E(x, z; t) =ei(koz−ωot)
∫

dkx ψ̃(kx) ei {kx x+[kz ( |kx |)−ko][z−ct tan θ]}→ei(koz−ωot)ψ(x, z − ct tan θ; 0);
(3)
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in other words, the wave packet has a phase velocity of c and a group velocity of c tan θ [21].
The associated spatio-temporal spectral locus of the ST wave packet may thus be viewed as

the result of the intersection of the light-cone with a spectral hyperplane that is parallel to the
kx-axis and passes through the point (kx, kz, ωc )= (0, ko, ko); Fig. 1(a). This intersection is a conic
section: a circle (θ = 0 and π), an ellipse (0< θ < π

4 and 3π
4 < θ < π), a straight line (θ = π

4 ), a
hyperbola ( π4 <θ <

3π
4 ), or a parabola (θ= 3π

4 ). However, the projection of this conic section on
the (kz, ωc )-plane is always a straight line. Moreover, the proportionality between ∆kx and ∆ω is
also determined by θ. The specific correlation function ω(|kx |) is simply the projection onto the
(kx, ωc )-plane of the particular conic section. For example, in Fig. 1(a) where θ >45◦, ω(|kx |) is a
hyperbola; whereas whenever θ <45◦, ω(|kx |) is an ellipse. However, when the spatial bandwidth
∆kx is small, the portion of ω(|kx |) exploited in the vicinity of kx =0 will appear approximately
as a section of a parabola. In the scenario utilized in our experiments where θ <45◦, the explicit
relationship ω(|kx |) takes the form of an ellipse,

1
k2

1

(ω
c
− k2

)2
+

k2
x

k2
3
= 1, (4)

where k1= ko
tan θ

1+tan θ , k2= ko
1

1+tan θ , and k3= ko

√
1−tan θ
1+tan θ .

The ideal ST wave packet in Eq. (3) will travel rigidly along z indefinitely. Note that the spatial
bandwidth ∆kx and the temporal bandwidth ∆ω can both be finite while retaining the infinite
propagation-invariant distance. However, implementing a delta-function correlation between
kx and ω requires an infinite aperture, which implies an infinite energy per pulse. In practice,
the finite size of the apertures (in particular, of the diffraction grating and the spatial light
modulator used in synthesizing the ST wave packet; see below) result in the introduction of a
finite uncertainty in the spatio-temporal spectral correlations, which then limits the propagation-
invariant distance. In other words, each kx is no longer associated with a single ω such that
ψ̃(kx, ω)→ ψ̃(kx)δ(ω − ω(|kx |)). Instead, each kx is associated with a narrow spectral range δω
centered on ω=ω(|kx |), thereby replacing the delta function with a narrow function g(·) of width
δω, such that ψ̃(kx, ω)→ ψ̃(kx)g(ω−ωx). We assume that the uncertainty δω, which determines
the strength of the correlations introduced into the spatio-temporal spectrum, is smaller than the
full temporal bandwidth ∆ω. The double integral in Eq. (1) is thus regained,

E(x, z; t) =
∫∫

dkx dω ψ̃(kx)g(ω − ω(|kx |)) ei(kx x+kz (ω,kx )z−ωt), (5)

but the range of the integration over ω for each kx is of the order δω.
To appreciate the consequences of the particular form of Eq. (5) for the propagation charac-

teristics of realistic ST wave packets, we make use of a Gaussian spatial spectrum for ψ̃(kx) of
width ∆kx [Fig. 1(b)] and a Gaussian uncertainty function g(ω) of width δω (or δλ expressed as
wavelength) and calculate the propagation-invariant distance LST. We define LST as the distance
at which the time-averaged intensity I(x, z)=

∫
dt |E(x, z; t)|2 at the center of the beam I(0, z) has

dropped to half its initial value: I(0, LST)= 1
2 I(0, 0). In Fig. 2 we plot the result of this calculation

as a function of δλ and ∆kx (or equivalently the transverse width of the spatial profile x0).
Propagation distances ∼10 m are achievable by increasing x0 (decreasing ∆kx) and decreasing
δλ. The values of ∆kx and δλ required to synthesize such ST wave packets are well within our
current experimental abilities. The gain in propagation distance can be further increased by
continuing this trend in the values of x0 and δλ; that is, by synthesizing ST wave packets with
even larger transverse profiles and/or tighter spatio-temporal spectral correlations.
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Fig. 2. Calculated diffraction-free (or propagation-invariant) distance for ST light-sheets as
a function of spatial bandwidth ∆kx and the spectral uncertainty δλ. The tilt angle of the
spectral hyperplane with respect to the light-cone is θ=44.98◦ and the central wavelength is
λo=800.5 nm, which are the values used in our experiment. The spatio-temporal correlations
introduced in the ST wave packet entails that the temporal bandwidth ∆λ varies with ∆kx
when θ is held fixed. The transverse spatial beam width is x0=π/∆kx .

3. Experimental set-up

The experimental set-up for the synthesis and characterization of the ST light-sheets is shown in
Fig. 3, which combines elements from spatial beam modulation and ultrafast pulse shaping. A
diffraction grating G (1200 lines/mm; Newport, 10HG1200-800-1) disperses along the y-direction
an expanded beam of femtosecond laser pulses (Tsunami, Spectra-Physics; center wavelength
of λo = 800 nm, bandwidth of ∆λ = 8.5 nm). The second diffraction order is selected and
directed to a reflection-mode spatial light modulator (SLM; Hamamatsu X10468-02) through a
collimating cylindrical lens L1−y , oriented along y. The SLM imparts a 2D phase pattern Φ(x, y)
to the wave front to jointly modulate the spatial and temporal spectra. The nature of this phase
distribution is mainly determined by the spectral hyperplane tilt angle θ. Each column on the
SLM encodes a linear phase corresponding to a spatial frequency kx which is then associated
with the particular wavelength λ incident at that column. Consequently, arbitrary programmable
correlations with one-to-one correspondence between kx and λ may be introduced into the
spatio-temporal spectrum – within a spectral uncertainty δλ that is determined by the spectral
resolving power of the grating and the SLM pixel size. The modulated wave front is retro-reflected
back to the grating through the same lens L1−y , whereupon the pulse is reconstituted and all the
spatial frequencies are simultaneously overlapped to produce the ST light sheet.

To characterize the ST wave packet behavior, a charge coupled device CCD1 camera (Imaging
Source, DMK 33UX178) records the time-averaged intensity profile I(x, z) along the propagation
axis z. Another camera CCD2 (Imaging Source, DMK 72AUC02) characterizes the spatio-
temporal spectrum of the ST light sheet after performing a spatial Fourier transform using a
spherical lens L2−s. The combination of lenses L1−y and L2−s forms a 4 f -configuration along y
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Fig. 3. Schematic depiction of the optical setup for synthesizing ST light sheets. BE:
Beam expander; BS1, BS2: beam splitters; L1−y : cylindrical lens; L2−s: spherical lens; G:
diffraction grating; CCD1, CCD2: CCD cameras; SLM: spatial light modulator. The focal
lengths of the lenses L1−y and L2−s are 50 cm and 7.5 cm, respectively.

to reproduce the temporal spectrum, while forming a 2 f -configuration along x to produce the
spatial spectrum. The spatio-temporal spectrum is thus obtained.

4. Design of the ST wave packet

The design of a propagation-invariant ST wave packet involves the selection of its critical
parameters: (1) the spatial bandwidth ∆kx that determines the transverse spatial beam width; (2)
the tilt angle θ of the spectral hyperplane [Fig. 1(a)] that determines the temporal bandwidth ∆λ
associated with ∆kx and the nature of the conic section on which the spatio-temporal spectrum
lies; and (3) the spectral uncertainty δλ that determines the strength of the spatio-temporal
spectral correlations. Selecting the values of these parameters needed to achieve particular
propagation characteristics (such as a desired propagation-invariant distance) then guides the
synthesis procedure of the ST wave packet by identifying the necessary spatio-temporal spectral
correlations to be encoded.

The spectral uncertainty δλ is limited mainly by the resolving power of the diffraction grating
[Fig. 3], although the sizes of the remaining apertures in the optical system may also play a
similar role. The spectral resolving power of a diffraction grating at a wavelength λ is given by
R=λ/δλ=m ∗ N , where m is the diffraction-order selected, N is the total number of illuminated
grating lines (groove-frequency × grating-length), and δλ is the spectral resolution. This formula,
however, is derived with the assumption that the incident field has a flat intensity profile at the
grating. The use of a Gaussian beam leads to an increase in δλ. In our experiment, we made use
of a diffraction grating with 1200 line/mm and dimensions of 25 × 25 mm2, which gives a lower
limit on the spectral uncertainty of δλ≈14 pm for the second diffraction order m=2. Gratings
with a higher density of rulings would provide a stronger resolving power, but at the expense of
lower diffraction efficiency at the operating wavelength λ=800 nm. Similarly, exploiting higher
diffraction orders enhances the spectral resolving power but reduced the diffraction efficiency. The
limit of the spectral resolution measurable in our optical spectrum analyzer is 30 pm. However,
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Fig. 4. Selection of the parameters of the ST light sheet. (a) Dependence of the temporal
bandwidth ∆λ on the spatial bandwidth ∆kx for 5 different tilt angles θ in the range
44◦ ≤ θ < 45◦. (b) Phase patterns displayed on the SLM for three tilt angles from (a).
The point at kx = 15 rad/mm for θ = 44.98◦ is the operating point in the experiment.
(c) The relationship between the incidence angle ϕi and output angle ϕo of the second
diffraction order m=2 for the diffraction grating G in Fig. 3. The dotted lines identify the
selected parameters in our experiment. (d) The spatial distribution along the y-direction
of the wavelengths at the SLM plane for an incidence angle of ϕi=69◦ on the grating, as
highlighted in (c).

the parameters of our setup support that the actual value is ≈25 pm.
After determining the achievable spectral uncertainty δλ, we refer to the calculations plotted

in Fig. 2 to estimate an upper value for ∆kx to achieve a propagation distance of several meters.
We choose ∆kx ≈15 rad/mm, corresponding to a propagation distance estimated at 6 m. The next
step is the selection of an appropriate angle θ for such a small value of ∆kx (with respect to those
in [19, 20, 30–32]), which in turn dictates the associated temporal bandwidth ∆λ. We plot in
Fig. 4(a) the relationship between ∆kx and ∆λ for different values of θ in the range 44◦ ≤ θ <45◦.
Relying on values of θ approaching 45◦ has the advantage of requiring a larger ∆λ, which enables
us to efficiently utilize the source bandwidth (8.5 nm). Taking these facts into consideration,
we choose an angle θ =44.98◦, which requires a bandwidth of ∆λ≈2 nm. The required SLM
phase pattern Φ(x, y) is shown in Fig. 5(a). It may initially seem that such precise control over θ
presents an exorbitant experimental challenge; specifically, in designing the SLM phase pattern
Φ(x, y). However, small changes in θ in the vicinity of θ=45◦ produce large changes in Φ(x, y).
A few examples are shown in Fig. 4(b) corresponding to three of the values of θ in Fig. 4(a).
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Fig. 5. Synthesis of ST light sheets. (a) The phase distribution Φ(x, y) imparted by the
SLM onto the impinging spatially spread spectrum to produce the target ST light sheet. (b)
Measured spatio-temporal spectrum |Ẽ(kx, λ)|2 obtained by CCD2. The inset shows the
spectral intensity of the initial femtosecond Ti:Sa pulses.

The last experimental parameter to be selected is the incidence angle of the laser onto the
diffraction grating, which is selected to optimally spread the required bandwidth (∼2 nm) along
the width of SLM (16 mm). Based on the plot of diffracted angle φo of the second diffraction
order versus the incident angle φi in Fig. 4(c), we select φi≈69◦, which results in a wavelength
spread across transverse coordinate shown in Fig. 4(d). A total temporal bandwidth of ∼2.1 nm
from the original laser spectrum is modulated along the 16-mm-wide SLM.

5. Experimental results

In order to confirm the diffraction-free behavior of the ST light sheet in physical space (x, z),
we recorded the time-averaged intensity profile I(x, z) along the z-direction for 6 m using
CCD1 [Fig. 3]. This long distance is scanned by CCD1 via a series of mirrors that fold the
beam back and forth on an optical table. Note that specular reflections from surfaces do not
affect the spatio-temporal correlations encoded in the wave packet, and thus do not change the
propagation-invariant characteristics.
Towards this end, the phase pattern shown in Fig. 5(a) is imparted by the SLM to the spread

spectrum, which corresponds to the operating point in Fig. 4(a). This phase pattern is based on
the spatio-temporal trajectory on the light-cone resulting from selecting the angle θ = 44.98◦.
The measured spatio-temporal spectrum |Ẽ(kx, λ)|2, which is the squared modulus of the 2D
Fourier transform of E(x, 0; t), is plotted in Fig. 5(b). The measurement confirms that (a) the
temporal bandwidth is indeed ∼2 nm extracted from the original spectrum of the Ti:Sa pulses,
shown in Fig. 5(b), inset; and (b) that the associated spatial bandwidth ∆kx is the predicted value
for the selected θ. The (kx, λ)-curve in Fig. 5(b) appears as a parabola because of the small value
of ∆kx implemented, but it is actually a section of the ellipse described in Eq. (4).
Such a choice produces a ST light sheet whose full width at half maximum (FWHM) is

x0≈183 µm at z=0.5 m, which increases to ≈339 µm after propagating a distance of z=6 m.
Note that the Rayleigh range of a Gaussian beam of same initial transverse width is zR≈13.15 cm.
Figure 6(a) shows the transverse intensity profiles at z=0.5 m, z=1 m, and subsequently in 1-m
increments to z=6 m. The increase in the width of the ST wave packet upon free propagation
is shown in more detail in Fig. 6(b) along with the drop in the peak on-axis intensity I(0, z) in
Fig. 6(c). The observed axial range corresponds to ≈45zR. We note that a slight rotation of the
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Fig. 6. (a) Measured spatial profiles I(x, y; z) at selected axial positions z (provided above
each panel) extending up to 6 m. The scale bar represents 1 mm along both x and y directions.
(b) Evolution of the transverse FWHM of I(x, z) and (b) the peak intensity I(0, z) along the
axial direction z.

plane of the ST light-sheet was observed along the propagation axis on the order of 2◦ over a
distance of ≈ 4 m. This is likely due to remaining slight relative misalignments between the
diffraction grating, lens L1−y , and SLM in which the rotational symmetry around the propagation
axis is broken.

6. Conclusion

In conclusion, we have synthesized a diffraction-free (2 + 1)D ST wave packet in the form of
a pulsed light-sheet that travels in free space for an axial distance of ∼ 6 m. Precise spatio-
temporal spectral engineering enables the synthesis of a pulsed beam in which each spatial
frequency underlying the transverse beam profile is precisely associated with a temporal frequency
underlying the pulse linewidth. Utilizing an SLM-based optical arrangement that combines
elements of spatial beammodulation and ultrafast pulse shaping, we produce an ST wave packet of
transverse width ∼200 µm that travels for at least 6 m. Paramount to achieving this performance is
control over the spectral uncertainty in the association between spatial and temporal frequencies.
Another critical factor in the wave packet design is the judicious selection of the tilt angle of

the spectral hyperplane – that contains the spatio-temporal spectrum of the wave packet – with
respect to the light-cone. These results indicate that it is possible to utilize ST wave packets
for extended distances. Combined with the potential for synthesizing high pulse-energy ST
wave packets via refractive phase plates [30], applications in laser filamentation may become
possible [40]. This requires first extending the experimental approach described here to (3 + 1)D
ST wave packets that are localized in all dimensions.
Finally, we note that the spatio-temporal spectral correlations introduced into the ST wave

packets are the continuous analog of the correlations between discrete degrees of freedom
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(such as polarization and spatial modes) in what has recently come to be known as ‘classical
entanglement’ [41–50]. The strength of these correlations between the spatial and temporal
degrees of freedom of the optical field, or the degree of classical entanglement, is determined by
the width of the spectral uncertainty. As such, the degree of classical entanglement dictates the
propagation-invariant distance of ST wave packets.
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