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ABSTRACT: We demonstrate a fully flexible, artifact-free, and lensless fiber-based imaging system. For the first time, this
system combines image reconstruction by a trained deep neural network with low-loss image transmission through disordered
glass-air Anderson localized optical fiber. We experimentally demonstrate transmission of intensity images through meter-long
disordered fiber with and without fiber bending. The system provides the unique property that the training performed within a
straight fiber setup can be utilized for high fidelity reconstruction of images that are transported through either straight or bent
fiber making retraining for different bending situations unnecessary. In addition, high quality image transport and reconstruction
is demonstrated for objects that are several millimeters away from the fiber input facet eliminating the need for additional
optical elements at the distal end of the fiber. This novel imaging system shows great potential for practical applications in

endoscopy including studies on freely behaving subjects.
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convolutional neural network

F iber optical endoscopes (FOEs) are very important and
widely used tools in biomedical research, clinical
diagnostics and surgical operations.”” They enable imaging
under conditions in which conventional microscopy cannot
work well. For example, FOE-based optical imaging can be
performed for cells reside within hollow tissue tracts or deep
within organs in a minimally invasive way, while those
locations are inaccessible for conventional microscopy.””
Furthermore, FOEs can be implanted within freely behaving
subjects, such as mice, for long-term imaging research.”® This
ability can benefit several areas, such as fundamental biological
research and application research in developing in vivo
methods for drug testing. Different types of fibers have been
proposed for FOEs." However, current solutions suffer from
several limitations regarding system complexity and size, image
quality and bending sensitivity. For example, single mode fibers
can be used as the smallest imaging acquisition unit, but a
mechanical scanning head or a spectral encoding device is
often installed at the distal end of the fiber to deliver 2D
imaging information, which makes the system bulky and
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complex."®” Alternatively, commercially available fiber bundles
are able to transport 2D imaging information directly through
FOEs. However, pixelation artifacts dictated by the individual
cores fundamentally limit the transported image quality. In
addition, any crosstalk between fiber cores in the bundle blurs
the transmitted images® and the cost of materials and
fabrication of fiber bundles is rather high.” Instead of utilizing
thousands of fiber cores, the thousands of different spatial
modes in multimode fiber (MMF) can also be used to transmit
2D imaging information. Current MMF based FOEs mainly
rely on compensating randomized phases by wavefront shaping
after calibrating the transmission matrix (TM) of the
fiber.>'°~"* This method suffers from several limitations. The
most critical one is its intolerance to fiber movement. Any tiny
movement or bending of the MMF will change the TM
resulting in impaired imaging unless recalibration is performed,
or very precise knowledge of the bending and its shape is
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available."* TM recalibration requires open optical access to
the distal end of the MMF and is fairly time-consuming.

Recent progress in light transmission through disordered
optical fibers mediated by transverse Anderson localization
opens a new avenue for improving the performance of
FOEs."" ™ The glass-air Anderson localized optical fiber
(GALOF) was predicted to be an ideal candidate for imaging
purposes.'”'® The GALOF can support thousands of modes in
its random structure, and unlike MMF, most of these modes
show bending-independent single mode properties.'” In fact,
each mode embedded in the disordered optical fiber
corresponds to a beam transmission channel formed by a
multiple scattering process.lg’19 Due to its intriguing proper-
ties, the GALOF demonstrates several advantages over
conventional fiber. First, bending-independent imaging can
be performed without any extra lens or mechanical parts if the
object is positioned adjacent to the input facet of the
GALOE."*"** Second, GALOF can also directly transport
high quality intensity images, and recent progress has
confirmed that the image quality obtained after transport
through meter-long GALOFs can be comparable to or better
than that of images transmitted through some of the best
commercial fiber bundles.”> Moreover, meter-long imaging
transmission distance can be achieved by GALOF due to its
low attenuation below 1 dB per meter for visible wavelengths.
Besides the superior imaging performance, required materials
and fabrication processes of GALOFs promise potentially low
cost.

The current GALOF-based FOEs still face a number of
challenges to become preeminent FOEs that are fully flexible,
artifact-free, and lensless. The structural parameters of current
GALOFs determined by the applied fabrication process are still
less than perfect, which limits the image quality. Moreover, to
achieve a decent transferred image quality, the image plane
needs to be located in the direct vicinity of the GALOF’s input
facet. Thanks to the recently burgeoning deep learning
technology,” it is possible to address these challenges and
create a fully flexible and lensless FOEs that delivers artifact-
free, high quality images by combining GALOFs with deep
learning algorithms. Deep learning is a recent rapidly growing
research field that has already being applied to solve numerous
imaging-related problems.”* > Contrary to conventional
methods of solving the imaging optimization problem, the
CNN can learn the forward operator and the regularizer
implicitly through a training process without requiring prior
knowledge of them. For example, to describe the image
reconstruction process, we could assume that the object
intensity image Iy, and the fiber-transported raw intensity
image I,,,, are related by I, = HIy,, where H denotes the
forward operator connecting the input object image and the
measured raw image. To reconstruct the object I, one way is
to solve an optimization problem of the form:

I, =argminllHI, — Irawll2 + yp(l..)
I

(1)

where @ is the regularizer encoding the prior knowledge of the
object, and y is the regularization parameter that adjusts the
relative strength of the two terms in the optimization
process.””** The problem of this method is that it requires
precise knowledge of H and proper selection of ¢. For the
transmission through our complex disordered imaging fiber, it
is very difficult to develop an accurate physics model of this
type, and the simulation process requires huge computational
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power.”" And deep learning demonstrates its superiority since
it does not require prior knowledge and just needs the
computational power of a PC for this work.

Here, we apply a particular type of deep neural network,
called a convolutional neural network (CNN), to address the
challenges facing GALOF-based FOEs. We demonstrate that
an imaging system combining a CNN and a GALOF does not
need any distal optics to transport 2D imaging information at
various working distances. Therefore, the diameter of the
FOEs could be reduced to the diameter of the fiber itself.
Besides that, the imaging quality is improved by the CNN to
the artifact-free level. Moreover, by combing the bending-
independent properties of the GALOF with CNN based
reconstruction, meter-long distance fully flexible imaging
transportation is achieved.

The experimental setup is shown in Figure 1. The GALOF
used here was fabricated at CREOL using fused-silica tubes
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Figure 1. Schematic of the experimental setup.

and the stack-and-draw fabrication method.”” The diameter of
the random structure is about 278 ym, and the air-hole-filling
fraction in the random structure is approximately 28.5%. The
total length of the GALOF is 90 c¢m, and the spatial resolution
provided by this sample is about 14 um, see section 1 in
Supporting Information. Using a shorter 4.5 cm long sample,
the resolution can be improved to about 8 ym.

For our object generation we use 405 nm laser light that is
delivered by a single mode fiber and collimated by a lens (50
mm focal length). A spatial light modulator (SLM) is located
in between two linear polarizers to create an intensity object
using its individual pixels. The light goes through the first
polarizer oriented at 45° with respect to the extraordinary axis
of the SLM. After reflection from SLM, the beam transmits
through the second polarizer with the same polarization
orientation as the first one. The SLM pixel size is 9.2 X 9.2
um?, and the number of pixels is 1920 X 1152. The SLM is
modulated by 8-bit grayscale input images obtained from the
Modified National Institute of Standards and Technology
(MNIST) database of handwritten digits. The images created
with the SLM were resized to a matrix of 56 X 56 pixels.
Subsequently, the SLM images were demagnified by a factor of
4 and projected onto the GALOF input facet by the
combination of a tube lens and a 4X objective. At the output
end of the GALOF the fiber facet is projected onto a CCD
camera (Manta G-145B) by a 20X objective. The CCD pixel
size is 6.45 X 6.45 ym?* and the number of pixels is 1388 X
1038. We crop the collected raw images to an 896 X 896
square for processing.

DOI: 10.1021/acsphotonics.8b00832
ACS Photonics 2018, 5, 3930—3935


http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00832/suppl_file/ph8b00832_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00832/suppl_file/ph8b00832_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.8b00832

ACS Photonics

The CNN requires a training process to generate a
computational architecture that accurately maps the images
transported by the optical fiber to its original objects. Training
of the CNN requires a large number of matched input (images
of original objects) and output (the transported raw images)
pairs to optimize the parameters of the neural network and
build a suitable computational architecture. In addition, a
separate set of image pairs serves as a test set to evaluate the
performance of the trained CNN. When collecting data, we
first send 4000 different images to the SLM and record the
corresponding raw intensity images with the CCD camera.
These 4000 image pairs, originally generated by the SLM and
their corresponding CCD-recorded raw images, are used as the
training set. Using the same setup, we collect another 500 pairs
of different images that serve as our test set for the image
reconstruction analysis.

The schematic of our CNN training and image reconstruc-
tion process is shown in Figure 2. Please see section 2 in
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Figure 2. Schematic of the training and reconstruction process using a
deep convolutional neural network.

Supporting Information for the detailed architecture of our
CNN. In the training phase (with randomly initialized
parameters), a set of raw images are sent into the CNN to
obtain defective output images. The CNN is trained by
optimizing its parameters through minimizing the loss function
between these defective output images and their corresponding
input images. This training procedure takes about 38 min using
two GPUs (NVIDIA GeForce 1080Ti). After the training, the
parameters of our CNN are fixed, and the CNN is applied to
reconstruct new images from the raw images of our test set.
The bottom part of Figure 2 demonstrates that the trained
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CNN can be used to obtained high quality artifact-free
reconstructed images from our test set raw images. The
reconstruction time is only 4 ms for each test image. This
shows the potential to perform in vivo video-rate real-time
reconstruction of moving samples such as cells or neurons. To
quantify the performance of the CNN, we compare the
reconstructed images with the corresponding input images by
the mean absolute error (MAE) method. The MAE is defined
as Il — Lyyl/ (wh), where w and h are the width and height of
the image.

As a next step, we investigate how bending of the fiber
influences our image reconstruction ability. As shown in the
bottom part of Figure 2, and later in more detail in Figure 4,
the same CNN, trained using straight GALOF, can be applied
to reconstruct images transferred through both straight
GALOF and GALOF with a 90° bend with high fidelity.
This is in striking contrasts to image reconstruction using the
TM method after transmission through MMF. As stated
earlier, any slight movement or bending of the MMF requires
recalibration of the TM. In addition, any recalibration requires
access to the distal end of the fiber prohibiting monitoring of
freely behaving subjects using the TM method and MMF for
image transfer. In our approach, a trained CNN can be applied
to reconstruct high quality images from raw images after
transfer through bent GALOF in real time and without any
retraining or any knowledge about the bending shape even for
very large fiber bending angles.

Examples of reconstruction results from raw images
measured after transport through straight GALOF are shown
in Figure 3. The data shown in Figure 3a—c are collected at
different imaging depths, that is, at different distances between
the GALOF input facet and the imaging plane, ranging from 0
to 4 mm. The general CNN architecture used for
reconstruction at the three different depths is the same.
However, the CNNs are trained for each depth individually
resulting in depth specific CNN parameters. Comparing input
images and the corresponding reconstructed images, it is
apparent that our trained CNNs are able to recover the true
images remarkably well. Moreover, the imaging plane of our
system is not limited to a specific depth. Without extra distal
end optics, for objects located between 0 and 4 mm from the
fiber facet, our system can perform high quality image
transportation and reconstruction. We also demonstrate
reconstruction results of ten different writing styles of the
same number at three different depths, see section 4 in
Supporting Information. Although the objects from the
MNIST database used in Figure 3 and Figures S5—S7 are
relatively simple, there should be no limitations on the
complexity of the objects for the imaging system to perform
well. Imaging of more complex objects, such as biological
tissue, is part of ongoing research but is beyond the scope of
this proof-of-concept work. An object distance of 4 mm
represents an order of magnitude improvement compared to
recently reported MMF-based imaging.’ Being able to “see”
objects at considerable distance from the fiber facet without
any imaging elements will reduce the size of the imaging device
to the diameter of the fiber itself. Therefore, endoscopes based
on our system can be operated in a minimally invasive manner
dramatically decreasing the risk of damage, for instance, to
human organs. This is also important in in vivo studies of
neural activity since there is a good chance to damage the
neurons close to the fiber tip.
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Figure 3. (a,), (b)), and (c,) are input object images from the
MNIST database; (a,), (by), and (c,) are the corresponding raw
intensity images transmitted through a 90 cm long straight GALOF
segment; (a;), (b3), and (c;) are reconstructed images from the raw
images. As illustrated in (d), (a;)—(a;) are obtained when the imaging
depth (the distance between the image plane and the GALOF input
facet) is 0 mm; (b;)—(b;) are obtained for 2 mm depth; (c;)—(c;) are
obtained for 4 mm depth. (e) Probability that the deep neural
network model can recognize correctly the imaging depth of the
object from the measured raw image. These are statistical data
obtained from the sets of 500 test samples used for the respective
distances.

We also explore the possibility of predicting the depth of an
object using the GALOF-transported raw images. For this
purpose, we introduce a CNN classification model, see section
3 in Supporting Information for more technical details. After
finishing the training process, this CNN is able to predict the
image depth within a particular depth set, here 0, 2, or 4 mm.
Although the input images corresponding to different depth
are randomly mixed, the trained CNN is able to predict the
depth of the images with remarkable accuracy, close to 100%,
see Figure 3e. We study the depth prediction capability of our
system in more detail using a separate 4.5 cm long GALOF
sample, see section 3 in Supporting Information, where we
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Figure 4. (a)=(c) Imaging reconstruction results for the same 90 cm
GALOF segment bent by 90°. (a), (b), and (c) correspond to
different image depths of 0, 2, and 4 mm, respectively. The input
images are not shown here, but they are the same as those displayed
inFigure 3. (a;), (by), and (c;) are three raw images collected after the
GALOF. (a,), (b,), and (c,) are the corresponding reconstructed
images. (d) Error analysis for both straight GALOF and bent GALOF.
Yellow and green bars correspond to the cases without and with
bending, respectively.

report the sorting of images into six depth categories ranging
from 0 to 10 mm. The averaged probability of accurately
predicting the depth is 86.29% for this short GALOF sample.
Beyond the demonstrated ability of obtaining good images of
objects that are several millimeters away from the fiber facet,
the depth prediction capability provides a first step toward the
reconstruction of images with a remarkable depth resolution.
As indicated in Figure 2, the CNN trained to reconstruct
images from straight fiber can be used directly to perform
reconstruction for bent GALOF. As is demonstrated in Figure
4, this bending independence of the GALOF/CNN imaging
system also applies to large imaging depths. Since the bending
independence is mainly due to the single-mode properties of
the transmission channels embedded in the GALOF, the
transmission should stay the same for arbitrary bent states.
Without losing of generality, we bend the GALOF by 90° and
collect the test raw imaging data for object depths of 0, 2, and
4 mm, respectively. As illustrated in Figure 4a—c, high quality
images can be recovered by feeding raw test images of low
quality into the CNN model. Please note that these raw test
images of different depth are obtained after transport through
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bent GALOF, while the CNN training was performed using
straight GALOF. For a quantitative analysis, bar graphs are
plotted in Figure 4d that show the MAE and its statistics for
test data sets of different depths transferred through straight
(yellow bars) and bent GALOF (green bars). The low test
errors for all cases suggest that our CNN has learned a model
of underlying physics of the imaging system and can generate
highly accurate results. The slightly higher test error for
bending fiber might be attributed to the experimental process
that requires movement and readjustment of the imaging setup
located at the output side of the GALOF. For MMF-based
fiber imaging, a few hundred micrometers perturbations are
already strong enough to impair the image quality. Compared
to that extreme bending-sensitivity of MMF, our system is
totally free from the impact of strong bending. This ability
would make our system an ideal candidate for a fully flexible
medical endoscope used in clinical diagnostics.

To demonstrate a broader imaging capability even for
objects belonging to different classes, we reconstruct English
letters using the same CNN model trained by a straight
GALOF and the MNIST database of handwritten digits, see
Figure 5. English letters are a member of a totally different

UCF
CREO

Figure S. Reconstruction result of English letters: (a) is the
reconstruction image; (b) is the object image. The object image is
projected into the straight GALOF facet with 0 mm depth.

domain compared to the numbers in the MNIST data set. We
pick the letters UCF (short for “University of Central Florida”)
and CREOL (short for “College of Optics and Photonics”) as
the object. The image size of the object is 112 X 200 pixels.
Limited by the size of the GALOF diameter, we have to scan
the object and stitch the subsets together to obtain the
complete images shown in Figure Sa. The comparison between
the reference and the recovered image demonstrates that our
system is able to accurately reconstruct images belonging to a
very different class. This is further strong evidence that our
CNN is an accurate estimate of the physics model. Therefore,
the imaging capability of our system generalizes well through
objects of different classes.

In conclusion, we demonstrate a fully flexible and artifact-
free fiber-based imaging system with a meter-long GALOF at
multiple working distances up to several millimeters. There are
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several fundamental aspects that set our system apart from
other approaches, most notably the bending independence of
the network training process and the large object depth that
have been achieved without the need for distal optical
elements. Our system’s tolerance to flexible bending and
long working distances will be of enormous benefit for both
basic research on biological and disease processes and practical
application in clinical diagnostics and surgical operations. As
the next step of demonstrating the potential of our imaging
system, we will replace SLM generated images with real
biological samples. Besides that, we believe that we can further
improve our deep neural network model. One future goal is to
develop an integrated model to perform depth prediction and
image reconstruction with a one-time trained network, which
would open the door for real-time image transmission and
reconstruction with depth resolution using GALOF/CNN
based imaging systems.

B METHODS

GALOF Fabrication. The GALOF is fabricated by the well-
known stack and draw method.”” Thousands of silica capillary
tubes are fabricated with different outer diameter as well as
different ratio of inner diameter (ID) to outer diameter (OD).
The OD of the silica capillaries ranges from ~100 to ~180 ym
and the ID/OD ranges from 0.5 to 0.8. The capillaries are
mixed randomly and fed into a jacket to make the perform.
Once the preform is completed, it is drawn to canes with
around 3 mm outer diameter. Subsequently, the cane is drawn
to the desired fiber size. The air-hole areas in the GALOF
range from 0.64 pm* to over 100 pm? Statistically, areas of
approximately 2.5 um® cover the largest area of the randomly
disordered region of GALOF.”” The measured attenuation at
visible wavelengths is below 1 dB per meter.

B ASSOCIATED CONTENT
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struction results at different imaging depths (PDF).

B AUTHOR INFORMATION
Corresponding Author

*E-mail: jianzhao@knights.ucf.edu.
ORCID

Jian Zhao: 0000-0002-3947-4049
Author Contributions

"These authors contributed equally.

Notes
The authors declare no competing financial interest.

B REFERENCES

(1) Flusberg, B. A.; Cocker, E. D.; Piyawattanametha, W.; Jung, J. C.;
Cheung, E. L.; Schnitzer, M. J. Fiber-optic fluorescence imaging. Nat.
Methods 2005, 2 (12), 941-50.

(2) Koenig, F.; Knittel, J.; Stepp, H. Diagnosing Cancer in Vivo.
Science 2001, 292 (5520), 1401.

DOI: 10.1021/acsphotonics.8b00832
ACS Photonics 2018, 5, 3930—-3935


http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsphotonics.8b00832
http://pubs.acs.org/doi/abs/10.1021/acsphotonics.8b00832
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00832/suppl_file/ph8b00832_si_001.pdf
mailto:jianzhao@knights.ucf.edu
http://orcid.org/0000-0002-3947-4049
http://dx.doi.org/10.1021/acsphotonics.8b00832

ACS Photonics

(3) Yelin, D.; Rizvi, L; White, W. M.; Motz, J. T.; Hasan, T.; Bouma,
B. E.; Tearney, G. J. Three-dimensional miniature endoscopy. Nature
2006, 443, 76S.

(4) Szabo, V.; Ventalon, C; De Sars, V.; Bradley, J.; Emiliani, V.
Spatially Selective Holographic Photoactivation and Functional
Fluorescence Imaging in Freely Behaving Mice with a Fiberscope.
Neuron 2014, 84 (6), 1157—1169.

(5) Ohayon, S.; Caravaca-Aguirre, A.; Piestun, R; DiCarlo, J. J.
Minimally invasive multimode optical fiber microendoscope for deep
brain fluorescence imaging. Biomed. Opt. Express 2018, 9 (4), 1492—
1509.

(6) Ducourthial, G.; Leclerc, P.; Mansuryan, T.; Fabert, M.; Brevier,
J.; Habert, R.; Braud, F.; Batrin, R.; Vever-Bizet, C.; Bourg-Heckly, G.;
Thiberville, L.; Druilhe, A.; Kudlinski, A.; Louradour, F. Development
of a real-time flexible multiphoton microendoscope for label-free
imaging in a live animal. Sci. Rep. 2016, S, 18303.

(7) Barankov, R; Mertz, J. High-throughput imaging of self-
luminous objects through a single optical fibre. Nat. Commun. 2014,
S, S581.

(8) Reichenbach, K. L; Xu, C. Numerical analysis of light
propagation in image fibers or coherent fiber bundles. Opt. Express
2007, 15 (S), 2151-2165.

(9) Stone, J. M.;; Wood, H. A. C.; Harrington, K; Birks, T. A. Low
index contrast imaging fibers. Opt. Lett. 2017, 42 (8), 1484—1487.

(10) Cizmar, T.; Dholakia, K. Shaping the light transmission through
a multimode optical fibre: complex transformation analysis and
applications in biophotonics. Opt. Express 2011, 19 (20), 18871—
18884.

(11) Caravaca-Aguirre, A. M,; Niv, E;; Conkey, D. B.; Piestun, R.
Real-time resilient focusing through a bending multimode fiber. Opt.
Express 2013, 21 (10), 12881—12887.

(12) Cizmar, T.; Dholakia, K. Exploiting multimode waveguides for
pure fibre-based imaging. Nat. Commun. 2012, 3, 1027.

(13) Choi, Y.; Yoon, C.; Kim, M.; Yang, T. D.; Fang-Yen, C.; Dasari,
R. R; Lee, K. J.; Choi, W. Scanner-Free and Wide-Field Endoscopic
Imaging by Using a Single Multimode Optical Fiber. Phys. Rev. Lett.
2012, 109 (20), 203901. 5

(14) Ploschner, M.; Tyc, T.; Cizmar, T. Seeing through chaos in
multimode fibres. Nat. Photonics 2015, 9 (8), 529—535.

(15) Schwartz, T.; Bartal, G.; Fishman, S.; Segev, M. Transport and
Anderson localization in disordered two-dimensional photonic
lattices. Nature 2007, 446 (7131), 52—S5S.

(16) Karbasi, S.; Mirr, C. R.; Yarandi, P. G.; Frazier, R. J.; Koch, K.
W.; Mafi, A. Observation of transverse Anderson localization in an
optical fiber. Opt. Lett. 2012, 37 (12), 2304—2306.

(17) Karbasi, S.; Frazier, R. J.; Koch, K. W.; Hawkins, T.; Ballato, J.;
Mafi, A. Image transport through a disordered optical fibre mediated
by transverse Anderson localization. Nat. Commun. 2014, S, na.

(18) Mafi, A. Transverse Anderson localization of light: a tutorial.
Ady. Opt. Photonics 2015, 7 (3), 459—515.

(19) Ruocco, G.; Abaie, B.; Schirmacher, W.; Mafi, A.; Leonetti, M.
Disorder-induced single-mode transmission. Nat. Commun. 2017, 8,
14571.

(20) Abaie, B.; Mobini, E.; Karbasi, S.; Hawkins, T.; Ballato, J.; Mafi,
A. Random lasing in an Anderson localizing optical fiber. Light: Sci.
Appl. 2017, 6, e17041.

(21) Zhao, J.; Antonio-Lopez, J. E.; Correa, R. A.; Mafi, A.; Windeck,
M.; Schiilzgen, A. Image Transport Through Silica-Air Random Core
Optical Fiber, Conference on Lasers and Electro-Optics, San Jose,
California, 2017/05/14; Optical Society of America: San Jose, CA,
2017; p JTuSA91.

(22) Zhao, J; Lopez, J. E. A; Zhu, Z.; Zheng, D.; Pang, S.; Correa,
R. A,; Schiilzgen, A. Image Transport Through Meter-Long Randomly
Disordered Silica-Air Optical Fiber. Sci. Rep. 2018, 8 (1), 3065.

(23) LeCun, Y,; Bengio, Y.; Hinton, G. Deep learning. Nature 2015,
521 (7553), 436—44.

(24) Dong, C.; Loy, C. C.; He, K; Tang, X. Image Super-Resolution
Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach
Intell 2016, 38 (2), 295—307.

3935

(25) Sinha, A.; Lee, J.; Li, S.; Barbastathis, G. Lensless computational
imaging through deep learning. Optica 2017, 4 (9), 1117—1125.

(26) Rivenson, Y.; Gorocs, Z.; Giinaydin, H.; Zhang, Y.; Wang, H.;
Ozcan, A. Deep learning microscopy. Optica 2017, 4 (11), 1437—
1443.

(27) Schlemper, J.; Caballero, J.; Hajnal, J. V.; Price, A. N.; Rueckert,
D. A Deep Cascade of Convolutional Neural Networks for Dynamic
MR Image Reconstruction. IEEE Trans Med. Imaging 2018, 37 (2),
491-503.

(28) Rivenson, Y.; Ceylan Koydemir, H; Wang, H.; Wei, Z.; Ren,
Z.; Giinaydin, H.; Zhang, Y.; Gorocs, Z.; Liang, K; Tseng, D.; Ozcan,
A. Deep Learning Enhanced Mobile-Phone Microscopy. ACS
Photonics 2018, 5, 2354.

(29) Sun, Y,; Yuan, X; Pang, S. High-speed compressive range
imaging based on active illumination. Opt. Express 2016, 24 (20),
22836—22846.

(30) Sun, Y,; Yuan, X; Pang, S. Compressive high-speed stereo
imaging. Opt. Express 2017, 25 (15), 18182—18190.

(31) Karbasi, S.; Mirr, C. R;; Frazier, R. J.; Yarandi, P. G.; Koch, K.
W.; Mafi, A. Detailed investigation of the impact of the fiber design
parameters on the transverse Anderson localization of light in
disordered optical fibers. Opt. Express 2012, 20 (17), 18692—18706.

DOI: 10.1021/acsphotonics.8b00832
ACS Photonics 2018, 5, 3930—3935


http://dx.doi.org/10.1021/acsphotonics.8b00832

