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1.  Introduction

X-ray diffraction (XRD) is a material-specific probe at molecular level. Due to the high penetration depth 
of x-ray beam, XRD is especially suitable for analyzing thick samples in applications including solving the 
crystalline structure (Schroer et al 2006, Schaff et al 2015), detecting low-concentration chemical substances 
(Bleuet et al 2008, Valentini et al 2011, Sottmann et al 2017), and more recently, diagnosis of structural defects in 
bones, prosthetic implants (Stock et al 2008, Mochales et al 2011), or disease-related anomaly in soft tissues (He 
et al 2017, Moss et al 2017). For heterogeneous object on the centimeter scale or larger, resolving the XRD profile 
of individual sample voxels requires a combination of XRD measurement and computed tomography (CT) 
(Harding et al 1987), which captures the XRD signals under different projections and is termed x-ray diffraction 
tomography (XDT). However, because of the weak XRD signal, XDT scan is typically conducted with a high-
brilliance synchrotron source (Kleuker et al 1998, Schroer et al 2006, Bleuet et al 2008, Stock et al 2008, Jensen et al 
2011), which hinders its adoption in industrial and medical applications. A number of XDT systems based on 
x-ray tubes have been demonstrated using collimators on either the source side or detector side (Westmore et al 
1997, Delfs and Schlomka 2006, Harding 2009), but a full scan on an object of ~20 mm in diameter involves tens 
of hours of imaging time, and delivers a high radiation dose to the sample.
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Abstract
X-ray diffraction tomography (XDT) resolves spatially-variant XRD profiles within macroscopic 
objects, and provides improved material contrast compared to the conventional transmission-
based computed tomography (CT). However, due to the small diffraction cross-section, XDT 
suffers from long imaging acquisition time, which could take tens of hours for a full scan using a 
table-top x-ray tube. In medical and industrial imaging applications, oftentimes only the XRD 
measurement within a region-of-interest (ROI) is required, which, together with the demand to 
reduce imaging time and radiation dose to the sample, motivates the development of interior XDT 
systems that scan and reconstruct only an internal region within the sample. The interior problem 
does not have a unique solution, and a direct inversion on the truncated projection data often leads 
to large reconstruction errors in ROI. To reduce the truncation artifacts, conventional attenuation-
based interior reconstruction problems rely on a known region or piecewise constant constraint 
within the ROI. Here we propose a quasi-interior XDT scheme that incorporates a small fraction 
of projection information from the exterior region to assist ROI reconstruction. In the phantom 
simulation, a small amount (17% of exterior region) of added exterior projection data improves the 
reconstruction quality by ~50%. The addition of exterior samplings in the experiment demonstrates 
improved spatial and XRD profile reconstructions compared to total-variation-based reconstruction 
or sinogram extrapolation. We expect our quasi-interior XDT to obviate the requirement on prior 
knowledge of the object or its support, and to allow the ROI reconstruction to be performed with the 
fast, widely-used filtered back-projection algorithm for easy integration into real-time XDT imaging 
modules.
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In biomedical studies or industrial inspections, XDT is ideal for a secondary scan, in which only the material 
composition within an ROI is desired (Harding and Schreiber 1999, Harding 2004). For these applications, inter
ior XDT limits the projection measurement to the ROI region to reduce the imaging time and excessive radiation 
dose outside ROI, and provides comparable material specificity as a full XDT scan (Zhu et al 2018). Similar to 
the interior problem in CT, interior XDT also requires prior knowledge about the object, either in the form of 
a known sub-region (Kudo et al 2007, Jin et al 2012) or piecewise constant constraint (Wang and Yu 2009, Yang 
et al 2010), to stabilize the ROI reconstruction. However, knowing the in situ XRD profile of a small region within 
the whole sample is not possible in XDT. Piecewise constant constraint could be a feasible prior for interior XDT, 
yet it is not generally applicable to samples with fine features or with a high scattering density gradient. Based 
on the non-localized filtered back-projection used in XDT reconstruction, here we introduce a small fraction of 
projection measurement in the exterior region to stabilize the ROI reconstruction. The combined interior and 
exterior information provides an alternative approach to the existing interior reconstruction techniques that 
require prior knowledge of the sample.

2.  Theory

2.1.  X-ray diffraction tomography (XDT)
The pencil-beam XDT system (figure 1) illuminates the sample with a collimated, narrow-band x-ray beam. 
Upon interacting with the sample, the scattering mechanism of x-ray photons falls into two major categories, 
Compton incoherent scattering and Rayleigh coherent scattering. In coherent scattering, scattered photons 
maintain the same energy but are deflected towards a different direction away from the incident direction. Under 
small scattering angles, coherent scattering is the dominant scattering process (Johns and Yaffe 1983) that gives 
rise to the XRD signature of the material. The number of diffracted photons dI in the direction θs from a volume 
dV  is determined by the scattering geometry and molecular form factor

dI = I0
r2

e

2
(1 + cos2θs) f (r, q)dΩdVdq,� (1)

where I0 is the intensity of the incident beam; θs is the angle between incident and scattered radiation, and 

cos θs ≈ 1 for small angles; dΩ = ∆2/(r2 + (l − t)2
) is the solid angle covered by the detector pixel with size 

∆ located at distance r away from the pencil beam, and l is the distance between the rotation center and detector 
plane. The scattering volume dV = Adt , where A is the cross-section area of the pencil beam; t is the depth of 
scatter along the pencil beam. f (x, z, q) = n (x, z) F2(x, z, q) is the product between the density of the scatter 
n(x, z) and the molecular form factor F(x, z, q). The momentum transfer q that causes the deflection of photons 
with energy E and scattering angle θs is defined by the Bragg’s law

q = E/hc sin (θs/2) ,� (2)

where h and c represent Plank’s constant and speed of light, respectively; E is the energy of the incident x-ray.
We can introduce a series of first-order approximations to equation (2) that relates XDT to a volumetric 

tomography reconstruction problem (Zhu et al 2018). At small diffraction angles, sin(θs/2) ≈ r/(2(l − t)). 
Given that the distance from the rotation center to the detector, l, is much larger than the size of the sample, the 
Taylor expansion on the 1/(l − t) terms around t = 0 simplifies the Bragg’s law in equation (2) to

q =
Er

2hcl
(1 +

t

l
).� (3)

Equation (3) describes the momentum transfer probed by the detector pixel located at a distance r away from 
the pencil beam. The intensity on the detector is a multiplexed measurement of the XRD signals along the pencil 

Figure 1.  Geometry of pencil-beam XDT. The red, dashed circle marks the ROI.
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beam. To resolve the complete object function, f (x, z, q), the sample needs to be translated across the beam by the 
distance s in the (x, z) plane, and rotated around the vertical axis by the angle φ similarly to that in a pencil-beam 
CT. The total number of photons collected by a detector pixel under sample offset s and projection angle φ is

I(r, s)φ = Cw(r)

ˆ

Γ

f (sΘ̂ + tΘ̂⊥ + tanαr

(
1 +

t

l

)
q̂)dt,� (4)

where C = I0Ar2
e is a constant proportional to the source intensity; “Θ = (cosφ, sinφ, 0) and 

“Θ⊥ = (− sinφ, cosφ, 0) are the directional vectors parallel and perpendicular to the incident x-ray beam 

in the x-z plane, respectively; q̂ = (0, 0, 1) is the unit vector along the momentum transfer dimension; 
w (r) = ∆2/(r2 + l2) is a weight to account for the decay of the scattering signal.

2.2.  Interior XDT reconstructions
Equation (4) implies that the integral is performed along the line Γ in the (x, z, q) domain with slope 
tanαr = Er/(2hcl), where αr  is the angle with respect to the mid-plane (q  =  0). Figure 2 illustrates a family of 
XDT projection lines with r as a parameter, which, combined with sample translation, form a series of parallel, 

vertical fan-beam projections of the object f (x, z, q) onto the virtual detector plane (s, r)φ at rotation angle φ. 
The XDT reconstruction follows a filtered back-projection modified from the Feldkamp–Davis–Kress algorithm 
(Feldkamp et al 1984) (modified-FDK, for short), in which the back-projection is performed along diverging 
lines in the z-q plane, and parallel lines in the x-z plane.

2.2.1.  Addition of low-resolution exterior projections

Let a1(φ), a2(φ) denote the two ends of the object support at each projection angle, such that I(r, s)φ = 0 if 
s < a1(φ) or s > a2(φ). Let b1(φ), b2(φ) denote the boundary of ROI region, within which the pencil-beam scan 
is performed at each projection angle. For interior XDT scan, equation (4) becomes

I(r, s)φ = Cw(r)

ˆ a2(φ)

t=a1(φ)

f (sΘ̂ + tΘ̂⊥ + tanαr

(
1 +

t

l

)
q̂)dt, b1(φ) � s � b2(φ),� (5)

which indicates that interior XDT detects the same range of scattering angles and the number of projections as 
a conventional pencil-beam XDT, except that only the ROI region of the sample is scanned. Analogous to the 
conversion between fan-beam CT and parallel-beam CT (Lavrov and Simonov 2010), the projection lines in the 
parallel fan-beam geometry can be rearranged to a half-cone-beam projection of (x, z, q) onto the virtual detector 

plane (s, r)φ at each projection angle. Therefore interior XDT is equivalent to a transversely-truncated cone-
beam CT. Inspired by the truncated cone-beam CT reconstruction frameworks (Van Gompel et al 2004, Xiao 
et al 2007), which combine LR full field-of-view (FOV) scans with high magnification, ROI-only projections, our 
quasi-interior XDT introduces additional LR measurements of the exterior region, and linearly interpolate the 
missing pixels between two adjacent LR samplings to form a complete sinogram with homogenous resolution 

in both ROI and exterior region. The modified-FDK then back projects the complete sinogram I(r, s)φ to the 
object domain (x, z, q) to reconstruct the full FOV, from which only the ROI region is extracted. As a comparison 
with existing interior reconstruction techniques used in conventional CT, we also reconstructed the ROI from 
truncated projection data with sinogram extrapolation and iterative total-variation regularization (IR-TV for 
short), which are detailed in sections 2.2.2 and 2.2.3, respectively.

2.2.2.  Extrapolation on truncated ROI projection
In the filtered back-projection framework, the ROI reconstruction from truncated projection data does not have 
a unique solution, since any exterior data, combined with the interior projection, can be inversed by modified-
FDK. Based on the continuity of the projection data associated with a realistic sample, it is possible to supplement 

Figure 2.  XDT projection as a series of parallel, vertical fan beams in the (x, z, q) domain.
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the missing exterior projection via a continuous extrapolation on the truncated projection from ROI boundary 
to the object support (Van Gompel et al 2006). Specifically, we extrapolate the measured interior sinogram into 
the exterior region via

I(r, s)φ =

®
c1

√
s − a1(φ), s < b1(φ)

c2

√
a2(φ)− s, s > b2(φ)

,� (6)

where c1, c2 are constants that ensures continuity across the ROI boundary, and are calculated according to



c1 =
I(r,b1(φ))φ√
b1(φ)−a1(φ)

c2 =
I(r,b2(φ))φ√
a2(φ)−b2(φ)

.� (7)

2.2.3.  Total-variation (TV) regularization
In addition to the filtered back-projection–based frameworks, iterative reconstruction that incorporates total 
variation (TV) regularization (IR-TV) to enforce the piecewise constant constraint is also widely used in interior 
problem. In the iterative reconstruction algorithm, both object f and measurement I are discretized. The system 
matrix H relating f and I is constructed from the pixels hit by each beam and the weight w(r) in equation (4). Each 
pencil-beam measurement is an independent entry in the system matrix H in IR-TV. For interior measurement, 
we limit the size of the matrix H to cover only the pencil beams passing through ROI region.

IR-TV is an optimization problem that minimizes the objective function in equation (8), which consists of a 
Poisson likelihood P(I|f) of observing the measurement I given the object f, and a TV regularizer

f̂ = argminf′ {− log P (I|f′) + τTV (f′)} ,� (8)

where the TV operator is defined as

TV(f) =
∑
i,j,k

»
(fi+1,j,k − fi,j,k)

2
+ (fi,j+1,k − fi,j,k)

2

� (9)

in which the index i and j represents the spatial dimension x and z, respectively. k represents the index in the 
momentum transfer domain. The optimization was implemented by an EM algorithm (Moon 1996) embedded 
with TV regularization (Chambolle 2004) in each iteration. The iteration terminates when the relative change 
in the objective function (equation (8)) is smaller than 10−4. The parameter τ  that yields the minimal objective 
function at the end of the iterations is selected.

3.  Materials and methods

3.1.  Simulation setup
A numerical phantom was designed to evaluate the performance of our quasi-interior XDT reconstruction based 
on the modified-FDK, and compare it with existing interior reconstruction methods. Figure 3(a) shows the 
geometric configuration of the phantom, which consists of circular regions of five different diameters, marked 
by the digit next to each circle. The smallest to the largest diameters are 0.8, 1.4, 1.8, 2.6 and 3.2 mm, respectively. 
Each region is filled with either water or Nylon, and wrapped in an 18 mm-diameter Lucite tube. The tube is filled 
with saturated fat, whose density, n(x, z), follows a Gaussian function along the radial direction. XRD profiles 
(figure 3(b)) reported in the previous works (Harding et al 1987, Kidane et al 1999) were assigned to each material 
region in the phantom. The 10 mm-diameter dashed circle in (a) marks the ROI, within which the sampling 
interval is 0.25 mm. The sampling interval outside ROI is 1.25 mm. Without losing generality, we coincide the 
center of both the Lucite tube and ROI with the rotation center, so that a1, a2, b1 and b2 are all independent on 
φ. The 180° projections were uniformly covered at 1° step size. The full field-of-view XDT measurements were 
generated by the system matrix H constructed from the distance-driven projection geometry (Siddon 1985). 
For IR-TV reconstruction, we additionally constructed a system matrix H2 that linked the object to its interior 
measurements. Figure 3(c) shows the sinogram I(s,φ)r  at r  =  10, 20 and 30 mm of the full XDT scan. The interior 
scan (d) was simulated by extracting the ROI projection from the full scan in (c). Figure 3(e) shows the modified-
FDK reconstruction from truncated sinograms, in which the artifacts on the ROI boundary are clearly visible 
(Natterer 1986, Wang and Yu 2013). The reconstruction quality is assessed by the normalized mean square error 

(NMSE), which is defined as NMSE =
∥∥∥̂fROI − f0,ROI

∥∥∥
2
/‖f0,ROI‖2

, where f̂ROI represents the reconstruction 

within ROI region, f0,ROI is the ground truth of the object in the ROI, and ‖·‖ denotes the L2-norm.

Phys. Med. Biol. 64 (2019) 025009 (9pp)
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3.2.  Experiment setup
The experiment employed a copper-anode x-ray tube (XRT60, Proto Manufacturing) operating at 45 kV and 
40 mA, which emits a characteristic spectrum peak at 8 keV. A pair of lead pinholes collimated the beam to a 
diameter of 2 mm. The sample was mounted on a rotational stage (RV1200P, Newport) to cover 180° projection 
angles with 3.6° step size. The sample consisted of three cylindrical vials filled with water, soybean oil and ethanol, 
and was wrapped inside a 27 mm-diamter, 1 mm-thick Teflon tube. A circular region (11 mm in diameter) at the 
center of the sample was marked as the ROI. The sample was translated by a linear stage (UTM150CC, Newport) 
across the pencil beam with step size of 1 mm inside the ROI, and 5 mm outside the ROI. The diffracted x-ray 
was captured by a flat panel detector (1215CF-MP, Rayence) located at 120 mm away from the sample. The 
detector pixel size is 0.2 mm under 4×  binning model. We performed an azimuthal binning within a series of 
concentric, 2-pixel-wide rings to reduce each 2D image to 1D intensity profile along the radial direction. The 
central 10 mm  ×  10 mm region on the detector was covered by a lead beam stop to block the transmitted beam. 
The acquisition time for each diffraction pattern was 30 s. The total imaging time of 15 XRD patterns, 11 in the 
ROI and 4 in the exterior region, under 50 projections was ~6.5 h. This included the integration time and the 
~1 s motion and data transfer time between two pencil beam measurements. To measure the single-point XRD 
reference, the 2 mm-wide tip of each vial was scanned by the pencil beam to collect 6 XRD profiles for water, oil 
and ethanol. A CT scan of the whole sample with 0.1 mm spatial resolution under 180° projections at 1° step size 
was also performed.

3.3.  Material classification
The material classification based on the reconstructed XRD profiles was performed using support vector machines 
(SVM) (Cortes and Vapnik 1995) with Gaussian kernel. The discrete XRD profile f (q) associated with each pixel 
(x, z) was treated as a high-dimensional vector f = {fq1, fq2, . . . , fqn}. Given a set of training examples (XRD 
profiles) and their associated classes (material category), SVM draws optimal hyper-surfaces to discriminate 
high-dimensional XRD profiles into one of the 4 classes (ethanol, water, oil and background). The training set for 
each material was obtained from the six reference XRD measurements. To separate the background from three 
material classes, six randomly-sampled pixels in the gap among the vials on the reconstructed phantom were also 
included in the training set. In total, four binary SVMs were constructed to discriminate one class (either a material 
or the background) against the rests. Each SVM output a scorey(f) =

∑
i αiyik (fi, f) + bi , where yi  is the binary 

label of the training vector fi ; αi and bi are sets of trained SVM parameters; and k (u, v) = exp(−‖u − v‖2
/(2σ2)) 

represents the Gaussian kernel (with scale σ) applied to the Euclidean distance between two vectors. The class 
that yields the highest score determines the material of each ROI pixel.

Figure 3.  Simulation setup of the interior XDT system. (a) The geometric configuration of the phantom. The dashed circle 
represents the interior region. (b) XRD profile of each material in (a). (c) Full scan XDT sinograms at r  =  14, 24 and 34 mm. (d) 
Interior scan sinogram from truncating the measurement in (c). (e) Modified-FDK reconstruction from the truncated sinogram at 
q  =  0.10, 0.14 and 0.18 Å−1. The spatial profiles are plotted along the red, dashed line. The scale bar represents 5 mm.

Phys. Med. Biol. 64 (2019) 025009 (9pp)
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4.  Results and discussion

4.1.  Simulation results
We first reconstructed the ROI region without additional exterior information. Figures  4(a) and (b) show 
the measurement and reconstruction from IR-TV and sinogram extrapolation, respectively. In IR-TV, the 
reconstruction was performed directly on the truncated sinogram (figure 4(a1)) using H2. In sinogram 
extrapolation, the truncated sinogram is extrapolated to an 18 mm-diameter support, shown in figure 4(b1). 
The reconstructed spatial profiles at q  =  0.10, 0.14 and 0.18 Å−1 are shown for IR-TV (a2) and sinogram 
extrapolation (b2). The NMSE between ROI image and ground truth at these momentum transfer values are 
1.4%, 2.2% and 1.6%, respectively for IR-TV, 0.84%, 1.1% and 1.2%, respectively for sinogram extrapolation. 
The overall NMSE within ROI is 2.0% for IR-TV, 2.1% for sinogram extrapolation, for all momentum transfers. 
Both IR-TV and sinogram extrapolation can suppress the truncation artifacts found in interior reconstructions 
(figure 3(e)). It is worth noting that for the sinogram extrapolation in (b1), our simulation uses the true support 
size a1 (φ) = −a2 (φ) = 9 mm, which corresponds to the size of the Lucite tube. If wrong values for a1 and a2 
were used, the reconstruction would yield higher NMSE.

Next, we combined the truncated projections with a simulated LR scan at 1.25 mm intervals outside ROI. The 
exterior projections were linearly interpolated, shown in figure 4(c1), to match the sampling interval of the ROI. 
Figure 4(c2) shows the reconstructed spatial profiles at q  =  0.10, 0.14 and 0.18 Å−1. The NMSE between ROI 
image and ground truth are 0.36%, 1.2% and 0.66%, respectively. The overall NMSE of the ROI reconstruction is 
reduced to 1.1%, almost half of the overall NMSE without exterior sampling. Figures 4(d1)–(d3) plot the recon-
structed image profile along the red, dashed line at q  =  0.10, 0.14 and 0.18 Å−1, respectively. For comparison, 
we also plot the true profiles in figure 4(d). Compared with IR-TV and sinogram extrapolation, LR exterior 
scan demonstrates the potential to simultaneously preserve spatial features and reduce the artifact, without 
knowing the support size. We speculate that the poor contrast between Nylon and the surrounding fat region at  
q  =  0.14 Å−1 (figure 4(d2)) is due to the blurring with the 0.13 Å−1 XRD peak of Nylon. This blurring, arising 
from the tilted projection in the z-q plane, is consistent with the CT cone-beam artifacts, which introduce shad-
ing and streaking to the volume near a high-density region (Hsieh 2000).

4.2.  Experiment results
The structural diagram and the CT image of the phantom analyzed by our system are shown in figures 5(a1) 
and (a2). The dashed circle marks the ROI region for the interior XDT scan. On the CT image (figure 5(a2)), the 

Figure 4.  Comparison between interior XDT reconstructions without and with additional LR exterior information in the 
simulation. (a) IR-TV reconstruction: (a1) truncated sinograms for IR-TV reconstruction; (a2) reconstructed spatial profile 
from IR-TV. Scale bar represents 5 mm. (b) Sinogram extrapolation: (b1) extrapolated sinogram to the phantom size (18 mm-
diameter); (b2) reconstructed spatial profile from sinogram extrapolation. (c) ROI reconstruction with LR exterior samplings: (c1) 
interpolated sinogram with 1.25 mm exterior sampling interval; (c2) reconstructed spatial profile from LR exterior scan. (d1)–(d3) 
Image profiles along the red, dashed line in (a2) for q  =  0.10, 0.14 and 0.18 Å−1. The blue, red, green and black curves represent ROI 
reconstruction from sinogram extrapolation, IR-TV, LR exterior sampling and ground truth, respectively.

Phys. Med. Biol. 64 (2019) 025009 (9pp)
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average grayscale value (normalized to maximum) within oil and ethanol regions are 0.17  ±  0.03 and 0.19  ±  0.03, 
respectively. The contrast between these two materials is comparable with the fluctuation in the reconstructed 
image, which renders them indistinguishable on CT. XDT reconstructions (figures 5(b) and (c)) were performed 
using the three ROI reconstruction methods in section 2. The sampling grid for all the reconstructions is 1 mm in 
the spatial domain, (x, z), and 0.005 Å−1 in the momentum transfer domain, q. The reconstructed ROI regions are 
displayed at three momentum transfer values q  =  0.8, 0.12 and 0.16 Å−1. Figures 5(b1)–(b3) show the processed 
sinograms at r  =  10, 20 and 30 mm, corresponding to sinogram extrapolation (b1), IR-TV (b2) and LR exterior 
scan (b3). In figure 5(b1), the truncated sinogram is extrapolated to 27 mm-diameter support, which is the actual 
size of the phantom. Figures 5(c1) and (c2) show that both IR-TV and sinogram extrapolation to the actual 
sample size can alleviate the truncation artifact. Due to the use of TV regularization in (c2), ethanol and water 
contrast less with the surroundings than those in (c1) and (c3), and the plastic vial containing water is invisible in 
q  =  0.08 Å−1. Figure 5(c3) shows the reconstruction with LR exterior samplings from the interpolated sinogram 
(b3). The average grayscale at 0.08 Å−1 (normalized to maximum) is 0.91  ±  0.07 within the oil region, and 
0.66  ±  0.08 within the ethanol region. The higher intensity of oil at q  =  0.08 Å−1 clearly distinguishes it from 
methanol, and agrees with its larger molecular form factor (Chantler 1995).

The mean and standard deviation of the reconstructed XRD profiles within water, ethanol and oil regions 
are plotted in figure 6(a). The primary scattering peaks measured by our system are located at 0.12 Å−1 for water, 
and 0.077 Å−1 for oil, which are both lower than previous XRD measurements (Kosanetzky et al 1987) by a fac-
tor of 0.7 due to the beam-hardening effect on the low-energy spectrum, a phenomenon that is also observed in 
Kidane et al (1999) and Zhu and Pang (2018). The XRD profiles reconstructed from LR exterior scan, IR-TV and 
sinogram extrapolations are compared in (a1)–(a3). To quantify and compare the material specificity among 
different interior XDT schemes, we performed SVM classifications in figure 6(b). The reference XRD measure-
ments of each material define the boundary of each material classifier, as shown in figures 6(b1)–(b3). For illus-
tration purposes, the XRD profile of every pixel in the ROI is represented by a dot in the 2D space, which is 
spanned by the first two principal components (ξ1, ξ2) obtained from the principal component analysis. The 
insets in figures 6(b1)–(b4) show the material map of the ROI in each scenario. Among all the pixels in the ROI 
region, 3.5% (extrapolation), 0.8% (IR-TV), and 2.6% (LR-exterior) are misclassified in (b1)–(b3), respectively. 
The sinogram extrapolation shows higher classification error than LR exterior scan. In real applications involv-
ing irregular-shaped sample, determining the support under every projection angle without additional scan is 
impossible, which could further increase the classification error in sinogram extrapolation. The TV regularizer, 
though having high material specificity, could reduce the contrast of high-frequency features in complicated 
sample structures.

Figure 5.  Comparison between the XDT reconstruction on an experimental phantom with and without exterior information. 
(a) Diagram (a1) and CT image (a2) of the phantom. The dashed circle marks the ROI region. (b) XDT sinograms at r  =  10, 20 
and 30 mm corresponding to: (b1) extrapolated sinogram to the 27 mm phantom size, (b2) pure interior projection for IR-TV 
reconstruction, (b3) interior projection combined with interpolated LR exterior scan. (c) Reconstructions at q  =  0.08, 0.12 and  
0.16 Å−1 from (b1)–(b3). All reconstructions are performed with modified-FDK except (c2), which is reconstructed with IR-TV.  
The scale bars in (a) and (c3) both represent 5 mm.

Phys. Med. Biol. 64 (2019) 025009 (9pp)
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5.  Conclusion

In summary, we have demonstrated a quasi-interior XDT system that combines a LR exterior scan to reconstruct 
the ROI region from limited projection information. We have compared our method with existing interior 
tomography schemes that rely either on piecewise constant constraints (IR-TV) or knowledge on the support 
size (sinogram extrapolation) in terms of their reconstructed spatial and scattering profiles in ROI. Although IR-
TV, proper sinogram extrapolation and LR exterior scan all suppress the truncation artifacts and provide good 
material discrimination based on the reconstructed XRD profile, the proposed method preserves the complicated 
features in the sample, and obviates the knowledge on the size of the object support, thus providing a more 
general ROI measurement and reconstruction framework for XDT. In addition, the modified-FDK algorithm 
in our quasi-interior XDT framework is faster and requires less memory than iterative algorithms. Currently 
the hour-long imaging time is due to the weak XRD signal, and the necessity to overcome the dark noise on the 
panel detector. The use of photon-counting detector array could further shorten the imaging time to the order 
of minutes. In the future, we plan to adaptively select the exterior regions based on the ROI location and shape 
to further reduce unnecessary imaging time and radiation damage. We expect our quasi-interior XDT scheme, 
combined with photon-counting detectors, to find applications in ex vivo biomedical and pathological studies.
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