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ABSTRACT 
To advance the science of high power fiber lasers, in-house drawn specialty optical fibers are investigated. Ongoing 
research involves the fabrication and testing of Yb- and Tm-doped fibers at 1µm and 2µm. Using specialized fiber and 
pump mixing geometries, dopant profiles and system configurations, the performance of our in-house drawn active 
fibers has been examined. Results on a highly multi-mode, high average power pulsed Raman fiber amplifier pumped by 
a thin disc laser are presented.  The Raman fiber is a large mode-area graded index fiber, also drawn in house. Finally, 
the development of capabilities for kilometer range propagation experiments of kW-level CW and TW-level pulsed 
lasers at the TISTEF laser range is reported. 
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1. INTRODUCTION 
Over the past two decades, the average power output of fiber lasers has increased tremendously. State of the art systems 
utilizing Yb-doped fibers now provide diffraction limited output at the multi-kW level. However, further power scaling 
is currently hindered by a nonlinearity known as transverse modal instability (TMI). As this phenomenon is dependent 
on the average power and thermal load, high power fiber lasers and amplifiers quickly run into this issue in the 1-5 kW 
regime. Recent works have explored potential mitigation strategies for modal instability including bend induced loss and 
differential modal loss inside the fiber gain medium. However, to engineer diffraction-limited systems up to and beyond 
10 kW, new strategies are necessary. Recent theoretical work has shown that the modal instability threshold increases as ߣଶ which suggests that moving to longer wavelengths with Tm-doped fibers may be advantageous.  Raman fiber 
amplifiers also present a novel technique for generating kW-class systems, although the effects of TMI in these systems 
has yet to be identified.  Currently, we have ongoing work regarding each of these three fiber laser platforms. This 
manuscript summarizes our recent experimental work on 1 µm, 2 µm, and Raman fiber lasers. 
 
Besides the development of new laser sources, the recent acquisition of space at the Townes Institute Science and 
Technology Experimentation Facility (TISTEF) allows for the study of laser propagation at long range.  TISTEF 
includes a 1 km laser range, outfitted with a full suite of diagnostics, along with a fully equipped laser laboratory and 
infrastructure. 

2. YTTERBIUM FIBER DEVELOPMENT 
In this study, we explore the optical performance of an in-house drawn, low-numerical aperture (NA) Yb:fiber.  This 
fiber consists of a specialty all-glass pump cladding to confine the pump light and provide efficient mode-mixing and 
pump absorption.  This all glass pump cladding is extremely robust and alleviates issues associated with low-index 
polymer pump claddings. Overall, an output of 578 W is obtained with 81.6 % slope efficiency at 1061 nm.  This system 
was limited only by the fiber length and available pump power, indicating excellent potential for future power scaling. 
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Low-NA Yb:fiber Design and Performance 
The Yb:fiber used in this experiment was an in-house drawn, low-NA Yb-doped fiber.  This fiber had a 22 μm core 
diameter and a 430 μm specialty, all-glass pump cladding with NA of ~0.22 and 660 μm total outer diameter.  The core 
is doped with 0.1 mol% Yb2O3 and 1.5 mol% Al2O3, providing a core numerical aperture (NA) of 0.048.  The measured 
refractive index profile of the fiber is shown in Fig. 1 displaying excellent index uniformity across the core. 
 

 
Figure 1:  Measured refractive index profile across the core region of the low-NA fiber. 

 
The amplifier setup, shown in Fig. 2, consisted of a 12 m piece of the low-NA fiber.  The fiber was mounted on a custom 
fabricated 40 cm outer diameter mandrel to prevent thermal failure of the polymer.  The amplifier was pumped at 976 
nm up to 900 W by a 220 μm, NA=0.22 fiber delivered pump diode and seeded at 1061 nm with up to 20 W using a 
commercial single-mode fiber laser.  Dichroic mirrors were used to discriminate between the pump and signal light.  A 
total pump absorption of 7.5 dB was obtained, corresponding to 0.6 dB/m absorption in the 12 m fiber.  The amplified 
signal output from the amplifier was analyzed with a 1 kW, water-cooled power meter and beam profiles were obtained 
using a wedge pickoff. 
 

 
Figure 2: Experimental layout of the in-house drawn Yb:fiber amplifier.  DM - dichroic mirror. 

 
The amplifier output power and slope efficiency are shown in Fig. 3.  We experimentally obtained 580 W of signal with 
81.6% slope efficiency.  The inset in Fig. 3 shows the output beam profile, demonstrating excellent beam quality. 
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The output spectrum at 4.3 mJ and 50 kHz is shown in Figure 8.  In order to demonstrate the effect of even a very low 
power seed on output spectrum, the spectrum was recorded with and without the seed.  It is important to note that in 
order to achieve this high efficiency, the seed was spatially detuned from ideal coupling, accelerating the conversion of 
higher order modes to first Stokes.  This allows for an improvement in efficiency and total power converted to a single 
Stokes line, but at the expense of beam quality.  The maximum achieved power in the first Stokes was 1.4 mJ, 
corresponding to 70 W average power. The primary limitation to higher average power was catastrophic fiber failure due 
to light in the cladding.  In order to continue towards the full achievable pump power, a MM-GRIN with a 300 μm core 
diameter is being manufactured. 
 

 
Figure 8:  Output spectrum of Raman laser at 4.3 mJ input. 

 

5. TISTEF LASER PROPAGATION FACILITY 
In conjunction with the Wavefront Propagation Research Group at the University of Central Florida, several new 
laboratory installations are in development at the TISTEF laser range at the Kennedy Space Center.  The facility includes 
a laboratory for high power lasers, including kW class fiber lasers and 10 kW class solid state lasers; several long 
propagation ranges for tests up to 1 km, with plans for 6 km; and a full suite of meteorological measurement devices and 
laser tracking systems.  The new fiber lasers developed at CREOL will be installed and tested at extreme long range 
using the facilities at TISTEF. 
 
In addition, a mobile ultra-fast high energy laser facility (MU-HELF) has been installed there for studying the long range 
propagation of pulses undergoing filamentation.  The MU-HELF is a self-contained laboratory with a 500 mJ, 100 fs 
laser system in a class 1000 cleanroom.  It has the capability of arbitrary beam steering by way of a two axis beam 
projection and tracking system called the LOTIS, and will take advantage of the suite of diagnostics available at TISTEF 
to perform analyses on filaments at the multi-kilometer range. 
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