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Self-focusing and self-defocusing 
by cascaded second-order effects in KTP 
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We monitor the induced phase change produced by a cascaded x<2>:x<2> process in KTP near the phase-matching 
angle on a picosecond 1.06-J.Lm-wavelength beam using the Z-scan technique. This nonlinear refraction is ob­
served to change sign as the crystal is rotated through the phase-match angle in accordance with theory. This 
theory predicts the maximum small-signal effective nonlinear refractive index of n~rr == ±2 x 10-14 cm2 /W 
(±1 x 10-11 esu) for an angle detuning of ±5° from phase match for this 1-mm-thick crystal with a measured 
dcrr of 3.1 pm/V. For a fixed phase mismatch, this n~rr scales linearly with length and as derh however, for the 
maximum n2rr the nonlinear phase distortion becomes sublinear with irradiance for phase shifts near 7r/4. 

The nonlinear phase distortion that arises from 
second-order processes in noncentrosymmetric crys­
tals has recently received considerable attention. 1-

6 

Although the effective x(3
) that is due to cascading of 

x(2)(3w; 2w, w):x(2)(2w; w, w) has long been used in 
generating the third harmonic of laser beams using 
two crystals, its extension to obtain nonlinear re­
fraction through x(2l(w; 2w, -w):x(2)(2w; w, w) cas­
cading has not been fully utilized. There are two 
possible consequences of this nonlinearity for the 
fundamental beam, loss and phase distortion. The 
loss is well known and is simply due to conversion of 
the fundamental to the second harmonic. For low 
conversion efficiency this loss is nearly indistin­
guishable from two-photon absorption, thus result­
ing in an effective Im[x(3l]. The refractive effect is 
less well known and usually ignored, occurring only 
off phase matching where a portion of the frequency­
doubled light is downconverted with a shifted phase. 
Hence the net phase of the fundamental wave is 
shifted in proportion to the irradiance of the funda­
mental, which for low irradiance results in a Kerr­
like nonlinearity {an effective Re[x(3l]}. Using the 
Z-scan technique, 7 we monitor the self-action of 
1.06-p,m picosecond pulses as they propagate through 
a KTP crystal close to the phase-matching angle for 
type II second-harmonic generation8 (SHG). It is 
observed that the sign of the nonlinear phase shift 
changes from positive (self-focusing) to negative 
(self-defocusing) on angle tuning the sample from 
negative to positive phase mismatch. The sign and 
magnitude of the observed phase change agree with 
the theoretical results as obtained from the coupled­
wave equations. A primary application of a nega­
tive, fast (electronic) Kerr-like nonlinearity in the 
presence of positive group-velocity dispersion is the 
self-compression of ultrashort pulses that can be 
achieved during such a cascading process. 3 This is 

0146-95921921010028-03$5.0010 

the mechanism responsible for self-compression of 
the idler pulse during optical parametric oscillation 
in ,8-barium borate, described in Ref. 3. 

The coupled amplitude equations governing SHG 
in a noncentrosymmetric crystal as derived from 
Maxwell's equations in the slowly varying envelope 
approximation are9 

ddE~ = - i -
2 

w x(2)(2w; w, w)E1E1 exp(iAkz'), (1) 
z cn2w 

dE1 • w (2) • - = -t--x (w· 2w -w)E2E1* exp(-1-Akz') 
dz' 4cnw ' ' ' 

(2) 

where Eq. (1) describes the growth of E 2(2w) with 
depth z' in the sample, while Eq. (2) gives the evolu­
tion (depletion and phase variation) of the funda­
mental beam E1(w) during the SHG process. The 
wave-vector mismatch is Ak = k2w - 2kw = 
2w(n2wi - nJ)jc, with i andj denoting the polariza­
tion directions at frequencies 2w and w, respectively. 
In the absence of loss, the Manley-Rowe relations 
apply and x(2l(w; 2w, -w) = 2x(2)*(2w; w, w). In 
order to simplify Eqs. (1) and (2), we define the 
parameter 

f = wderciEol, 
cVn2wnw 

(3) 

where derr = lx(2)(2w; w, w)l/2 and Eo is the incident 
fundamental field. Solving for the fundamental 
beam by eliminating E2 and assuming no initial 
second-harmonic field, we obtain 

d2El . k dEl 2 I 12 
dz'2 + 1-A dz' - f (1- 2 EI/Eo )E1 = 0. (4) 

For perfect phase matching (Jlh = 0), Eq. (4) yields 
the well-known E 1 = Eo sech(fL) solution. Here 
we concentrate on the non-phase-matched solu-
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Fig. 1. Induced nonline~r phase shift versus f 2L2 for sev­
eral values of phase mismatch as calculated by the numer­
ical solution of Eq. ( 4). 
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Fig. 2. (a) Calculation of the depletion of the funda­
mental wave as a function of phase mismatch D.kL. 
(b) Experimental measurement of the depletion of the fun­
damental beam versus D.kL. (c) Calculation of nonlinear 
phase shift (D.<I>N1) as a function of D.kL; the dashed curve 
is the small conversion efficiency limit, and the solid 
curve is the exact solution of Eq. (4). (d) Experimental 
measurement of D.Tp-u as a function of D.kL as the crystal 
is rotated through its phase-matching angle. 

tion to this equation. In the small conversion effi­
ciency limit, JE1J = JEoJ, and hence E1(z') = JEoJ X 
exp[ -id<PNL(z')] for all z'. From Eq. (4), the nonlin­
ear phase change impressed onto the fundamental 
beam at the exit surface z' = Lis given by 

It is clear from relation (5) that there is a nonlinear 
phase distortion, d<PNL, on the fundamental beam 
even though depletion is assumed to be negligible. 
For large phase mismatch and/or low irradiance (!), 
JdkJ >> JrJ, and this nonlinear phase shift varies 
linearly with irradiance I, similar to an optical Kerr 
effect, 
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(6) 

where this phase shift is evaluated at z' = L. As 
the optical Kerr effect is described by n = n 0 + n2I, 
we can, by analogy, introduce an effective nonlinear 
index of refraction nirr, where d<PNL = (2TTL/A.)nicci 
and 

rr 47T L d;rr 1 
ni = -Ceo A nzwnw2 dkL. (7) 

Note that this is proportional to the usual figure 
of merit for x<2l materials, dec? jn3

• For large phase 
shifts this approximation breaks down, and Eq. ( 4) 
must be solved exactly. In Fig. 1 we show the exact 
dependence of dc/>NL on f 2L2 as calculated by a nu­
merical solution of Eq. (4) for several values of dkL 
without spatial and temporal averaging. This 
shows that for large n ire the approximation is valid 
only for small nonlinear phase shifts. 

The depletion curve ofFig. 2(a) is a plot ofJE1(z' = 
L)J 2/JE0 J2 as a function of the phase mismatch with 
no spatial or temporal integration. The data of 
Fig. 2(b) are for a 1-mm-thick hydrothermally grown 
sample of KTP, using 27-ps (FWHM), 1.06-J.Lm 
pulses, focused to a measured Gaussian waist of 
35 J.Lm (half-width at 1/e2 of maximum). The result 
for I= 9.4 GW/cm2 at dkL = 0, where the spatial 
and temporal averaging can be readily performed, 
gives a value of f 2L2 = 4.2, corresponding to deer= 
3.1 pm/V, which agrees with the results of Ref. 9. 
Owing to the large depletion observed (>50%), it is 
important to check that two-photon absorption does 
not contribute to the depletion. ~Z-scan measure­
ments of the two-photon absorption coefficient at 
532 nm yield a value of 0.1 cm/GW, which gives a 
depletion much smaller than that due to SHG. In 
Fig. 2(c), approximate and exact solutions for d<l>NL 
are shown as a function of the phase mismatch dkL, 
again with no space-time integration. 

In our initial phase-measurement experiments we 
performed closed-aperture Z scans at cf> = ±10° 
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Fig. 3. Z scans showing positive D.<I>N1 (circles) performed 
at D.kL = -6 and negative D.<I>N1 (triangles) performed at 
D.kL = +6. The positive D.<I>N1 is significantly larger 
owing to the positive contribution of n 2 (Kerr). 
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(llkL = ±27T), which correspond to minima in the 
SHG signal. These scans, 7 shown in Fig. 3, show a 
change in sign of /lcpNL in accordance with the pre­
dictions. 6 However, an asymmetry is observed, 
which indicates that there is noticeably more self­
focusing than self-defocusing. This is explained by 
the presence of the bound electronic Kerr effect, 
n2 (Kerr), which adds a positive phase distortion ir­
respective of Ilk. We measured this n 2 (Kerr) to be 
::(2.4 ± 0.5) X 10-15 cm2 /W by Z scanning with the 
beam propagating along the crystalline z axis, where 
derr = 0. This is consistent with n 2 (Kerr) obtained 
from the asymmetry shown in Fig. 3. We then 
find that n~ff = ±(1.3 ± 0.3) X 10-14 cm2 /W at I= 
26 GW/cm2 for 4> = ±10° (llkL = ±27T), where deple­
tion is minimized. Since at this irradiance, the 
nonlinearity deviates from the n ~rr approximation, 
this measured value should be somewhat lower than 
the small-signal value. The maximum n tr should 
occur at 4> = ±5° (llkL = ±3) and have a value of 
±2 X 10-14 cm2/W (±1 X 10-n esu). 

In order to obtain a plot of /lcpNL versus phase mis­
match we monitored the transmittance through a 
far-field aperture with =40% linear transmittance 
as a function of angle with the sample placed at the 
position along the beam path that gives minimum 
transmittance and repeated this with the sample 
placed at the position of maximum transmittance. 
As described in Refs. 7 and 10, the difference be­
tween the transmittance maximum and minimum 
is approximately proportional to /lcpNL. The result 
of this subtraction is shown in Fig. 2(d), where the 
measured value of n2 (Kerr) was also subtracted. 
This curve shows qualitative agreement with the 
theoretical curve for /lcpNL shown in Fig. 2(c). 

Several conclusions can be drawn from the above 
observations. While n~rr for the 1-mm sample of 
KTP can be approximately as large as that for CS2, 
this n2rr is linearly dependent on the sample thick­
ness, which permits considerably larger values. 
The maximum n 2rr occurs for a constant value of 
llkL = ±3, thus we have the linear dependence on L 
shown in Eq. (7). Also n2rr scales as the square of 
derr such that larger values will greatly enhance n 2rr. 
Thus values of ro-n cm2/W (=lo-s esu) can be ex­
pected for long, high-x<2

> materials. Clearly organics 
are of interest here owing to their large x<2

> values. 
Conceivably, organics with a derr of the order of 
100 pm/V can lead to ultrafast all-optical switching 
with low loss to the fundamental beam by using 
picojoule pulses over an interaction length of a few 
hundreds of wavelengths. However, because of the 
saturable nature of /lc.P NL, one must use caution 
when quoting n 2rr, as Fig. 1 clearly illustrates. In 
reality, it is the phase /lcpNL that is the more impor­
tant parameter, and the advantage of using this 
method of achieving nonlinear refraction will de­
pend on the particular application and the magni­
tude of /lcp NL that it requires. 

The availability of an ultrafast nonlinearity that 
can be tuned in sign opens new device possibilities. 
For example, the fast electronic negative Kerr-like 
nonlinearity in a cascading process leads to self­
compression of ultrashort pulses in the presence of 
positive group-velocity dispersion. This mecha­
nism recently has been demonstrated in an optical 
parametric oscillator.3 Another example of an ap­
plication of this nonlinearity is mode locking of 
lasers using the recently reported Kerr mode-locking 
technique. For example Carruthers and Dulingn 
report mode locking a cw Nd:YAG laser using KTP 
in an antiresonant ring cavity, where the mode lock­
ing was achieved for an angle tuning slightly off 
phase match. The induced self-phase modulation 
from the cascaded process may be the nonlinearity 
responsible for this mode locking. 

In addition the Z-scan technique yields a new and 
accurate, absolutely calibrated method to measure 
derr, which requires only a measurement of the irra­
diance and either the loss or phase shift on the fun­
damental beam. 

We gratefully acknowledge the support of the 
National Science Foundation through grant 
ECS 8617066, the Defense Advanced Research 
Projects Agency/Center for Night Vision and Electro 
Optics, and the Florida High Technology and Indus­
trial Council. 

D. J. Hagan, G. Stegeman, and E.W. Van Stryland 
are also with the Departments of Physics and Elec­
trical Engineering, University of Central Florida. 

References 

1. H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. 
Lagendijk, Phys. Rev. A 42, 4085 (1990). 

2. P. C. M. Planken, H. J. Bakker, L. Kuipers, and A. 
Lagendijk, J. Opt. Soc. Am. B 7, 2150 (1990). 

3. R. Laenen, H. Graener, and A. Laubereau, J. Opt. 
Soc. Am. B 8, 1085 (1991). 

4. G. B. Altshuler and M. V. Inochkin, in Digest of Con­
ference on Quantum Electronics (Optical Society of 
America, Washington, D.C., 1990), paper QWB6. 

5. N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, 
Opt. Spectrosc. 66, 806 (1989). 

6. J. R. Desalvo, D. J. Hagan, M. Sheik-Bahae, and E. W. 
Van Stryland, in Digest of Optical Society of America 
Annual Meeting (Optical Society of America, Wash­
ington, D.C., 1990), paper MTT7. 

7. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, 
Opt. Lett. 14, 955 (1989). 

8. J. D. Bierlien and H. Vanherzeele, J. Opt. Soc. Am. B 
6, 622 (1989). 

9. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, 
IEEE J. Quantum Electron. 26, 922 (1990). 

10. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, 
and E. W. Van Stryland, IEEE J. Quantum Electron. 
26, 760 (1990). 

11. T. F. Carruthers and I. L. Duling III, Opt. Lett. 15, 
804 (1990). 


