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Abstract: Ultrafast lasers have been used for high-precision processing of a wide range of 
materials, including dielectrics, semiconductors, metals and polymer composites, enabling 
numerous applications ranging from micromachining to photonics and life sciences. To make 
ultrafast laser materials processing compatible with the scale and throughput needed for 
industrial use, it is a common practice to run the laser at a high repetition rate and hence high 
average power. However, heat accumulation under such processing conditions will deteriorate 
the processing quality, especially for polymers, which typically have a low melting 
temperature. In this paper, an analytical solution to a transient, two-dimensional thermal 
model is developed using Duhamel’s theorem and the Hankel transform. This solution is used 
to understand the effect of laser parameters on ultrafast laser processing of polypropylene 
(PP). Laser cutting experiments are carried out on PP sheets to correlate with the theoretical 
calculation. This study shows that, in laser cutting, the total energy absorbed in the material 
and the intensity are two important figures of merit to predict the cutting performance. Heat 
accumulation is observed at low scanning speeds and high repetition rates, leading to 
significant heat-affected zone and even burning of the material, which is supported by 
experimental data and modelling results. It is found that heat accumulation can be avoided by 
a proper choice of the processing condition. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Ultrafast lasers have been used widely for both fundamental research and practical 
applications since they were developed in early 1980s [1,2]. For materials processing, 
ultrafast lasers offer precision, flexibility and robustness that are not easily achieved by other 
laser sources [3,4]. These characteristics are enabled fundamentally by the short pulse 
duration, high peak power, and non-thermal interaction with a wide range of materials (e.g. 
metals, glasses, polymers, and ceramics). Ultrafast lasers generate ultrashort pulses in the range of 
femtoseconds to a few tens of picoseconds, a timescale that is shorter than the thermal 
equilibrium time in most materials. Ultrafast lasers have been used to process varieties of 
materials [5–7]. Ultrafast lasers interact with different materials based on the mechanism of 
laser energy absorption. In semiconductors and dielectrics, laser excitation may lead to non-
thermal phase transformations induced by the transient modification of interatomic bonding 
when a high concentration of free electrons is promoted across the bandgap [8]. In materials 
that have a large bandgap (such as dielectrics and some semiconductors), the excited electrons 
can absorb laser energy and bring the material to the plasma state or even produce the 
Coulomb explosion, the latter of which is due to charge separation on the surface [9]. The 
absorption mechanism is different for materials that are opaque, such as metals and some 
semiconductors at visible to near-infrared wavelengths. In these materials, linear absorption 
contributes the most to laser energy deposition. 

The interaction of ultrashort pulses with polymeric materials has many features that make 
ultrashort laser systems attractive for a variety of applications. However, heat accumulation in 
the material at high pulse repetition rates can deteriorate the processing quality, especially for 
polymers which typically have a low melting temperature. The process physics to efficiently 
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cut polymeric materials with ultrafast lasers is important, especially for flexible electronics 
consisting of polymeric substrates. An analytical solution of the thermal model enables to 
calculate the temperature distributions in the substrate rapidly for various processing 
conditions to determine the thermal effects of different laser parameters on the material. 
Therefore, the analytical model can be used to select the processing parameters in various 
industrial applications and avoid the trial and error approach involving numerous experiments 
for process parameter optimization. The model will significantly reduce the time and cost of 
new process development, and it can be implemented to monitor and control a given process. 
Also, the model can provide results that are impractical to measure such as the internal 
temperature of the material. 

Mathematical models of the thermal effects can be divided into two types: analytical and 
numerical models. Analytical models yield analytical solutions, representing a direct relation 
between laser parameters and the heating process. The analytical solutions are, however, 
difficult to obtain for complex systems, but can be determined under certain simplifying 
assumptions to gain insights into the physical processes. These solutions can be used as a 
guideline for optimizing the laser processing parameters. There have been several studies on 
analytical modeling in recent years. B.S. Yilbas et al. [10] introduced a one-dimensional 
model using the kinetic theory approach for short-pulse laser processing. Their study 
compared the predictions of kinetic energy theory with predictions from other models for 
laser pulses with pulse durations in the range of 10−9 to 10−11 s. Khenner et al. [11] obtained 
an analytical solution to the classical heat conduction problem of solid film irradiated by 
repetitive laser pulses using the method of separation of variables. B.S. Yilbas and Pakdemirli 
[12] derived a closed-form solution of the temperature distribution originated from repetitive 
pulsed laser heating using the perturbation method. They utilized the hyperbolic heat 
conduction equation derived from the Boltzman equation and its general solution, which was 
obtained using the Fourier transform method [13]. However, previous solutions to the 
hyperbolic heat conduction equation are limited in one-dimensional (1D) spatial and temporal 
dimensions. A. K. Nath el. al [14] presented a 1D model for the temperature profiles during 
heating and cooling cycles in repetitive pulsed laser irradiation, and the effects of processing 
parameters, such as laser power, beam diameter, scan speed, pulse duration, repetitive rate 
and duty cycle, on laser surface hardening were analyzed. Stuart et al. [15] developed a 
general theoretical model of laser interaction with dielectrics, which was shown to be in good 
agreement with experimental data in short pulse regime. A generalized analytical solution 
was presented by Tung T. Lam [16] for electron and lattice temperature profiles in a metallic 
film exposed to ultrashort laser pulses using the superposition and the Fourier transform 
method in conjunction with the solution structure theorems. Chen et al. [17] presented the 
two-dimensional analytical solutions of repetitive pulsed laser heating of aluminum alloy and 
investigated the effects of processing parameters on the temperature distribution. They 
showed that millisecond pulse duration can avoid the plasma effect. Taylor el al [18]. 
established a three-dimensional, two-temperature model (TTM) and a heat-accumulation 
model based on classical heat generation and conduction equations to evaluate their efficacy 
and efficiency in simulating non-thermal ablation and heat accumulation during multi-pulse 
femtosecond laser processing of silicon. 

In this paper, an analytical solution to a transient, two-dimensional (2D) thermal model is 
developed using Duhamel’s theorem and the Hankel transform for calculating the temperature 
distribution in polypropylene (PP) subject to femtosecond laser irradiation. The analytical 
solution is used to analyze the effects of processing parameters, i.e. pulse energy, scanning 
speed, repetition rate, focal spot size and pulse duration. Experiments are conducted on PP 
sheets of thickness 300 µm, which are important materials in many industrial applications, 
such as packaging for consumer products, plastic parts for various industries including the 
automotive industry, special devices like hinges, and fabrics [19], due to low cost, good 
flexibility, and low weight of this material. The experimental results will be used to verify the 
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where 1, 2, 3, 4 ,  pn = …  are the total number of pulses irradiating on the sample, ont  and pt  

are the laser pulse on time and period (pulse on plus pulse off time), respectively, and  pkt  is 

the time at which the pulse reaches its peak intensity. 
The femtosecond laser system of this study produces Gaussian pulses that were used at the 

pulse length of 200 fs for cutting experiments. This pulse shape can be approximated fairly 
well as a triangular pulse due to the high peak power and short pulse length of the Gaussian 
pulse. The error in the energy of a triangular pulse compared to the Gaussian pulse is 6.44% 
for both types of pulse having the same pulse length of 200 fs, where the Gaussian pulse 
length is defined as the full width at half maxima. Different pulse shapes would affect the 
temporal distribution of the temperature. Replacing the Gaussian pulse with a triangle pulse 
simplifies the thermal analysis considerably without introducing a significant error due to the 
small error in the pulse energy. The effects of different pulse shapes on the temperature 
distribution can be studied by representing the pulse shape function through the variable ( )tφ  

in this model. 

2.2 Development of the thermal model and derivation of the analytical solution 

The 2D transient HCM is solved analytically in the cylindrical coordinates for a semi-infinite 
medium irradiated by a pulsed laser beam. As shown in Fig. 1, the origin of the coordinate 
system lies on the top surface of the workpiece and coincides with the center of the laser 
beam. The radial (r) axis is parallel to the workpiece surface and the axial (z) axis points to 
the bottom surface of the workpiece. Here, both r and z are considered as finite. 

Considering different thermal conductivities in the r and z directions, the governing heat 
conduction equation is given by [23] 

 
( ) ( )2 2

2 2

 , ,  , ,1 ( , , ) 1 ( , , )
     zr

r

T r z t T r z tT r z t T r z t
k

r r tr z α
∂ ∂∂ ∂+ + =

∂ ∂∂ ∂
 (3) 

                                                                                                    Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS 5767 



where  z
zr

r

k
k

k
=  is the ratio of thermal conductivity along z, kz, to the thermal conductivity 
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p
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α

ρ
=  is the thermal diffusivity along the r-direction. Here, ρ  and pc  

are the density and specific heat of the workpiece, respectively. Since the temperature of the 
substrate varies during the cutting process, the temperature-dependent thermophysical 
properties and absorptivity affect the temperature distribution in the material as cutting 
progresses. Due to the paucity of high temperature data, however, thermal models are 
generally developed with constant values of the properties [8–10] as a first order 
approximation to the laser-material interaction process. 

The boundary conditions (BCs) and the initial condition (IC) are 
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where h  is the heat transfer coefficient of the air-workpiece boundary at the lower (z = L) 
surface. Here, T∞  and oT  are the ambient temperature and initial temperature of the 

workpiece, respectively, and TL = T (r, L, t) and Rc is the characteristic radius of the cylinder, 
which is determined in the Appendix. 

To reduce the dependency of the solution on a potentially large number of dimensional 
parameters, dimensionless parameters are used which are defined as 
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where *t  is known as the Fourier number. Applying the dimensionless parameters to Eq. (3), 
BCs and IC, the HCM can be rewritten as 
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which is subject to the following BCs and IC with dimensionless parameters 

 
*

* * * *
* *

*

0

 ( , , )
 1:  ( , )

zz

T r z t A
BC I r t

kz =

∂ = −
∂

 (12) 

                                                                                                    Vol. 27, No. 4 | 18 Feb 2019 | OPTICS EXPRESS 5768 



 * *

* *

* * * *
* * * *

*

 ( , , )
2 :   ( , , )

z L
z L

T r z t
BC BiT r z t

z =
=

∂ =−
∂

 (13) 

 
*

* * * *

*

0

 ( , , )
3 : 0

r

T r z t
BC

r =

∂ =
∂

 (14) 

 ( )* * * *4 :  , , 0cBC T R z t =  (15) 

 ( )* * *:  , , 0  iIC T r z T=  (16) 

where    o

z

h
Bi

k

ω
=  is Biot number, Ti = 1 and * c

c
o

R
R

ω
= . The method of solving this HCM is 

outlined in Appendix A to obtain the following dimensionless temperature distribution in the 
workpiece: 
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where the normalization constant for the Hankel transform is 
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All other variables in Eq. (3) are defined in Appendix A. Equation (3) yields the dimensional 
temperature distribution in terms of r, z and t as 

 ( ) ( ) ( )* * * * , ,  ,  ,  oT r z t T T T r z t T∞ ∞= − +  (20) 

3. Outputs from the model 

The temperature distributions in polypropylene (PP) sheets due to ultrafast laser irradiation 
are modeled using the above mentioned analytical solutions where the following 
thermophysical properties and laser parameters are used (Table 1). 
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Experiments were performed to examine the effects of various processing parameters such 
as the repetition rate, scanning speed, pulse energy and the laser beam diameter. Figure 11 
shows the depth of cut as a function of the “absorbed total pulse energy” (upper x-scale),

2  o p p
TP

AE N
E

v

ω
=  and the “absorbed laser intensity [31]” (lower x-scale), 

2
 p p

a
o on

AE N
I

vtω
=  

.The depth of the cavity formed by the removed material coincides to a single straight line in 
Fig. 11 for different values of absorptivity under various laser-PP interaction conditions, 
indicating that the thermal effects of different laser parameters are similar but the optical 
effects, i.e., the optical response of the material to the laser parameters, are different. The 
absorptivities for different processing conditions can be estimated by comparing the results of 
HCM with the experimental results of the cavity depth as explained in Fig. 10. The 
experimental data are fitted as the following linear equation 

 ( ) 
oa aD b I I= −  (21) 

where the slope, b, and the threshold absorbed intensity for material removal, 
oaI , are found 

to be 0.0178 cm3/PW and 0.21 PW/cm2, respectively. Using this linear relationship, one can 
estimate the “total energy or total intensity” to cut any thickness of PP sheet. 

To study the effect of the absorbed power on the volume of material removed during the 
cutting process, an Overall Energy Model (OEM) is presented by considering an energy 
balance between the total amount of absorbed laser energy and the heat losses due to 
conduction in the workpiece and the heating of the vaporized material as discussed in 
Appendix B. The heat loss, Hl, occurs due to conduction through the two side walls of the 
kerf, and the heating energy loss, He, occurs due to the heating of the removed material from 
room temperature to the vaporization temperature. This model yields by following equation: 

 ( )1 l
k p p

e e

H
vw D AE N

H H
= −  (22) 

where wk is the kerf width produced during partial-depth cutting of the workpiece. Here, He 
and Hl are the heating energy and the heat energy loss, respectively, as discussed in Appendix 
B. 

Figure 12 compares this linear relationship, Eq. (22), with experimental results and yields 
the heating energy He = 1.28 J/mm3 as the slope of the straight line and the heat energy loss 
Hl = 0.263 W as the intercept of the straight line on the x-axis at which D = 0. Therefore, Hl 
can be interpreted as the threshold absorbed laser power for material removal, i.e., 

( ) ,l p P oH AE N=  and Eq. (22) can be rewritten as 
( ) ( )
 

p p p p o

k
e

AE N AE N
vw D

H

−
= . Two 

significant unknown parameters in Eq. (22) are the absorptivity A and the final temperature Tf 
besides the thermophysical properties of the material. Tf and A can be estimated using the 
HCM as discussed in Fig. 10. The values of Tf, which were determined for different pulse 
energies 1 to 4 µJ, vary from 612 to 1555 K for 20 mm/s, 717 to 1974 K for 50 mm/s, and 
629 to 1625 K for 100 mm/s cutting speeds. While the HCM provides a detailed analysis of 
the thermal energy distribution by the heat conduction mechanism during laser heating, the 
OEM yields a simple linear equation to analyze experimental data for determining the energy 
loss due to conduction and the utilization of energy for vaporization. 
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which must satisfy the following BCs and IC 

 
*

* * * *
* *

*

0

( , , )
1:   ( , )m

m
z

z

dT z t A
BC I t

kdz

λ λ
=

= −  (24) 

 ( )
* *

* *

* * * *
* * * *

*

( , , )
2 :   , ,m

m
z L

z L

dT z t
BC BiT z t

dz

λ λ
=

=

= −  (25) 

 ( )* * * *: , ,0  ( )im mIC T z Tλ λ=  (26) 

The Hankel transformed laser intensity * *( , )mI tλ  and initial condition *( )i mT λ  are given by 

the following expressions: 

 ( ) ( )
*

* * * * * * * *

0

,  ( , )
cR

m o mI t r J r I r t drλ λ=   (27) 

 ( ) ( )
*

* * * * *

0

 
cR

i m o m iT r J r T drλ λ=   (28) 

The integral in Eq. (27) has a closed form result 

*2*

8
( )

 
4

m

oI t
e

λϕ −
 when *   .cR → ∞  To utilize this 

closed form expression in the HCM for obtaining an analytical temperature distribution, the 
integral in Eq. (27) is evaluated numerically for sufficiently large values of *

cR  and different 

values of *  mλ  so that the numerical value of the integral matches well with the result of the 

closed form expression. This approach yielded *
cR =  10.5 and therefore Rc = 193.2 µm, which 

indicates that the PP sheet can be considered radially infinite for radii larger than or equal to 
10 times the laser beam radius, i.e., Rc = 10.5ω0. 

Using Duhamel’s theorem on Eq. (23), the new governing equation can be rewritten as 

 ( )
* *2 * * * * * * * *

** 2 * * * *
 *2 *

( , , , ) ( , , , )
   , , ,m m

zr m m

d z t d z t
k z t

dz dt

ψ λ τ ψ λ τλ ψ λ τ− =  (29) 

and the boundary and initial conditions, (A2), (A3) and (A4), can be expressed as 

 
*

* * * * *
* *

*

0

(  , , , )
1:   ( , )m

m
z

z

d z t A
BC I

kdz

ψ λ τ λ τ
=

= −  (30) 

 ( )
* *

* *

* * * * *
* * * * *

*

( ,  , , )
2 :   , , ,m

m
z L

z L

d z t
BC Bi z t

dz

ψ λ τ ψ λ τ
=

=

= −  (31) 

 ( )* * * * *: , ,0,  ( )im mIC z Tψ λ τ λ=  (32) 

The solution to Eq. (29), ( )* * * * *, , ,m z tψ λ τ , can be split into the following transient and steady 

state solutions: 
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 ( ) ( ) ( )* * ** * * * * * * * * *, , ,  , ,  , ,  H ssm m mz t z t zψ λ τ ψ λ ψ λ τ= +  (33) 

The governing equation for the transient solution can be obtained from Eqs. (29) and (33): 

 

* *2 * * * * * *
** 2 * * *

 *2 *

( , , ) ( , , )
   ( , , )H Hm m

Hzr m m

d z t d z t
k z t

dz dt

ψ λ ψ λλ ψ λ− =  (A12) 

and the boundary and initial conditions for Eq. (34) is determined from Eqs. (33), (30), (31) 
and (32): 

 
( )

*

* * * *

*

0

, ,
0

H m

z

d z t

dz

ψ λ

=

=  (35) 

 ( )
* *

* *

* * * *
* * * *

*

( ,  , )
, , 0H m

H m
z L

z L

d z t
Bi z t

dz

ψ λ ψ λ
=

=

+ =  (36) 

 ( ) ( )* ** * * * * * , ,0   ( , , )iH ssm m mz T zψ λ λ ψ λ τ= −  (37) 

Similarly, Eqs. (29) and (33) yield the following governing equation for the steady state 
solution: 

 ( )
*2 * * * * 2

* * * *
*2

 

( , , )
 , , 0 ss m m

ss m
zr

d z
z

kdz

ψ λ τ λ ψ λ τ− =  (38) 

with the boundary conditions determined from Eqs. (33), (30) and (31) as 

 
( )

*

* * * *

* *
*

0

, ,
( , )

ss m

m

z

d z
I

dz

ψ λ τ
λ τ

=

=  (39) 

 ( )
* *

* *

* * * *
* * * *

*

( ,  , )
, , 0ss m

ss m
z L

z L

d z
Bi z

dz

ψ λ τ ψ λ τ
=

=

+ =  (40) 

The solution of Eq. (37) can be written as 

 ( )

* * *
* *

* *
* * * * * *

3
* * *

* *

 sinh   cosh    

 ,  ,   cosh    sinh  

sinh  cosh     

m m m

zr zr zr m m
ss m

zr zrm m m

zr zr zr

Bi L L
k k k

z C z z
k k

L Bi L
k k k

λ λ λ
λ λψ λ τ

λ λ λ

     
 +                = − +                  +        
     








 (41) 

where ( )* *
3 *

, .zr
m

z m

A k
C I

k
λ τ

λ
= −  

Eq. (34) is solved by applying the Fourier integral transform 

  ( )
*

* ** * * * * * * * *

0

 , , cos( )  ( , , )
L

H Hm n n mt z z t dzψ λ γ γ ψ λ=   (42) 
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where * * cos( )n zγ  is the eigenfunction with *
nγ  as the n-th eigenvalue for n = 1,2,3,…, 

corresponding to the axial boundary conditions. The eigenvalues *
nγ  are determined from the 

transcendental equation ( )* * * n ntan L Biγ γ = . 

Eq. (34) simplifies to the following first order ordinary differential equation under the 
Fourier transform (A20): 

 
 ( ) ( )  ( )

*
* * *

*
*2 * 2 * * *

 *

, ,
, , 0

H m n

Hzr n m m n

d t
k t

dt

ψ λ γ
γ λ ψ λ γ+ + =  (43) 

and the initial condition (A15) transforms to the following expression: 

  ( )  ( ) * *
* * * * * * , ,0   ( , , )iH ssm n m m nTψ λ γ λ ψ λ γ τ= −  (44) 

Under this initial condition (A22), the solution to Eq. (43) is 

  ( )  ( ) ( )*2 * 2 *
 

* *
* * * * *, , , , , ,0 zr n mk t

H Hm n m nt e
γ λψ λ γ ψ λ γ − +=  (45) 

Applying the inverse Fourier integral transform to Eq. (45) and using Eq. (33), the solution to 
Eq. (29) can be written as 

 
( ) ( )

 ( )  ( ) ( )

( )

*2 * 2 *
 

* * ** * * * * * * * * *

*
1 

* * * *

cos( ) 
, , ,   , , ,

   

                                  ,  ,  

zr n mk tn
i ssm m n m n

n F n

ss m

z
z t T e

N

z

γ λγψ λ τ λ γ ψ λ γ τ
γ

ψ λ τ

∞
− +

=

 = −  

+


 (46) 

where the normalization constant, ( )*
 ,F nN γ  for the Fourier transform is given by 

 ( )
*2 2

* * *2 2
 

2 ( )1

( )
n

F n n

Bi

N L Bi Bi

γ
γ γ

+
=

+ +
 (47) 

and  ( ) ( )
*

* * * * * *
  

0

   ,  cos( ) 
L

i m n i m nT T z dzλ γ λ γ=  . 

Duhamel’s theorem relates the solution ( )* * * * *, , ,m z tψ λ τ  to the solution 
* * * *( , , )mT z tλ  of 

the original problem in Eq. (A1) by the following integral 
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which yields the Hankel transformed temperature distribution as 
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where ( )*2 *2
 zr n ma k γ λ= + . The inverse Hankel transform of this expression yields the 

temperature distribution ( )* * * *, , T r z t  as given in Eq. (17). 

Appendix B: Derivation of the Overall Energy Model (OEM) 

Eq. (22) is derived by considering an overall energy balance per unit time for the absorbed 
laser energy, loss of energy due to heat conduction in the substrate and the amount of energy 
used for heating the removed material from room temperature to a final temperature Tf so that 
Tf is higher than the vaporization temperature of the material. The quasi-steady state energy 
balance over a time t is written as 

 

( ) ( ) 

2

1
       

2
( ) ( )

                                  ( ) 
2

p p k p m o m v p f m

f o f o
on p p on off p off p

on off

N E At v w D c T T H H c T T t

T T T T
k vt N d t k v t t d t N t

t t

ρ

α α

 = − + + + − 

− −
+ + +

 (50) 

where the first term on the left-hand side is the absorbed laser energy. The first term on the 
right-hand side is the total amount of energy required to heat a volume of material to produce 
the kerf. The kerf profile is considered to have a triangular shape of width wk and depth D. 
The second and third terms are the heat losses through the two side walls of the kerf due to 
conduction during the pulse-on and pulse-off times respectively. Since the temperature of the 
side walls decreases rapidly during the pulse-off time, an average temperature (Tf + To)/2 is 
considered to estimate the conduction heat loss due to a linear thermal gradient over a thermal 
boundary layer of width 2 offtα , where α is the thermal diffusivity. Also, the conduction 

heat loss occurs during the pulse-off time over the side wall length of vton produced during the 
pulse-on time and the length of vtoff created during the pulse-off time, which appears in Eq. 
(50) as v(ton + toff). 

In Eq. (50),
 

2p
p o

v D
d

N ω
= , Tf, Tm and k are the kerf depth created per pulse, the final 

temperature reached during the cutting process, the melting temperature and thermal 
conductivity of the material, respectively. The other variables Hm, Hv, and toff represent the 
latent heats of melting and vaporization, and the pulse-off time, respectively. Hm and Hv are 
irrelevant for the case of ablating PP [22]. 

Eq. (50) can be simplified to Eq. (22) with the following expressions for He and Hl: 

 ( )1
  [ ];

2e P f o m vH c T T H Hρ= − + +  (51) 

 
2

3/ 2 3/ 2
( )

 2
4

f o
l P on off on off
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T T v D
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