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In this paper, we review recent progress in disordered optical fiber featuring transverse Anderson localization and
its applications for imaging. Anderson localizing optical fiber has a transversely random but longitudinally uni-
form refractive index profile. The strong scattering from the transversely disordered refractive index profiles gen-
erates thousands of guiding modes that are spatially isolated and mainly demonstrate single-mode properties. By
making use of these beam transmission channels, robust and high-fidelity imaging transport can be realized. The
first disordered optical fiber of this type, the polymer Anderson localizing optical fiber, has been utilized to dem-
onstrate better imaging performance than some of the commercial multicore fibers within a few centimeters trans-
mission distance. To obtain longer transmission lengths and better imaging qualities, glass–air disordered optical
fibers are desirable due to their lower loss and larger refractive index contrast. Recently developed high air-filling
fraction glass–air disordered fiber can provide bending-independent and high-quality image transport through
a meter-long transmission distance. By integrating a deep-learning algorithm with glass–air disordered fiber, a
fully flexible, artifact-free, and lensless fiber imaging system is demonstrated, with potential benefits for biomedi-
cal and clinical applications. Future research will focus on optimizing structural parameters of disordered
optical fiber as well as developing more efficient deep-learning algorithms to further improve the imaging
performance. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.000D50

1. INTRODUCTION

Anderson localization describes the absence of diffusive wave
transport in a highly disordered medium and was first intro-
duced by Anderson in the context of electron motion [1].
In Anderson’s picture, the interference of electron waves experi-
encing multiple scattering by random defects in the potential
landscape results in electronic states localized in space. Since
Anderson localization is a consequence of the wave nature
of electrons, this concept can also be applied to classical wave
systems, including acoustics, elastics, electromagnetics, and op-
tics [2–5]. Among all classical wave systems, the localization of
light has attracted a lot of attention, and related progress has
demonstrated its great potential in device-level applications
[6–15]. However, it is difficult to observe the localization of
light in three-dimensional systems due to limitations set by
the Ioffe–Regel criterion [16]. This criterion states the follow-
ing: in order for localization to occur, the scattering must be
strong enough so that kl� ∼ 1, where k is the effective wave-
vector in the medium and l� is the mean free path. But this

condition is considerably relaxed in two-dimensional (2D)
systems [17,18]. Optical waves can be localized in 2D disor-
dered systems, and the localization length ξ, which is the
effective beam width in the transverse plane, is given by
ξ � l� exp�πk⊥l�∕2�, where the mean free path l� relates
to the refractive index fluctuations and k⊥ is the transverse
component of the wavevector k. In a quasi-2D system where
the randomness is only limited to the transverse plane, the
transverse wavevector component k⊥ can be 10–100 times
smaller than k. Therefore, even if the mean free path is much
larger than the wavelength, localization can still occur [18,19].

Transverse Anderson localization (TAL) was first proposed
numerically by Abdullaev and Abdullaev and De Raedt et al.
[17,20]. In particular, the refractive index in the disordered sys-
tem introduced by De Raedt et al. is distributed randomly in
the transverse plane and invariantly along the longitudinal di-
rection. The optical beam propagating along the longitudinal
direction of such a system can maintain a finite beam cross sec-
tion due to the TAL in the transverse plane, which resembles
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the beam propagation in waveguide devices. It has also been
found that the localization length depends on the refractive in-
dex contrast and the materials’ filling fraction [17]. The first
experimental observation of TAL of light in a similar system
was demonstrated by Segev’s team in 2007 [18]. In this pio-
neering work, they use a probe beam to investigate TAL in
a photorefractive crystal. The refractive index profile of this
crystal is randomly distributed in the transverse plane and
invariant longitudinally. However, the small photoinduced re-
fractive index variations (∼10−4) result in rather large localiza-
tion beam radii with a large standard deviation among different
realizations of the random refractive index profile. Although the
TAL beam radius is meaningful in a statistical averaging sense,
the self-averaging behavior can guarantee similar levels of locali-
zation for different realizations of random profiles if large re-
fractive index variations are introduced to produce strong
wave localization [19,21–24]. In this case, one realization of
the statistically identical ensemble of TAL waveguides is practi-
cally equivalent to the ensemble average. Therefore, large re-
fractive index variations are desired for pushing TAL optical
waveguides to real applications.

The first TAL disordered waveguide with large refractive in-
dex fluctuations (∼0.1) was developed by Mafi’s team in 2012
[19]. This TAL device is a disordered polymer Anderson local-
izing optical fiber (pALOF) fabricated by randomly mixing
40,000 pieces of polymethyl methacrylate fibers and 40,000
pieces of polystyrene fibers. The localized beam radius of
pALOF is sufficiently small and comparable to a typical in-
dex-guiding optical fiber. Moreover, the large index contrast
inside pALOF reduces the sample-to-sample variations of local-
ized beam radii to a level that can satisfy image transmission
requirements. Besides large refractive index fluctuations,
Karbasi et al. further found through a numerical study that
an ∼50% materials filling fraction is desirable for generating
small localized beam radii [21,23]. Based on a one-dimensional
waveguide model, it is also numerically confirmed that the op-
timal feature size might be around twice the wavelength of op-
eration, and the quality of image transport can be improved in
disordered waveguides compared to periodic waveguide struc-
tures [23,25]. Recent research on the mode properties of
disordered optical fiber further unveils that most of the guided
modes in pALOF exhibit single-mode properties [26]. In par-
ticular, Abaie et al. reveal that highly localized modes in
GALOFs exhibit nearly diffraction-limited beam quality and
a high degree of spatial coherence similar to single-mode fibers
[27]. In 2014, image transport through pALOF was first exper-
imentally demonstrated and the transported image quality was
proved to be comparable to or better than some of the best
commercially available multicore fibers (MCFs) developed
for imaging systems [7]. However, the strong signal attenuation
in pALOF limits the image transport distance to a few centi-
meters, too short for most practical applications. Moreover, to
further reduce the radius and the sample-to-sample variations
of localized beams, the low refractive index contrast is still a
bottleneck for pALOF.

To address the shortcomings of pALOF, the next generation
of disordered optical fibers should be made from a glass matrix
with randomly distributed air holes across the transverse plane

[7,28]. As proposed by the earlier work, the filling fraction
should be around 50% and the optimal average size of the
air holes might be twice the operating wavelength. The large
refractive index difference (∼0.5) between glass and air can fur-
ther reduce the radii and sample-to-sample variations of the
localized optical modes. In addition, the low optical attenuation
in glass materials can extend the imaging transmission distance
significantly. The first glass–air-based disordered fiber was
reported by Karbasi et al. in 2012 [29]. It is fabricated from
a porous artisan glass with an average air-filling fraction of
∼5%. The size of air holes varies from 0.2 μm to 5.5 μm.
Due to the low air-filling fraction and non-uniform distribu-
tion of air holes, TAL can only be observed near the boundary
of this fiber. To fabricate a glass–air disordered optical fiber
with high air-filling fraction and more uniform air-hole distri-
bution, Zhao et al. developed a new fabrication recipe based on
the stack-and-draw method and demonstrated a low-loss glass–
air Anderson localizing optical fiber (GALOF) with an air-
filling fraction of ∼28% and an average air-hole diameter of
∼1.6 μm [12,30]. Using this fiber, they report bending-inde-
pendent image transport through a meter-long GALOF sample
and demonstrate that the quality of images transported through
the GALOF is comparable to or even better than that of images
transported through commercial MCF for the first time [12].

GALOF-based image transmission can potentially be uti-
lized in fiber-optic endoscopes (FOEs). The most important
applications of FOEs are in biomedical research, clinical
diagnostics, and surgical operations [31–34]. Most of these
applications require the FOEs to provide bending-independent
high-fidelity imaging in a minimally invasive way. To satisfy
these demanding requirements, GALOF-based FOEs face a
number of challenges. First, the structure parameters of
GALOFs currently limited by the fabrication process need to
be optimized for maximum image quality and resolution.
Second, a technique has to be developed that allows for imaging
of objects at various distances from the transmission fiber
facet. Such a variable working distance should be achieved
without requiring distal mechanical scanning heads or other
distal bulk optical elements that counteract the minimally
invasive character of the fiber-optic probe.

To address these challenges, Zhao et al. combine GALOF-
based image transmission with image reconstruction based on
deep convolutional neural networks (DCNNs). Their FOE fea-
tures high-fidelity imaging, independence from fiber bending,
and lensless imaging up to a depth of a few millimeters [15].
DCNN is a data-driven deep-learning technique, which has
gained great success in solving imaging problems recently
and demonstrated better performance than the conventional
model-based method [15,35–43]. Relying on a large-data based
training process, the DCNN can learn the physical process of
the image transmission through the entire optical system with-
out knowing any models or priors. It is especially suitable for
building GALOF-based FOEs for two main reasons. First, it is
extremely difficult to model the imaging process through a me-
ter-long disordered optical fiber, and the numerical simulation
of this process requires huge computational power [21]. The
DCNN can “learn” the imaging process without any knowl-
edge of the physical system. Second, the DCNN is currently
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the optimal choice to truly realize lensless imaging since it can
accurately simulate the light propagation through the complete
system, from the objects to the final CCD detector. Based on
this capability, a DCNN can basically replace any distal optics
and other image correction or reconstruction tools.

In the following sections, we review the recent progress in
the development of GALOF and GALOF-based imaging
systems. In Section 2, the fabrication process, structure param-
eters, and imaging capabilities of GALOF are shown. In
Section 3, recent research on the beam quality of highly
localized modes in GALOF is discussed. In Section 4, basic
principles and novel experimental results of the GALOF–
DCNN-based imaging system are discussed.

2. IMAGE TRANSPORT THROUGH GALOF

The inset in Fig. 1(a1) shows the SEM image of a typical
GALOF cross section. The outer diameter of this GALOF is
414 μm, and the diameter of the disordered structure is
278 μm with an air-filling fraction of 28.5%. GALOFs are fab-
ricated at CREOL using the stack-and-draw method [12,15].
Thousands of silica capillaries are fabricated with different outer
and inner diameters. Capillaries are mixed randomly and fed
into a jacket to make a preform. Finally, GALOFs with desired
sizes are fabricated from canes that are drawn from the preform.
With a similar air-filling fraction, the localization length de-
pends on the feature size. Previous numerical investigations us-
ing a one-dimensional waveguide model show that feature sizes
of about twice the wavelength might give the smallest localiza-
tion length, which should result in the highest imaging reso-
lution [23]. The air-hole area statistical distributions of three
different GALOF samples with similar air-filling fractions are
shown in Figs. 1(a1)–1(c1). To experimentally measure the

localization length, a 635 nm laser beam delivered by a
single-mode fiber is butt-coupled into the GALOF samples.
The output facet of the GALOF is imaged onto a CCD
using a microscope objective. Thirteen different output beam
profiles measured for each sample are stacked on top of each
other to create one single image per GALOF as shown in
Figs. 1(a2)–1(c2). For each beam profile, the localization length
ξ can be calculated using the following formula [44]:

1

ξ2
�

R
I�x, y�2dxdyhR
I�x, y�dxdy

i
2
, (1)

where ξ is the localization length, and I�x, y� is the beam
intensity at position (x, y). A good estimation of the average
localization length has been obtained by averaging the 13 cal-
culated values for each GALOF. They are 5.2 μm, 5.4 μm, and
6.8 μm for GALOF(1), GALOF(2), and GALOF(3), respec-
tively. The corresponding feature sizes with maximum statisti-
cal distributions are about 1.6 μm, 2.6 μm, and 4.3 μm for
GALOF(1)–GALOF(3), respectively. Therefore, it is experi-
mentally confirmed that the localization length decreases with
feature size [12]. In addition, the far-field emission angle at the
output end has been measured for a number of beam-coupling
positions. This angle varies slightly from position to position
indicating that there is not one well-defined numerical aperture
for GALOFs. However, the observed average far-field emission
angle around 11.5 deg provides at least experimental informa-
tion that can be used for imaging system design and perfor-
mance evaluation.

The smaller localized beam radius in GALOF(1) makes it a
preferable candidate for imaging devices. Using the resolution
test target and experimental setup shown in Fig. 2(a), the image
transport capability and spatial resolution can be evaluated.

Fig. 1. (a1)–(c1) Statistical distributions of air-hole areas in the GALOF samples with similar air-filling fractions. (a1) GALOF(1), (b1) GALOF(2),
and (c1) GALOF(3). The SEM image of GALOF(1) is shown in (a1). (a2)–(c2) Near-field output images for multiple excitation positions recorded
after transmission through GALOF(1), GALOF(2), and GALOF(3), respectively. The length of all fiber segments is 4.5 cm, and the data are taken
at a wavelength of 635 nm [12].
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Figures 2(b)–2(d) are images of numbers on the resolution test
target transported through a 4.5-cm-long GALOF(1) sample.
The transmitted images have high visual quality and the same
size as the original target elements. To quantify the resolution
limit for transportation through the GALOF, line elements on
the resolution test targets are transported through samples of
different lengths. The smallest line elements that can be re-
solved are recorded with the CCD camera. As shown in
Figs. 2(e) and 2(f ), the spatial resolution of a 4.5-cm-long
GALOF(1) sample is ∼8 μm, while it is ∼14 μm for a 90-cm-
long GALOF(1) segment. The degradation of resolution for a
longer piece of sample is attributed to slight variations along the
longitudinal direction due to fabrication imperfections. The
resolution of GALOF(1) is comparable to some of the best
commercial MCF bundles [12]. GALOFs potentially have sev-
eral advantages over MCFs. First, there exist more modes in
GALOFs than in MCFs. The number of localized modes inside
GALOF(1) is on the order of 106 [27]. The MCF bundle with
comparable flexibility and size can only support ∼104 modes
[45,46]. Although the number of modes in some commercial
MCFs can reach 105 (Fujikura FIGH-100-1500N), their huge
diameters (∼1.5 mm) make the fiber bundle non-flexible and
entail a high risk for collateral penetration damage in biological

objects. Second, the crosstalk between individual cores of
MCFs results in a degradation of the point spread function with
increasing transmission distance. In GALOFs, the point spread
function is directly related to the localization length, which is
independent of the transmission distance [25]. In addition, the
cost of GALOFs is potentially lower than the cost of MCFs
since GALOFs require only a single material and the fabrication
process is straightforward. In contrast, MCFs require expensive
highly doped materials to increase the numerical aperture of the
individual cores to suppress the crosstalk [47,48]. Moreover, it
requires multiple stack-and-draw procedures to fabricate a
high-quality MCF bundle [47,48]. This complicated process
is reduced to only two steps for fabricating GALOFs: (1) draw
silica canes from preforms and (2) draw GALOFs from canes
[12]. Over all, the GALOF is the first disordered optical fiber
that exhibits all features for practical applications and has the
potential for performance superior to conventional MCF
imaging bundles.

Besides the characterization of spatial resolution, quantita-
tive evaluations of transported image qualities further confirm
that (1) the imaging quality of the GALOF is comparable to
some of the best commercial MCFs, (2) GALOF-based imag-
ing is bending-independent, and (3) shorter wavelengths can

Fig. 2. (a) Experimental setup for image transport. Various elements of resolution test targets are illuminated by a collimated beam from a CW
laser diode with a wavelength of 405 nm. The light transmitted through the target elements is coupled into the disordered region of GALOF(1), and
the output facet of the fiber is imaged onto a CCD camera. (b)–(d) Transported images of different numbers of group 3 on the 1951 resolution test
target using a 4.5-cm-long sample. The length of the scale bar in (b) is 40 μm. (e)–(f ) Images of the smallest resolvable line elements of the resolution
test targets and the corresponding intensity profiles of the line elements after transport through a GALOF(1) sample. (e1)–(e2) are obtained from a
4.5-cm-long sample. The line elements in (e1) belong to group 6 number 1 on the resolution test target with a line width of 7.8 μm; the integrated
cross sections in (e2) are obtained by integration along the line elements. The visibility value �Imax − Imin�∕�Imax � Imin� for the data in (e2) is about
0.77. (f1)–(f2) are obtained from a 90-cm-long sample. The line elements in (f1) come from group 5 number 2 on the resolution test target. The
visibility of (f2) is about 0.73 [12,15].
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improve imaging quality [12]. Figure 3 lists transported sample
images for quantitative evaluations and a comparison between
GALOF(1) samples and the commercial imaging fiber sample.
Based on the experimental results, two widely used metrics, the
mean square error (MSE) and the mean structural similarity
index (MSSIM), are introduced to quantify the imaging qual-
ity. MSE is defined as follows [49]:

MSE � 1

M × N

XN
i�1

XM
j�1

�X i,j − Y i,j�2, (2)

where X and Y are two 2D matrices that contain pixel inten-
sities of distorted and reference images, respectively. M and N
stand for the sizes of the matrices. MSSIM is calculated by
averaging the structural similarity index (SSIM) [49,50].
The SSIM is applied to compare the local image patches be-
tween the distorted image X and the reference image Y . It is
defined as follows:

SSIM�X ,Y � � �2μX μY � C1��2σXY � C2�
�μ2X � μ2Y � C1��σ2X � σ2Y � C2�

: (3)

μX and μY are the local mean intensities of X and Y . σX and
σY are the local standard deviations of images X and Y . σXY is
the cross correlation of X and Y . C1 and C2 are defined as
�K 1L�2 and �K 2L�2, respectively. L is the dynamic range of
the image. K 1 and K 2 are two constants, and K 1, K 2 ≪ 1.
These constants are used to avoid unstable results and are
somewhat arbitrary. The SSIM index is not sensitive to the
variation of their values. Based on the definition of SSIM,
MSSIM is calculated by Eq. (4) as follows:

MSSIM�X , Y � � 1

M

XM
j�1

SSIM�xj, yj�: (4)

In Eq. (4), xj and yj are the image contents at the jth local
window of the distorted image X and reference image Y ,
respectively. The number of local windows is M .

The MSE and MSSIM values of Fig. 3 are listed in Tables 1
and 2, where higher MSE or lower MSSIM values indicate de-
creased imaging quality. Refer to Table 1; comparing the MSE
and MSSIM values under the same wavelength, the GALOF(1)
sample demonstrates better imaging performance than the
commercial MCF. Refer to the data in both Tables 1 and
2; the imaging quality is lowered when increasing the wave-
length for the same fiber sample. For the disordered optical
fiber, the origin of this wavelength dependence needs to be fur-
ther investigated. There is no evidence that the imaging quality
is directly linked to the localization length. Therefore, it does
not conflict with the recent study that demonstrates that the
localization length is wavelength independent [51]. For com-
mercial imaging MCF, it is due to the increased core-to-core
coupling. Furthermore, the data listed in Table 2 confirm that
strong bending of the GALOF does not noticeably influence
the transported image quality. Overall, the quality and resolu-
tion of the GALOF compare well with the commercial MCF
bundle. Bending-independent imaging makes the GALOF
suitable for making a practical optical fiber endoscope where

Fig. 3. (a)–(h) Images of digit “4” from group 3 on the 1951 resolution test targets after transport through different fiber samples with different
illumination wavelengths. The length of the scale bar in (a) is 50 μm. (a)–(d) are obtained from 4.5-cm-long samples, and (e)–(h) are obtained from
90-cm-long samples. The wavelength for (a), (b), (e), and (f ) is 405 nm, while the wavelength for (c), (d), (g), and (h) is 635 nm. (b) and (d) Images
transported through commercial imaging fiber FIGH-10-500N. (a), (c), and (e)–(h) Images transported through GALOF(1) samples of different
lengths. (e) and (g) are obtained keeping the GALOF(1) straight, while (f ) and (h) are obtained using the same sample with a 180 deg turn (20 cm
bending radius) [12].

Table 1. MSE and MSSIM Values of Transported Images
for 4.5-cm-Long Fiber Samplesa

GALOF(1) FIGH-10-500N

λ 405 nm 635 nm 405 nm 635 nm

MSE 0.049 0.055 0.053 0.056
MSSIM 0.317 0.252 0.315 0.237

aFrom [12].
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flexibility is extremely important. In addition, Zhao et al. also
experimentally investigate the impact of the GALOF average
feature size on the image quality [12]. The digit “4” from group
3 in the resolution target is sent into GALOF(1), GALOF(2),
and GALOF(3), respectively. The imaging qualities of all three
different samples are calculated using both the MSE and
MSSIM methods. The data provided evidence for a general
trend of image quality degradation with increasing air-hole
sizes. Their observation matches previous numerical simulation
results [21,23].

3. HIGH-QUALITY WAVEFRONT IN GALOF

Recently, it has been shown by Abaie et al., both numerically
and experimentally, that a large number of localized modes
in GALOF exhibit high-quality wavefronts and high spatial co-
herence, making these transmission channels comparable to
single-mode optical fibers [27]. The GALOF sample used in
Abaie’s work is very similar to GALOF(1) in Fig. 1. They first
calculated the localized modes in the GALOF and evaluated
their beam quality. For their numerical calculations they used
the finite element method and extracted the geometrical
GALOF parameters from a SEM image. A working wavelength

of 632.8 nm is chosen to match the wavelength of the He–Ne
laser used in the experiment. To obtain the M 2 value for the
mode quality analysis, modes are numerically propagated
in free space after leaving the GALOF using a fast Fourier
transform algorithm. The beam waist in the Cartesian coordi-
nates x�y� is calculated by wx � 2σx�wy � 2σy�, where σx (σy)
is the standard deviation of the mode intensity profile. M 2 val-
ues (M 2

x , M 2
y ) are then obtained using the variance method

[27]. An M 2 value of ∼1 is strong evidence of nearly diffrac-
tion-limited beam quality. The obtained simulation results are
shown in Fig. 4.

The results shown in Fig. 4(a) demonstrate that M 2 < 2
modes are statistically dominant in the GALOF indicating
the presence of abundant localized modes with high-quality
wavefronts. The distribution of the corresponding transverse
positions within the GALOF cross section is shown in
Fig. 4(b). A relatively uniform distribution can be observed,
while some local hot spots also exist. The existence of those
non-uniform areas might be attributed to the non-uniformity
of air-hole sizes and air-filling fractions across the GALOF pro-
file. The regions in GALOF with low air-filling fractions can
reduce the number of high-quality modes. This observation is
further confirmed by simulation using an optimally designed
refractive index profile shown in Fig. 4(c). The size of unit cells
in this cross section is 1 μm. Air and glass are mixed randomly
with an equal probability to reach a uniform 50% air-filling
fraction. The histogram of M 2 values for nearly 500 modes
and their position distribution across the fiber cross section
are shown in Figs. 4(d) and 4(e). Modes withM 2 values smaller
than 2 are much more dominant when compared to the real
GALOF calculations shown in Fig. 4(a). Simultaneously, the
uniformity of modes distribution is also greatly improved.

Table 2. MSE and MSSIM Values of Transported Images
for 90-cm-Long GALOF(1) Samplea

Straight Bend

λ 405 nm 635 nm 405 nm 635 nm

MSE 0.053 0.060 0.051 0.060
MSSIM 0.246 0.206 0.306 0.215

aFrom [12].

Fig. 4. (a) Histogram of numerically calculatedM 2 values for 1500 localized modes in the real GALOF. The vertical axis in (a) represents the total
number of modes for differentM 2 values. (b) Density histogram of the positions of the modes in (a) within the GALOF cross section. The value of
each pixel in (b) corresponds to the number of localized modes. (c) Refractive index profile of an optimally designed GALOF with a 50% air-filling
fraction. (d) Histogram of numerically calculatedM 2 values for nearly 500 localized modes based on (c). (e) Corresponding density histogram of the
mode positions across the profile shown in (c) [27].
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These calculations indicate that uniform distributions of
air-hole size and high air-filling fraction enhance the localiza-
tion strength and the mode quality. The simulations provide
guidance for future GALOF developments and are encouraging
regarding potential improvements in GALOF performance.

Experimental investigations also support the numerical sim-
ulation results [27]. The experimental setup shown in Fig. 5(a)
is applied to excite localized modes and evaluate their M 2 val-
ues. The measured M 2 value distributions of 30 modes are
shown in Fig. 5(b). Most modes exhibit M 2 < 2. Besides a
low M 2 value, another unique feature related to high-quality
wavefronts is a high degree of spatial coherence. To demon-
strate the spatial coherence, one localized mode is excited
and used to illuminate the double slit inserted in the output
beam path; see Fig. 5(c). The far-field interference pattern
generated by the mode after passing through the double slit
is shown in Fig. 5(d). Figure 5(e) shows the corresponding
vertically averaged intensity distribution. High-contrast inter-
ference fringes in Figs. 5(d) and 5(e) indicate the high degree
of spatial coherence for the localized mode.

Due to its large transverse size, the GALOF possesses several
thousands of modes. The existence of abundant high-quality
localized modes gives rise to the high potential of GALOF
for imaging applications. These localized modes can be easily
excited without the assistance of complicated and expensive
spatial light modulators (SLMs) and applied to encode and
transport imaging information. The high-quality wavefronts
and the large degree spatial coherence of the localized modes
result in single-mode-like properties making the GALOF trans-
mission properties remarkably robust with respect to external
perturbations. Theoretical analysis indicates that further
improvements regarding mode quality are possible in further

optimized GALOFs, demonstrating the GALOF potential for
next-generation fiber endoscopes.

4. DEEP-LEARNING IMAGING THROUGH
GALOF

Imaging systems merely relying on GALOF are faced with a
number of challenges, such as artifacts in the transported im-
ages and a fixed working distance. The DCNN is able to ad-
dress all these issues by “learning” the imaging transfer process
[15]. To generate a computational architecture that can map
the transported raw images to their corresponding input images
requires a training process for the DCNN. The training process
requires a large number of image pairs. Each image pair consists
of a matched input image (ground truth) and a correspond-
ing raw image transported through the imaging system. In
the training phase, the DCNN is initialized randomly using
a Gaussian distribution. Then a batch of raw images is sent into
the DCNN to generate corresponding output images. The
DCNN is trained by optimizing the parameters through min-
imizing the loss function based on the difference between
the output images generated in the training process and the
original input images. The loss function is defined using the
mean absolute error (MAE) metric. The MAE is expressed
as jI rec − I ref j∕�wh�. I rec and I ref are the reconstructed image
intensity and the input image intensity, respectively. w and h are
the width and the height of the images. When the loss of the
DCNN finally converges, the training process is finished and
the parameters of the DCNN are fixed. In the test phase, the
trained DCNN is applied to reconstruct images from the raw
data that never appear in the training data. To evaluate the per-
formance of the trained DCNN, reconstructed test images are

Fig. 5. (a) Experimental setup forM 2 measurements. A He–Ne laser beam is coupled into a single-mode fiber and butt-coupled to the input facet
of a 155-cm-long GALOF. The single-mode fiber is scanned across the input facet to excite various localized modes. Beam profiles located at
different positions along the z axis are recorded by a CCD beam profiler to extract M 2 values. (b) Histogram of M 2 values for 30 localized modes
measured in the experiment. (c) Double slit (slit separation, 500 μm; slit width, 80 μm) inserted in the same setup for spatial coherence evaluation.
(d) Interference pattern generated by the localized mode. (e) Intensity distribution averaged over the vertical direction of the pattern in (d) [27].
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compared with the corresponding input test images by the
MAE method. Figure 6(a) demonstrates the experimental pro-
cedure to generate the training and test data. Based on the work
reported by Zhao et al. [15], a set of 4000 different images from
the MNIST database is sent into the SLM, and the transported
raw intensity images are recorded by a CCD. These 4000 image
pairs serve as the training data. Another separate set of 500 im-
age pairs is used as test data. The architecture of the DCNN is
illustrated in Fig. 6(b). The DCNN first extracts high-dimen-
sional features from the loaded raw intensity image through
seven down-sampling residual units. Subsequently, another
three up-sampling residual units followed by four standard
residual units reconstruct the output image, which is an esti-
mation of the original input intensity image. The details of each
residual unit are given in Fig. 6(c). The size of all the filters used
in the convolutional operations is 3 × 3. The training time is

about 38 min based on two GPUs (GeForce GTX 1080
Ti). The reconstruction time is about 4 ms per test image.
The short reconstruction time demonstrates that the DCNN-
based GALOF imaging system has the potential to perform
video-rate real-time imaging.

Figure 7 shows sample test results and error analysis based
on the DCNN/GALOF scheme proposed by Zhao et al. [15].
The input images located at different working distances shown
in Figs. 7(a1)–7(c1) are collected with just a cleaved fiber input
end. The experiments are repeated for both straight GALOF
and bent GALOF while the DCNN model is the same one
and is trained just using the data collected from the straight
GALOF. Comparing the input images with the reconstructed
images, it is apparent that the DCNN/GALOF system can re-
cover the true images remarkably well. A further quantitative
error analysis for the test process is shown in Fig. 7(d). The low

Fig. 6. (a) Schematic of deep-learning-based imaging experimental setup (LD, 405 nm laser diode; LP, linear polarizer; BS, beam splitter; SLM,
spatial light modulator). The pixel size of the SLM is 9.2 μm × 9.2 μm, and the total number of pixels of the SLM is 1920 × 1152. The pixel size of
the CCD is 6.45 μm × 6.45 μm, and the total number of pixels of the CCD is 1388×1038. The fiber used here is a 90-cm-long GALOF(1) sample.
In (a) the SLM is illuminated by a collimated laser beam delivered by a single-mode fiber. The SLM is modulated by 8-bit gray-scale input images
obtained from the Modified National Institute of Standards and Technology (MNIST) database of handwritten digits. Being located between two
linear polarizers with the same polarization, the SLM creates intensity objects that are resized to a matrix of 56 × 56 pixels. Then the intensity objects
are de-magnified and imaged onto the GALOF(1) input facet by a combination of a tube lens and a 4× objective. The CCD records the raw image
of the output facet of the GALOF(1) sample. The raw images are cropped to a size of 896 × 896 for processing. (b) Architecture of the DCNN.
The DCNN is trained by 4000 image pairs (input images and corresponding transported raw images). After the training process, the DCNN can
recover test objects from raw test images recorded by the CCD in the test phase. Five-hundred different image pairs serve as test data. (c) shows the
detailed structures of residual units corresponding to the arrows in the top row of (c) [15].
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MAE error proves that the trained DCNN models the under-
lying physics of the imaging system accurately. Based on the
results in Fig. 7, the main advantages of DCNN/GALOF sys-
tem can be summarized as follows. First, the system can deliver
artifact-free images without any distal optics for various work-
ing distances. This capability allows us to reduce the imaging
unit to the diameter of the fiber itself so that any penetration
damage can be minimized when performing in vivo imaging.
Furthermore, being able to deliver the image of the object at
considerable working distance would further avoid the contact
damage especially for in vivo studies of neural activity. Second,
the imaging process of the DCNN/GALOF system is bending-
independent so that the DCNN model trained using data from
a certain fiber state can be applied to perform high-fidelity
reconstruction of images transported by any other fiber state.
This is in striking contrast to multimode fiber (MMF) imaging
systems. Current MMF-based imaging systems mainly rely
on the transmission matrix method to perform image recon-
structions [34,52–54]. However, the transmission matrix is
extremely sensitive to external perturbations. Tiny shifts or
bending (a few hundred micrometers) of the MMF can impair
the imaging process unless a recalibration of the transmission
matrix is performed, or very precise knowledge of the bending
state and its shape is known [54]. Recently, DCNNs have also

been reportedly used for image reconstruction and classification
after propagation through MMF [40,41,43]. Similar to the
concept applied in DCNN/GALOF systems, DCNNs are ex-
plored to learn the image transfer processes through MMFs so
that images of objects can be recovered from measured speckle
patterns. Unfortunately, current DCNN-based MMF systems
are very vulnerable to environmental changes such as fiber
bending or temperature variations since the multimode infer-
ence effects inside the MMFs are inherently extremely sensitive
to any refractive index changes limiting the robustness of such
systems.

The abovementioned DCNN is also able to transfer its
learning capability to reconstruct objects that belong to classes
different from the training objects. As shown in Fig. 8, the
DCNN trained by handwritten digits from the MNIST data-
base can be applied to reconstruct English letters. The English
letters are from a different domain compared to the handwrit-
ten numbers. Although the demonstrated results are mainly
based on handwritten numbers and English letters, imaging tar-
gets of DCNN/GALOF systems are not limited to binary and
sparse objects. Overall, the DCNN/GALOF system is a robust,
high-fidelity, and highly functionalized imaging system provid-
ing potential benefits for applications in both basic research and
clinical diagnosis.

Fig. 7. (a1)–(c1) Three test input images located at different working distances, ranging from 0 mm to 4 mm. The blue arrow and the black arrow
indicate the reconstruction processes for data collected from the straight and the bent states of the same 90-cm-long GALOF(1) sample, respectively.
For the bent state, the bending angle is 90 deg. The DCNN used here is trained just once by the training data collected from the straight fiber.
(a2S)–(c2S) Raw intensity images collected from the straight fiber. (a2B)–(c2B) Raw intensity images collected from the bent fiber. (a3S)–(c3S)
Reconstructed images from raw intensity images (a2S)–(c2S). (a3B)–(c3B) Reconstructed images from raw intensity images (a2B)–(c2B). (a2S)–(a3S)
and (a2B)–(a3B) are obtained when the working distance is 0 mm. (b2S)–(b3S) and (b2B)–(b3B) are obtained for 2 mm working distance.
(c2S)–(c3S) and (c2B)–(c3B) are obtained for 4 mm working distance. (d) Averaged MAE and the corresponding standard deviation of the 500 test
images for both straight GALOF and bent GALOF [15].

Fig. 8. Transfer-learning reconstruction of English letters. (a) Input image. The working distance is 0 mm, and the GALOF is kept straight.
“CREOL” is short for “College of Optics and Photonics.” The size of the input image is 56 × 200 pixels. (b) Reconstructed image.
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5. CONCLUSIONS

Disordered optical fiber shows great potential for next-gener-
ation imaging systems in general and FOEs in particular.
We demonstrate high and sometimes superior imaging quality
and system capabilities that originate from the special guiding
properties in disordered structures due to TAL. Important
structural parameters, such as the air-filling fractions and fea-
ture sizes, influence the localization strength, which is directly
related to the point spread function and resolution of the im-
aging system. GALOF with large refractive index fluctuations
and near-optimal feature sizes demonstrates extraordinary im-
age transport performance. High-fidelity and bending-indepen-
dent imaging is realized through the GALOF. The current
GALOF performance is still limited by the speckle-pattern ar-
tifact in the transported image and operation at a fixed working
distance. These challenges can be addressed by introducing
deep-learning techniques and applying them to an imaging
reconstruction process. Future efforts will focus on exploring
improved GALOF designs and fabrication, as well as the devel-
opment of more efficient deep-learning algorithms in particular
for the reconstruction of complex biological objects.
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