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Optimization of an optical coherence imaging (OCI) system on the basis of task performance is a challenging
undertaking. We present a mathematical framework based on task performance that uses statistical decision
theory for the optimization and assessment of such a system. Specifically, we apply the framework to a rela-
tively simple OCI system combined with a specimen model for a detection task and a resolution task. We con-
sider three theoretical Gaussian sources of coherence lengths of 2, 20, and 40 mm. For each of these coherence
lengths we establish a benchmark performance that specifies the smallest change in index of refraction that
can be detected by the system. We also quantify the dependence of the resolution performance on the specimen
model being imaged. © 2005 Optical Society of America
OCIS codes: 000.5490, 030.6600, 170.4500.
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. INTRODUCTION
ptical coherence imaging (OCI), which encompasses op-

ical coherence tomography and optical coherence micros-
opy, is an interferometric technique using the low coher-
nce property of light to axially image at high resolution
n biological tissues.1–3 While the concept of OCI is rela-
ively simple to understand, the instrumentation and op-
imization of an OCI system is a challenging undertaking.
his challenge in developing an OCI system includes con-
iderations such as the properties of the light source, pos-
ible modulation, polarization dependence, component
ispersion, and the tissue type being imaged. In addition,
his difficulty is compounded by the fact that a single OCI
ystem may not necessarily be optimized for every task
hat may be presented. Using the method of trial and er-
or to optimize an OCI system would take an inordinate
mount of time. Therefore a mathematical method for
ask-based optimization and performance assessment of
n OCI system incorporating the above-mentioned consid-
rations would be an extremely useful technique. Such an
ptimization and performance assessment of an OCI sys-
em can be constructed on the basis of task performance
y using statistical decision theory.
In statistical decision theory, there are two types of

asks that can be performed: estimation and classifica-
ion. In estimation tasks, a parameter is inferred from the
ata given. A radiologist required to provide the approxi-
1084-7529/05/061132-11/$15.00 © 2
ate size of a tumor given an image of the tumor is an
xample of an estimation task. In a classification task, the
ata given are inferred to belong to a given set of classes.

radiologist required to determine whether an image
oes or does not contain a tumor is an example of a clas-
ification task. Any task that consists of only two possible
ypotheses is known as a binary classification task. In
his paper we will be concerned only with binary classifi-
ation tasks; the specific tasks with which we are con-
erned will be detailed in Section 3. In general, binary
lassification operates on two hypotheses: The first is
nown as the negative hypothesis H0; the second is
nown as the positive hypothesis H1. If the negative hy-
othesis is true, the data to be classified belong to the ze-
oth class. Similarly, if the positive hypothesis is true, the
ata to be classified belong to the first class.
Regardless of whether the task is an estimation or a

lassification task, an observer will be present. An ob-
erver is defined as the means by which a task is accom-
lished, whether this observer is a person or a machine.4

everal types of observer models for binary decision tasks
an be found in the literature.5–8 The pinnacle of observer
odels, against which all other observers can be com-

ared, is the ideal observer. The ideal observer is an ob-
erver that uses all statistical information available to
aximize task performance. However, this observer re-

uires full knowledge of the probability density functions
005 Optical Society of America
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f the data under each hypothesis. Therefore as the com-
lexity of the OCI system increases, the ideal observer
uickly becomes intractable. Hence a less-demanding ob-
erver must be considered. A linear model or linear dis-
riminant presents a fine option because linear discrimi-
ants are easy to compute, the performance is easy to
ummarize, and far less information is needed on the data
tatistics than is needed by the ideal observer. The opti-
al linear discriminant is the Hotelling observer,4 which
e will adopt in this paper. The ability of the Hotelling

bserver to discriminate between the data belonging to
he class associated with the negative or the positive hy-
othesis is represented by a scalar quantity known as the
etectability index.
We propose to use the detectability index to determine

ow to optimize an OCI system or determine how well an
CI system performs for a given task. The detectability

ndex is the effective signal-to-noise ratio associated with
measured area under the receiver operator characteris-

ic curve (AUC), which is a measure of the average of the
rue positive fraction, for all values of the false positive
raction. The true positive fraction is the ratio of correct
ecisions for the positive hypothesis to the total number
f cases in which the positive hypothesis is true. The false
ositive fraction is the ratio of incorrect decisions for the
ositive hypothesis to the total number of cases in which
he negative hypothesis is true. A more detailed explana-
ion of the detectability, the receiver operator characteris-
ic curve, the AUC, the true positive fraction and the false
ositive fraction is given by Barrett and Myers.4

These scalar quantities known as the detectability and
he AUC depend on the entire OCI system setup as well
s on the specimen being imaged. Therefore in modeling
he entire OCI system, which includes a specimen model,
he system can be optimized by varying one of its param-
ters and investigating the effect on the detectability in-
ex and the AUC. Also, by varying the parameters of the
pecimen model, the diagnostic performance of the system
ay also be assessed.
In order to evaluate an OCI system for specific tasks,

e must know how the detectability index and the AUC
re defined mathematically as they relate to the OCI sys-
em and how the specimen model being imaged and the
pecific tasks are defined. These three subjects are
reated in Section 2. If we consider a simple OCI system,

benchmark performance can be established. In the fu-
ure, when complexity is added to the system, this bench-
ark performance will provide a standard to which these
ore complex systems may be compared. Therefore in
ection 3 we define a simple OCI system and apply the
athematics presented in Section 2 to the simple OCI

ystem for the defined tasks for the purpose of perfor-
ance assessment. In this assessment we investigate

hree theoretical sources with Gaussian power spectral
ensities (PSDs) of various spectral widths. We choose the
hree different spectral widths in order to approximate
he various spectral widths currently available in OCI. In
ection 4 we verify that the results of these simulations
ehave as expected, present the benchmark performance
ound, and reiterate the assumptions used and possible
xtensions of the work presented. Finally, Section 5 pro-
ides a short summary of the work.
. METHODS
n this section the expressions for the detectability index
nd the AUC will be reviewed, and their application to a
eneral OCI system will be provided. Also, the specimen
odel being imaged will be described, and the tasks will

e defined.

. Detectability Index and Area under the Receiver
perator Characteristic Curve
rom statistical decision theory, the detectability index

or a binary classification task associated with the Hotell-
ng observer based on discrete measures is given by9

d2 = X†K−1X. s1d

he quantity X is an N31 column vector representing
he difference between the ensemble averages of members
f each of the two classes of the binary classification task.
pecifically, we have two classes, the zeroth class and the
rst class, as previously stated. Also let us assume that
e have a system output depending on time, denoted Istd.
iven that the H0 hypothesis is correct, an output I0std
ill be present (i.e., the zeroth class is present); or if the
1 hypothesis is correct, an output I1std will be present

i.e., the first class is present). Each of these two outputs,
0std and I1std will have an associated noise. Therefore
ver an ensemble of these outputs the averages of these
utputs will be kkI0stdll and kkI1stdll, where kk·ll denotes the
nsemble average or the statistical average over the two
ources of randomness that we will consider. The inner
ngle bracket will represent an average over the Poisson
oise at the detector that is conditional on the source
eld. The outer bracket will indicate the average over the
aussian statistics of the source field. Occasionally we
ill use a single set of angle brackets when we are aver-
ging over the source statistics only. This will occur when
he quantity being averaged is a deterministic function of
he source field either by definition or because the Poisson
tatistics have already been averaged out. These averages
re sampled at discrete points in time, and the elements
f the X vector are given as

Xn = kkI1stndll − kkI0stndll. s2d

he quantity K in Eq. (1) is an N3N matrix representing
he weighted average, depending on the a priori probabil-
ty of each class, of the autocovariance matrices of each of
he two classes. The autocovariance matrix or sampled
ata can be computed from sampling of the autocovari-
nce function or from the continuous process. For a given
lass, the ith class si=0,1d, for instance, the autocovari-
nce function, will be given by

Kist,t8d = kkIistdIist8dll − kkIistdllkkIist8dll. s3d

hen the autocovariance function for each class is
ampled at discrete points in time, the elements of the K
atrix are given by

Knm = psH0dK0stn,tmd + psH1dK1stn,tmd, s4d

here psH0d and psH1d are the a priori probabilities of hy-
otheses H0 and H1, respectively, being true. If we as-
ume that each class has an equal probability of occur-
ing, Eq. (4) becomes
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Knm = 1
2K0stn,tmd + 1

2K1stn,tmd. s5d

The way that the detectability index is best related to
iagnosis is through the AUC. Assuming that the distri-
ution of the Hotelling test statistic is normal under both
he zeroth class and the first class, the AUC may be ex-
ressed in terms of the detectability as4

AUC = 1
2 + 1

2 erfsÎd2/2d. s6d

his normality assumption can be justified under the
entral-limit theorem since the Hotelling test statistic is a
inear combination of the components of the data vector
nd, for the SKE task we are considering, these compo-
ents are statistically independent random variables.

. Required Quantities of the Optical Coherence
maging System
he basic OCI system is quite simple in construction; an
xample is the free-space OCI system shown in Fig. 1.
enerally, the measured output of an OCI system is di-

ectly related to the detected photocurrent. Therefore we
ill let this detected photocurrent be our OCI system out-
ut Istd. To compute the detectability as given in (1), we
ust first derive the photocurrent Istd along with its
ean kkIstdll and its autocovariance function Kst , t8d. Both

he mean photocurrent data and the autocovariance func-
ion of the photocurrent data are derived for the case of
npolarized light, isotropic propagation through the sys-
em, and only normal incidence of the light propagating
hrough the system. The mean photocurrent and autoco-
ariance function can be extended past this simple case so
hat polarization and nonnormal incidence may be taken
nto account; however, within the scope of this paper the
imple case will be considered to establish a benchmark
erformance. Our strategy in what follows is to show how
e may express the mean and the autocovariance func-

ions of the photocurrent data, and we will discover in the
rocess that certain statistical moments of the source are
eeded. We will express these moments, in terms of the
pectral characteristics of the source, as they arise.

The photocurrent from the detector can be expressed
imply as the number of photoelectrons Nstd created as a
unction of time by the incident electric field as

Fig. 1. Basic free-space OCI system setup.
Istd =
e

Dt
E

t−Dt

t

Nst8ddt8, s7d

here e is the charge of an electron s1.6310−19 Cd and Dt
s the integration window associated with the detector.
or the sake of simplicity, we can rewrite the photocur-
ent from Eq. (7) as

Istd =
e

Dt
E

−`

`

rst − t8dNst8ddt8, s8d

here the function rstd is defined as

rstd = H1 0 ø t ø Dt

0 otherwiseJ . s9d

The number of photoelectrons created is directly pro-
ortional to the electric field incident on the detector,
hich is proportional to the electric field emitted from the

ource. However, the electric field emitted from the broad-
and source and the creation of photoelectrons in the de-
ection process have certain statistics associated with
hem. The broadband nature of the source ensures that
he electric field emitted from the source will obey circular
aussian statistics; also, it is well known that the cre-
tion of photoelectrons in the detection process obeys
oisson statistics.10 Hence Nstd may be referred to as a
oubly stochastic Poisson random process.4,10 We will now
ook at the statistics of the source and the detection pro-
ess and investigate how these noise components contrib-
te to the mean photocurrent. Within the scope of this pa-
er we will not consider any other noise components.

. Mean Photocurrent
o determine the mean photocurrent of the system, we
ust first look at the system input, the light source, and

ropagate this input through the system in order to de-
ermine the mean output. The light source emits an elec-
ric field Esstd that we can decompose into a superposition
f plane waves by taking its Fourier transform and ex-
ressing it as

Esstd =E
−`

`

expsivtdÊssvddv, s10d

here the caret denotes a function in the Fourier domain.
he amplitude of these plane waves will be split at the
eam splitter. One part of the field will propagate through
he reference arm. Through this propagation it will expe-
ience a phase delay f1sv , td, which will account for the
ptical path length, dispersion, modulation, and other
ossible phase delays in the reference arm. This part of
he field will also experience a loss of amplitude and pos-
ibly phase shifts upon reflection, which will be described
y âsvd; âsvd will account for absorption and nonequal re-
ection amplitudes within the reference arm as well as

ncorporate losses due to the beam splitter. Another part
f the field will propagate through the specimen arm.
hrough this propagation it will experience a phase delay
2sv , td, which will account for the optical path length,
ispersion, modulation, and other possible phase delays
n the specimen arm. This part of the field will also expe-
ience a loss of amplitude and phase shifts from the speci-
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en model, described mathematically by b̂svd; b̂svd will
ccount for absorption, nonequal reflection amplitudes,
nd phase shift upon reflection due to the specimen model
s well as incorporate losses due to the beam splitter.
hese altered parts of the field will recombine at the
eam splitter, and part of this sum of fields will propagate
o the detector; the remaining part of the sum will propa-
ate back toward the source. Therefore the total electric
eld at the detector may be related to the electric field at
he source by

Estd =E
−`

`

hâsvdexpfif1sv,td + ivtg

+ b̂svdexpfif2sv,td + ivtgjÊssvddv. s11d

or simplicity, hereafter we define

msv,td = âsvdexpfif1sv,tdg + b̂svdexpfif2sv,tdg. s12d

herefore Eq. (11) may be rewritten as

Estd =E
−`

`

msv,tdexpsivtdÊssvddv. s13d

n Eq. (13) both Estd and Êssvd are stochastic processes.
iven that the source field Esstd obeys circular Gaussian

tatistics, kEsstdl is zero. This implies that Estd is also a
aussian random process with kEstdl equal to zero.
Taking the statistical average over all random pro-

esses, Eq. (8) may be rewritten to give the mean photo-
urrent as

kkIstdll = kk e

Dt
E

−`

`

rst − t8dNst8ddt8ll
=

e

Dt
E

−`

`

rst − t8dkkNst8dlldt8. s14d

Noting again that Nstd is a doubly stochastic Poisson
andom process, the conditional mean of Nstd is given by

N̄std =
RA

eh0
E†stdEstd = rE†stdEstd, s15d

here R is the responsivity of the detector, A is the area
f the detector, and h0 is the impedance of free space
377 Vd. The quantity r is defined as

r =
RA

eh0
. s16d

rom the conditional mean, the overall mean of the out-
ut is written as

kkNstdll = kN̄stdl = rkE†stdEstdl. s17d

In Eq. (17), kkNstdll is the average of Nstd over the Pois-
on noise associated with detection and the Gaussian
oise associated with the source field. On the other hand,
N̄stdl averages N̄std over the Gaussian statistics only,
ince the Poisson noise has already been averaged out to
et N̄std. If we combine Eqs. (13) and (17), kkNstdll can be
ewritten as
kkNstdll = rE
−`

` E
−`

`

m*sv,tdmsv8,tdexpfisv8 − vdtg

3 kÊs
†svdÊssv8dldvdv8. s18d

e will assume that the source field is a stationary ran-
om process and define the scalar autocovariance func-
ion of the source field as

Gstd = kEs
†st − tdEsstdl. s19d

he stationarity assumption is related to the stability of
he source. We may relax this assumption to quasi-
tationarity in order to account for other sources of varia-
ion in the source field.4 The scalar autocovariance func-
ion has the property

G*std = Gs− td. s20d

his property ensures that the Fourier transform Ĝsvd is
eal. Hereafter, Ĝsvd will be denoted Ssvd to represent the
SD of the source.
The expectation kÊs

†svdÊssv8dl from Eq. (18) may be ex-
ressed by means of the inverse Fourier transform as

kÊs
†svdÊssv8dl =

1

4p2E
−`

` E
−`

`

expfisv8t2 − vt1dg

3 kEs
†st1dEsst2dldt1dt2

=
1

4p2E
−`

` E
−`

`

expfisv8t2 − vt1dg

3Gst2 − t1ddt1dt2

=
1

2p
dsv8 − vdE

−`

`

expFiSv8 + v

2
DsGGssdds

= dsv8 − vdSsvd. s21d

nserting Eq. (21) into Eq. (18), we rewrite kkNstdll as

kkNstdll = rE
−`

`

umsv,tdu2Ssvddv. s22d

inally, the mean photocurrent can be expressed as

kkIstdll =
re

Dt
E

−`

`

rst − t8dFE
−`

`

umsv,tdu2SsvddvGdt8.

s23d

. Autocovariance Function of the Photocurrent
ow that we have an expression for the mean photocur-

ent, we next need the autocovariance function of the pho-
ocurrent in order to compute the detectability index.
tarting with the autocovariance function expressed in
q. (3) and substituting into it the expression in Eq. (8)

or the various photocurrents, we can write the autocova-
iance function as
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Kst,t8d = S e

Dt
D2E

−`

` E
−`

`

rst − t1drst8 − t2dKNst1,t2ddt1dt2,

s24d

here KNst1 , t2d is the autocovariance function of the ran-
om process Nstd. This autocovariance function is ex-
ressed as

KNst1,t2d = kkNst1dNst2dll − kkNst1dllkkNst2dll

= kkNst1dlldst1 − t2d + KN̄st1,t2d. s25d

he term KN̄st1 , t2d is the conditional autocovariance func-
ion, meaning that the Poisson statistics of the detection
rocess are taken care of in the preceding term. This con-
itional autocovariance function is given by4

KN̄st1,t2d = kN̄st1dN̄st2dl − kN̄st1dlkN̄st2dl. s26d

he first term on the right-hand side of Eq. (26) can be
xpressed in terms of the statistical properties of the field
s

kN̄st1dN̄st2dl = r2kE†st1dEst1dE†st2dEst2dl

= r2kE†st1dEst1dlkE†st2dEst2dl

+ r2 trfkEst1dE†st2dlkEst2dE†st1dlg

= kN̄st1dlkN̄st2dl + r2 trfkEst1dE†st2dl

3kEst2dE†st1dlg, s27d

here tr is the three-dimensional trace function. Combin-
ng Eqs. (26) and (27), we can rewrite the conditional au-
ocovariance function as

KN̄st1,t2d = r2 trfkEst1dE†st2dlkEst2dE†st1dlg

= r2 trfJst1,t2dJst2,t1dg = r2 trfJst1,t2dJ†st1,t2dg,

s28d

here

Jst1,t2d = kEst1dE†st2dl. s29d

Now that we have the conditional autocovariance func-
ion in terms of the field at the detector, we can express it
n terms of the field at the source. We define the autoco-
ariance matrix of the source as

Gstd = kEsstdEs
†st − tdl. s30d

his matrix has the following two properties:

G†std = Gs− td, s31d

Gstd = trfGstdg. s32d

ext, Jst1 , t2d is computed as

Jst1,t2d =E
−`

` E
−`

`

msv,t1dm*sv8,t2dexpfisvt1 − v8t2dg

3 kÊssvdÊs
†sv8dldvdv8. s33d

he expectation kÊssvdÊs
†sv8dl from Eq. (33) may be ex-

ressed by means of the inverse Fourier transform, fol-
owing the same scheme as in Eq. (21), as

kÊssvdÊs
†sv8dl = dsv8 − vdĜsvd. s34d

ombining Eqs. (28), (33), and (34) produces the condi-
ional autocovariance function KN̄st1 , t2d as

KN̄st1,t2d = r2E
−`

` E
−`

`

msv,t1dm*sv,t2dm*sv8,t1d

3 msv8,t2dexpfisv − v8dst1 − t2dg

3 trfĜsvdĜ†sv8dgdvdv8. s35d

ence the total autocovariance function is given by

Kst,t8d = S e

Dt
D2E

−`

`

rst − t1drst8 − t1dkkNst1dlldt1

+ S e

Dt
D2E

−`

` E
−`

`

rst − t1drst8 − t2dKN̄st1,t2ddt1dt2

s36d

t is shown in Appendix A that if the PSD has as large a
andwidth as required by OCI, on the order of 1013 Hz,
he second term on the right-hand side of Eq. (36) can be
eglected so that the total autocovariance function can be
pproximated as

Kst,t8d < S e

Dt
D2E

−`

`

rst − t1drst8 − t1dkkNst1dlldt1 s37d

. Specimen Model
or the sake of our assessment, a specimen model, which

s described mathematically by the term b̂svd, will be de-
ned as a single layer bounded by two interfaces as
hown in Fig. 2. The first interface is a boundary between
ir and the layer refractive index n. The second interface
s a boundary between the layer refractive index n and a
ubstrate refractive index n+Dn. A distance l separates
he two interfaces. The expression for the reflection from
his specimen model is given in Eq. (38), with the Fresnel
eflections r1 and r2, and the phase delay dsvd given by
q. (39).

Fig. 2. Illustration of the specimen model.
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b̂svd = r1 + s1 − r1
2dr2d2svd, s38d

r1 =
1 − n

1 + n
, r2 =

− Dn

2n + Dn
, dsvd = expSiv

nl

c
D . s39d

e have ignored multiple reflections because of the low
eflected power at each interface for the changes in refrac-
ive index that we will consider.

. Task Definitions
e shall investigate two tasks for assessing the perfor-
ance of the system: a detection task and a resolution

ask.
For the detection task, we will assess the smallest

hange in index of refraction at the second interface that
he system can discriminate. Therefore we define the
egative hypothesis H0 as no second interface, i.e., Dn
0. The positive hypothesis H1 is defined as having a sec-
nd interface, i.e., Dn=Dn0Þ0. For H1, Dn0 will be in-
reased so that we can see how the detectability index
nd the AUC vary. To be sure that reflected fields from the
wo interfaces of the specimen model do not interfere for
his task, we set the separation distance l to be the long-
st coherence length of the three theoretical sources con-
idered.

For the resolution task, we assess the smallest separa-
ion of the two interfaces of the layer that the system can
iscriminate. Therefore we have Dn equal to a constant.
he negative hypothesis H0 for this task is defined as the
wo interfaces at the same location, i.e., l=0. The positive
ypothesis H1 corresponds to the two interfaces separated
y a distance, i.e., l= l0Þ0. For H1, l0 will be increased so
hat we can see how the detectability index and the AUC
ary for various values of the constant Dn for each theo-
etical source considered.

. SIMULATION
o properly simulate the detectability index associated
ith the detection task and the resolution task defined in
ection 2, we must first define the theoretical setup and
hoose reasonable input parameters. We will consider the
heoretical system to be the free-space interferometer sys-
em shown in Fig. 1. The scanning mechanism will be a
irror translating at a speed vm. As previously stated, we
ill investigate the detection task and the resolution task

or three theoretical Gaussian PSDs. These normalized
aussian PSDs are defined mathematically as11

Ssvd =
2sln 2d1/2

p1/2Dv
expH− F2sln 2d1/2

v − v0

Dv
G2J , s40d

here v0 is the center angular frequency and Dv is the
ngular-frequency bandwidth (i.e., the spectral width) at
WHM. The angular-frequency bandwidth is related to
he coherence length lc of the source as

Dv =
8 ln 2

lc
c. s41d

he resolution may be considered to be half the coherence
ength.11 To define the three Gaussian PSDs, we consider
oherence lengths of 2, 20, and 40 mm, corresponding to
esolutions of 1, 10, and 20 mm and angular-frequency
andwidths of 8.3231014 rad/s, 8.3231013 rad/s, and
.1631013 rad/s. Also, we consider the center angular
requency of all of these PSDs to be 1.9831015 rad/s,
hich corresponds to a wavelength of 950 nm. To estab-

ish the sampling frequency of the power spectrum of the
ource, we define the bandwidth B to be Dv /2p expressed
n hertz. The autocorrelation function that is the Fourier
ransform of the PSD is considered to be defined in a time
ange L of 3.5/B. We define the extent of the Gaussian to
e 3.5 times its sigma, given that below this value the
aussian is very close to zero. The maximum optical fre-
uency F of the PSD is given by sv0+1.75Dvd /2p. Accord-
ng to the Nyquist sampling condition, the sampling step
T in the time domain should be at least 1/ s2Fd. The
umber of samples in the PSD or its Fourier transform is
hen given by L /DT. We computed that for the three val-
es of the three coherence lengths in increasing order

i.e., 2, 20, and 40 mm) and the associated PSD, the mini-
um number of samples that the computation yields is

9, 179, and 346, respectively. In the simulations, each of
he PSDs was sampled with 600 points over the angular
requency range of v0−1.75Dv to v0+1.75Dv, which is
ell above the minimum required; this range minimizes

ampling in the tails of each Gaussian PSD, where the
SDs have values near zero. Also, the power for each of
hese three theoretical sources is set to 3 mW. For ease in
omparing the results, in the simulation we will vary no
arameters other than the coherence length and therefore
he angular-frequency bandwidth and the parameter to
e varied for each task.
We must also provide quantitative parameters for the

alues of âsvd, f1sv , td, and f2sv , td given in Eq. (12), the
alue of Dt given in Eq. (7), the values of R and A given in
q. (16), and the value of n given in Eq. (39). The losses
nd phase shifts of the beam splitter are ignored, and the
irror is assumed to have a unit reflection for all frequen-

ies: âsvd is 1. The phase terms f1sv , td and f2sv , td are
et to vs2lr /cd+vmt and vs2ls /cd, respectively. The con-
tants lr and ls are the distances from the point where the
eld is split to the initial location of the reference mirror
nd the specimen, respectively. For the purpose of the
imulation, ls is chosen to be 3 mm, and lr is chosen to be
mm less 28 mm. The speed of the mirror vm is chosen to

e 0.154 m/s, and t is increased from zero by steps of
.4 ms over the total scan time of 0.8 ms for a total of 2000
ime samples. The detector integration time Dt is 4 ms
i.e., bandwidth is 125 KHz); thus time sampling at
.5 MHz (i.e., every 0.4 ms) ensures that the Nyquist sam-
ling condition will be satisfied. The responsivity R of the
etector is assumed to be 1 for all frequencies, and the
rea A of the detector is chosen to be 0.79 mm2; these
uantities result in a r value of 1.309731010 m2/ sV2sd.
he value of the refractive index n is set to 1.4.
Finally, finite-width integrations, and more particu-

arly trapezoidal numerical integrations, were performed
n the simulations.

. Detection Task
s previously stated for the detection task, we will assess

he smallest change in refractive index at the second in-
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erface that our system can discriminate. To be sure that
he interference between the two interfaces of the speci-
en model does not influence this measure, we set the

istance between the two interfaces l to 40 mm, the long-
st coherence length considered. The value of Dn0 is then
ncreased from 0 to 3310−5. The plots for the detectabil-
ty index and the AUC versus the value of Dn0 for each
oherence length considered are given in Fig. 3.

. Resolution Task
or the task of resolution, we assess the smallest separa-
ion of the two interfaces of the layer defined in Section 2
hat the system can discriminate. To compute the detect-
bility index and the AUC for the resolution task, we
hose a change in refractive index corresponding to (a) a
5% probability of detection sAUC=0.75d, (b) the smallest
hange in refractive index corresponding to 100% prob-
bility of detection (AUC first reaches 1), and (c) twice the
mallest change in refractive index corresponding to
00% probability of detection for the detection task for
ach of the three coherence lengths; these three refractive
ndices will be denoted Dn1, Dn2, and Dn3, respectively.
hese changes in refractive indices are Dn1=6.51310−6,
n2=3310−5, and Dn3=6310−5 for a coherence length of
mm; Dn1=2.06310−6, Dn2=1.05310−5, and Dn3=2.1

ig. 3. Detection task. (a) Detectability index, (b) AUC for
aussian sources of 2, 20, and 40 mm coherence length.
10−5 for a coherence length of 20 mm; and Dn1=1.45
10−6, Dn2=9310−6, and Dn3=1.8310−5 for a coherence

ength of 40 mm. For each of the three coherence lengths,
he value of l0 is increased from 0 to the coherence length
o we can see how the detectability index and the AUC
hange with the separation distance l0. The plots for the
etectability index and the AUC versus the value of l0, the
eparation distance, for each of the cases are given in
ig. 4.

. DISCUSSION
n this section we discuss the results of the simulation for
oth the detection task and the resolution task. Also, we
eiterate the assumptions made in this paper and present
he possible extensions of the mathematical framework
rovided.

. Detection Task
s expected and as seen in Fig. 3, the increase in the de-

ectability index and the AUC as a function of increasing
hange in refractive index signifies that it becomes easier
or the observer to discriminate between a second inter-
ace and no second interface as the change in refractive
ndex increases. Specifically, according to the plot of the
UC in Fig. 3(b), with the parameters used and the sys-

em modeled the observer can detect a second interface
ith 100% probability when a change in index of 3
10−5 occurs for a coherence length of 2 mm, 100% prob-

bility when a change in index of 1.05310−5 occurs for a
oherence length of 20 mm, and 100% probability when a
hange in index of 9310−6 occurs for a coherence length
f 40 mm. These three changes in refractive index consti-
ute the benchmark performance for the detection task.
verall, a longer coherence length source has a greater
etectability index for a lower change in refractive index.
his phenomenon stems from the fact that under exactly
he same conditions, a longer coherence length source has
arger values for the X vector than a shorter coherence
ength source, as shown in Fig. 5.

. Resolution Task
s expected and as seen in Figs. 4(d)–4(f), the AUCs in-
rease as the separation distance between the two inter-
aces increases. However, within a separation distance
hat is less than half the coherence length of the source,
scillations are observed in both the detectability index
Figs. 4(a)–4(c)] and the AUCs [Figs. 4(d)–4(f)], at least for
he smallest change in refractive index indicated in the
urve definitions; these oscillations correspond to interfer-
nce from fields reflected from the first and second inter-
aces of the specimen model. Indeed, when the separation
f the two interfaces of the specimen model is smaller
han half the coherence length of the source, the reflected
elds from the two interfaces interfere constructively if
he optical path difference between the two layers is a
ultiple of the central wavelength of the source. Simi-

arly, for separations corresponding to out-of-phase inter-
ering fields, the fields interfere destructively. As the
eparation increases, the contrast of the fringes decreases
s a consequence of the nonmonochromatic light field.
pon first observing these oscillations, we validated that
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ig. 4. Resolution task. Detectability index versus separation distance for sources with coherence length of (a) 2 mm, (b) 20 mm, and (c)
0 mm. AUC versus separation distance for sources with coherence length of (d) 2 mm, (e) 20 mm, and (f) 40 mm.
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he oscillations’ period corresponded to optical separa-
ions that are multiples of the source’s central wave-
ength. Although this phenomenon is not speckle, since
e are dealing only with two layers rather than with a

cattering medium, it is reminiscent of speckle, which cor-
esponds to multiple-scatterers’ interference for interfer-
nces localized within the coherence length of the source.
n practice, given a specimen with varying properties
uch as unequal thickness layers or slight inhomogene-
ties in the refractive index defining a layer, the rapid os-
illations will be averaged out. Such averaging may also
pply when new sources of system noise are considered.
hus we expect that in practice, these high-frequency os-
illations will have no effect on system optimization.

Interestingly, even when the layer separation is beyond
alf the coherence length of the source, the observer can
iscriminate between two separated layers and two coin-
iding layers with only ,100% probability for the small-
st change in index of refraction. Also, through inspection
f the AUC in Figs. 4(d)–4(f), it can be seen that for
horter coherence lengths, the resolution performance of
he system depends less on the detection limit established

ig. 5. Signal X for the detection task given Dn0=0.1 for coher-
nce length sources of (a) 40 mm and (b) 2 mm.
n the detection task study; the shorter the coherence
ength, the higher the probability of distinguishing be-
ween two separated layers or two coinciding layers for
efractive indices below the detection limit determined by
he detection task. Thus the resolution performance of the
ystem depends on both the broadband source and the
pecimen being imaged.

For the change in refractive index Dn3, while the de-
ectability index has the same general behavior as the
hange in refractive indices Dn1 and Dn2, it can be seen
hat the AUC has changed tremendously. In fact, the AUC
hows that for any separation distance greater than zero,
he observer can discriminate between two separated lay-
rs and two coinciding layers with 100% probability. This
nding is in agreement with the following statement by
arris12:

“In the classic case of resolving two point sources in the
resence of Gaussian noise, results indicate that although
iffraction increases the difficulty of rendering a correct
inary decision, it does not prevent a correct binary deci-
ion from being made, no matter how closely spaced the
wo point sources may be” (p. 611).

Although this statement concerns incoherent imaging,
t is easily extended to the case of two layers in OCI.
herefore for a sufficient change in refractive index at the
econd interface, there is a 100% probability of distin-
uishing between two separated layers and two coincid-
ng layers. This sufficient change in refractive index is ap-
roximately Dn3. Thus for each of the three theoretical
ources, the resolution benchmark is 100% probability of
iscrimination of two separated layers from two coincid-
ng layers for DnùDn3 for the corresponding source re-
ardless of l0. This finding is further supported by previ-
us observation by Richards-Kortum and associates, who
tate that “changes in scattering occur on a microscopic
patial scale well below the typical resolution of OCT im-
ging systems, yet these changes still impact OCT im-
ges” (Ref. 13, p. 465).

. Assumptions and Possibilities
lthough the mathematics for the mean and autocovari-
nce of the photocurrent output of the OCI system were
erived for the simple case of unpolarized light, an isotro-
ic specimen model, and normal incidence of the propa-
ating beam, these derivations can be extended to include
olarization dependence, a nonisotropic specimen, and
onnormal incidence. We will include these cases as part
f future work.

The three PSDs considered within this paper are all the
ommonly used Gaussian shapes. However, the math-
matical framework provided allows for any arbitrary
SD to be used. We have done precisely this in a previ-
usly published study.14

Furthermore, the demonstrated system did not include
ny noise other than the Gaussian noise from the source
nd the Poisson noise of the detection process; this system
as simulated in order to verify that the model behaves
s expected. This model provides the basic framework for
hich inclusion of more-realistic system components and

ther sources of noise can be carried out for any general
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CI system. Also, the benchmark performance introduced
s set forth so that in the future, the results obtained with

ore-complex models can be compared with the results of
he simple OCI system modeled in the current study.

. CONCLUSION
e have presented the basics of a model to optimize and

ssess the performance of a general OCI system based on
he basis of task performance and statistical decision
heory. This general model was adapted to a simple OCI
ystem to allow us to assess the performance of the sys-
em in terms of a specific detection task and a specific
esolution task.

For a task-based performance assessment on the detec-
ion task for the simple OCI system presented, the small-
st change in refractive index detectable was shown to be
ependent on the angular-frequency bandwidth of the
ource. Considering the system parameters, a benchmark
erformance for the detection task is that a change in re-
ractive index of 3310−5 is detectable for a Gaussian
ource of 2 mm coherence length, a change in refractive
ndex of 1.05310−5 is detectable for a Gaussian source of
0 mm coherence length, and a change in refractive index
f 9310−6 is detectable for a Gaussian source of 40 mm
oherence length, with 100% probability.

Furthermore, the performance of this system based on
he resolution task was shown to be dependent on the
pecimen model and the angular-frequency bandwidth of
he source for small changes in the refractive index at the
econd interface. Also, the performance of the system
ased on the resolution task for changes in refractive in-
ex well beyond the detection limit was seen to agree with
revious findings. This agreement is that for infinitely
lose interfaces of sufficient change in index, i.e., changes
ell beyond the detection limit of 100%, the binary clas-

ification task of whether there are two separated layers
r two coinciding layers can be carried out with 100% ac-
uracy.

PPENDIX A
y performing order-of-magnitude estimation, we will
how that the Poisson statistics’ contribution to the auto-
ovariance dominates the Gaussian statistics’ contribu-
ion to the autocovariance. The Gaussian statistics’ contri-
ution to the autocovariance of the photocurrent can be
ritten as

KGst,t8d = S e

Dt
D2E

−`

` E
−`

`

rst − t1drst8 − t2dKN̄st1,t2ddt1dt2,

sA1d

here

KN̄st1,t2d = r2E
−`

` E
−`

`

msv,t1dm*sv,t2dm*sv8,t1dmsv8,t2d

3 expfisv − v8dst1 − t2dgtrfĜsvdĜ†sv8dgdvdv8.

sA2d

he term msv , td is defined as
msv,td = âsvdexpfif1sv,tdg + b̂svdexpfif2sv,tdg

= C1sv,td + C2sv,td. sA3d

he term trbĜsvdĜ†sv8dc can be expanded as

trbĜsvdĜ†sv8dc = ĜxxsvdĜxx
* sv8d + ĜxysvdĜyx

* sv8d

+ ĜyxsvdĜxy
* sv8d + ĜyysvdĜyy

* sv8d

= o
m=1

2

o
n=1

2

ĜmnsvdĜmn
* sv8d, x = 1, y = 2.

sA4d

sing the definition in Eq. (A3) and the expansion in Eq.
A4), Eq. (A2) can be rewritten as

KN̄st1,t2d = r2o
h=1

2

o
j=1

2

o
k=1

2

o
l=1

2

o
m=1

2

o
n=1

2 E
−`

`

Chsv,t1dCj
*sv,t2d

3 expfivst1 − t2dgĜmnsvddv

3E
−`

`

Ck
*sv8,t1dC1sv8,t2dexpf− iv8st1 − t2dg

3 Ĝmn
* sv8ddv8. sA5d

quation (A5) has a total of 64 terms. The two integration
erms are Fourier transforms of the composite functions

hsv , t1dCj
*sv , t2dĜmnsvd and Ck

*sv8 , t1dClsv8 , t2dĜmn
* sv8d;

e are concerned with the behavior of these autocovari-
nce terms only in terms of the difference between t1 and
2. If we assume that the functions âsvd and b̂svd have
ery broad spectral responses, i.e., the spectral responses
f these functions are much greater than the bandwidth
f the PSDs represented by Ĝmnsvd, and that the phase
unctions f1sv , td and f2sv , td are real, these Fourier
ransform terms will have widths in the time st1− t2d do-
ain on the order of the inverse of the frequency band-
idth of the PSDs. Also, by the central ordinate theorem,

hese terms will have a peak value proportional to the in-
egral of the PSDs. We will not concern ourselves with the
ntegrations in time in Eq. (A1). These integrations will
erve only to smooth the autocovariance.

If we use angular-frequency bandwidths of the PSDs on
he order of 2p31013 rad/s, the Fourier transform has a
idth in the time domain on the order of 1310−13 s. As-

uming a normalized area of 1 for the PSDs for ease and
sing the value of 131010 m2/ sV2sd for r, we can consider
he autocovariance as an equivalent delta function with

KN̄st1,t2d = Of6.4 3 10−5dst1 − t2dg, sA6d

here O represents “on the order of.”
The autocovariance term of the Poisson statistics

Nst1dldst1− t2d, with the same broad approximations, is
quivalently

kkNst1dlldst1 − t2d = Of1 3 1010dst1 − t2dg. sA7d

hus the Gaussian statistics’ contribution to the autoco-
ariance can be considered negligible in comparison with
hat of the Poisson statistics.
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