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Optimization of an optical coherence imaging (OCI) system on the basis of task performance is a challenging
undertaking. We present a mathematical framework based on task performance that uses statistical decision
theory for the optimization and assessment of such a system. Specifically, we apply the framework to a rela-
tively simple OCI system combined with a specimen model for a detection task and a resolution task. We con-
sider three theoretical Gaussian sources of coherence lengths of 2, 20, and 40 um. For each of these coherence
lengths we establish a benchmark performance that specifies the smallest change in index of refraction that
can be detected by the system. We also quantify the dependence of the resolution performance on the specimen
model being imaged. © 2005 Optical Society of America
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1. INTRODUCTION

Optical coherence imaging (OCI), which encompasses op-
tical coherence tomography and optical coherence micros-
copy, is an interferometric technique using the low coher-
ence property of light to axially image at high resolution
in biological tissues.!™ While the concept of OCI is rela-
tively simple to understand, the instrumentation and op-
timization of an OCI system is a challenging undertaking.
This challenge in developing an OCI system includes con-
siderations such as the properties of the light source, pos-
sible modulation, polarization dependence, component
dispersion, and the tissue type being imaged. In addition,
this difficulty is compounded by the fact that a single OCI
system may not necessarily be optimized for every task
that may be presented. Using the method of trial and er-
ror to optimize an OCI system would take an inordinate
amount of time. Therefore a mathematical method for
task-based optimization and performance assessment of
an OCI system incorporating the above-mentioned consid-
erations would be an extremely useful technique. Such an
optimization and performance assessment of an OCI sys-
tem can be constructed on the basis of task performance
by using statistical decision theory.

In statistical decision theory, there are two types of
tasks that can be performed: estimation and classifica-
tion. In estimation tasks, a parameter is inferred from the
data given. A radiologist required to provide the approxi-
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mate size of a tumor given an image of the tumor is an
example of an estimation task. In a classification task, the
data given are inferred to belong to a given set of classes.
A radiologist required to determine whether an image
does or does not contain a tumor is an example of a clas-
sification task. Any task that consists of only two possible
hypotheses is known as a binary classification task. In
this paper we will be concerned only with binary classifi-
cation tasks; the specific tasks with which we are con-
cerned will be detailed in Section 3. In general, binary
classification operates on two hypotheses: The first is
known as the negative hypothesis Hj, the second is
known as the positive hypothesis H;. If the negative hy-
pothesis is true, the data to be classified belong to the ze-
roth class. Similarly, if the positive hypothesis is true, the
data to be classified belong to the first class.

Regardless of whether the task is an estimation or a
classification task, an observer will be present. An ob-
server is defined as the means by which a task is accom-
plished, whether this observer is a person or a machine.*
Several types of observer models for binary decision tasks
can be found in the literature.’® The pinnacle of observer
models, against which all other observers can be com-
pared, is the ideal observer. The ideal observer is an ob-
server that uses all statistical information available to
maximize task performance. However, this observer re-
quires full knowledge of the probability density functions
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of the data under each hypothesis. Therefore as the com-
plexity of the OCI system increases, the ideal observer
quickly becomes intractable. Hence a less-demanding ob-
server must be considered. A linear model or linear dis-
criminant presents a fine option because linear discrimi-
nants are easy to compute, the performance is easy to
summarize, and far less information is needed on the data
statistics than is needed by the ideal observer. The opti-
mal linear discriminant is the Hotelling observer,* which
we will adopt in this paper. The ability of the Hotelling
observer to discriminate between the data belonging to
the class associated with the negative or the positive hy-
pothesis is represented by a scalar quantity known as the
detectability index.

We propose to use the detectability index to determine
how to optimize an OCI system or determine how well an
OCI system performs for a given task. The detectability
index is the effective signal-to-noise ratio associated with
a measured area under the receiver operator characteris-
tic curve (AUC), which is a measure of the average of the
true positive fraction, for all values of the false positive
fraction. The true positive fraction is the ratio of correct
decisions for the positive hypothesis to the total number
of cases in which the positive hypothesis is true. The false
positive fraction is the ratio of incorrect decisions for the
positive hypothesis to the total number of cases in which
the negative hypothesis is true. A more detailed explana-
tion of the detectability, the receiver operator characteris-
tic curve, the AUC, the true positive fraction and the false
positive fraction is given by Barrett and Myers.4

These scalar quantities known as the detectability and
the AUC depend on the entire OCI system setup as well
as on the specimen being imaged. Therefore in modeling
the entire OCI system, which includes a specimen model,
the system can be optimized by varying one of its param-
eters and investigating the effect on the detectability in-
dex and the AUC. Also, by varying the parameters of the
specimen model, the diagnostic performance of the system
may also be assessed.

In order to evaluate an OCI system for specific tasks,
we must know how the detectability index and the AUC
are defined mathematically as they relate to the OCI sys-
tem and how the specimen model being imaged and the
specific tasks are defined. These three subjects are
treated in Section 2. If we consider a simple OCI system,
a benchmark performance can be established. In the fu-
ture, when complexity is added to the system, this bench-
mark performance will provide a standard to which these
more complex systems may be compared. Therefore in
Section 3 we define a simple OCI system and apply the
mathematics presented in Section 2 to the simple OCI
system for the defined tasks for the purpose of perfor-
mance assessment. In this assessment we investigate
three theoretical sources with Gaussian power spectral
densities (PSDs) of various spectral widths. We choose the
three different spectral widths in order to approximate
the various spectral widths currently available in OCI. In
Section 4 we verify that the results of these simulations
behave as expected, present the benchmark performance
found, and reiterate the assumptions used and possible
extensions of the work presented. Finally, Section 5 pro-
vides a short summary of the work.
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2. METHODS

In this section the expressions for the detectability index
and the AUC will be reviewed, and their application to a
general OCI system will be provided. Also, the specimen
model being imaged will be described, and the tasks will
be defined.

A. Detectability Index and Area under the Receiver
Operator Characteristic Curve

From statistical decision theory, the detectability index
for a binary classification task associated with the Hotell-
ing observer based on discrete measures is given by9

d?=X'KX. (1)

The quantity X is an N X1 column vector representing
the difference between the ensemble averages of members
of each of the two classes of the binary classification task.
Specifically, we have two classes, the zeroth class and the
first class, as previously stated. Also let us assume that
we have a system output depending on time, denoted ().
Given that the H, hypothesis is correct, an output I,(¢)
will be present (i.e., the zeroth class is present); or if the
H{ hypothesis is correct, an output I;(¢) will be present
(i.e., the first class is present). Each of these two outputs,
Iy(¢t) and I;(¢t) will have an associated noise. Therefore
over an ensemble of these outputs the averages of these
outputs will be ((Iy(¢))) and ((I1(¢))), where ((-)) denotes the
ensemble average or the statistical average over the two
sources of randomness that we will consider. The inner
angle bracket will represent an average over the Poisson
noise at the detector that is conditional on the source
field. The outer bracket will indicate the average over the
Gaussian statistics of the source field. Occasionally we
will use a single set of angle brackets when we are aver-
aging over the source statistics only. This will occur when
the quantity being averaged is a deterministic function of
the source field either by definition or because the Poisson
statistics have already been averaged out. These averages
are sampled at discrete points in time, and the elements
of the X vector are given as

X, = ()N = (o)) 2)

The quantity K in Eq. (1) is an N X N matrix representing
the weighted average, depending on the a priori probabil-
ity of each class, of the autocovariance matrices of each of
the two classes. The autocovariance matrix or sampled
data can be computed from sampling of the autocovari-
ance function or from the continuous process. For a given
class, the ith class (:=0,1), for instance, the autocovari-
ance function, will be given by

Ki(t,t") = (L;OL(E) = (LM ). (3)

When the autocovariance function for each class is
sampled at discrete points in time, the elements of the K
matrix are given by

K, =p(HO)K0(tn’tm) +p(H1)K1(tn’tm)7 (4)

where p(H() and p(H) are the a priori probabilities of hy-
potheses H, and H., respectively, being true. If we as-
sume that each class has an equal probability of occur-
ring, Eq. (4) becomes
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Knm = %Ko(tmtm) + %Kl(tmtm)' (5)

The way that the detectability index is best related to
diagnosis is through the AUC. Assuming that the distri-
bution of the Hotelling test statistic is normal under both
the zeroth class and the first class, the AUC may be ex-
pressed in terms of the detectability as?

AUC = % + % erf(\e"?/Z). (6)

This normality assumption can be justified under the
central-limit theorem since the Hotelling test statistic is a
linear combination of the components of the data vector
and, for the SKE task we are considering, these compo-
nents are statistically independent random variables.

B. Required Quantities of the Optical Coherence
Imaging System
The basic OCI system is quite simple in construction; an
example is the free-space OCI system shown in Fig. 1.
Generally, the measured output of an OCI system is di-
rectly related to the detected photocurrent. Therefore we
will let this detected photocurrent be our OCI system out-
put I(¢). To compute the detectability as given in (1), we
must first derive the photocurrent I(¢) along with its
mean ((I(¢))) and its autocovariance function K(¢,¢'). Both
the mean photocurrent data and the autocovariance func-
tion of the photocurrent data are derived for the case of
unpolarized light, isotropic propagation through the sys-
tem, and only normal incidence of the light propagating
through the system. The mean photocurrent and autoco-
variance function can be extended past this simple case so
that polarization and nonnormal incidence may be taken
into account; however, within the scope of this paper the
simple case will be considered to establish a benchmark
performance. Our strategy in what follows is to show how
we may express the mean and the autocovariance func-
tions of the photocurrent data, and we will discover in the
process that certain statistical moments of the source are
needed. We will express these moments, in terms of the
spectral characteristics of the source, as they arise.

The photocurrent from the detector can be expressed
simply as the number of photoelectrons N(¢) created as a
function of time by the incident electric field as
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Fig. 1. Basic free-space OCI system setup.
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e t
I() =E£_MN(L‘ )de’, (7)

where e is the charge of an electron (1.6 X 10~1° C) and At
is the integration window associated with the detector.
For the sake of simplicity, we can rewrite the photocur-
rent from Eq. (7) as

I(t):if r(t—tN(@)dt', (8)
At)

where the function r(¢) is defined as

1 0st<A¢ 9
t)= .
re) 0 otherwise ©)

The number of photoelectrons created is directly pro-
portional to the electric field incident on the detector,
which is proportional to the electric field emitted from the
source. However, the electric field emitted from the broad-
band source and the creation of photoelectrons in the de-
tection process have certain statistics associated with
them. The broadband nature of the source ensures that
the electric field emitted from the source will obey circular
Gaussian statistics; also, it is well known that the cre-
ation of photoelectrons in the detection process obeys
Poisson statistics.'® Hence N(¢t) may be referred to as a
doubly stochastic Poisson random process.4’10 We will now
look at the statistics of the source and the detection pro-
cess and investigate how these noise components contrib-
ute to the mean photocurrent. Within the scope of this pa-
per we will not consider any other noise components.

1. Mean Photocurrent

To determine the mean photocurrent of the system, we
must first look at the system input, the light source, and
propagate this input through the system in order to de-
termine the mean output. The light source emits an elec-
tric field E¢(¢) that we can decompose into a superposition
of plane waves by taking its Fourier transform and ex-
pressing it as

E,(t) = f exp(iot)Ey(w)do, (10)

where the caret denotes a function in the Fourier domain.
The amplitude of these plane waves will be split at the
beam splitter. One part of the field will propagate through
the reference arm. Through this propagation it will expe-
rience a phase delay ¢;(w,?), which will account for the
optical path length, dispersion, modulation, and other
possible phase delays in the reference arm. This part of
the field will also experience a loss of amplitude and pos-
sibly phase shifts upon reflection, which will be described
by a(w); a(w) will account for absorption and nonequal re-
flection amplitudes within the reference arm as well as
incorporate losses due to the beam splitter. Another part
of the field will propagate through the specimen arm.
Through this propagation it will experience a phase delay
¢9(w,t), which will account for the optical path length,
dispersion, modulation, and other possible phase delays
in the specimen arm. This part of the field will also expe-
rience a loss of amplitude and phase shifts from the speci-
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men model, described mathematically by ,Z%(w); ,fa’(w) will
account for absorption, nonequal reflection amplitudes,
and phase shift upon reflection due to the specimen model
as well as incorporate losses due to the beam splitter.
These altered parts of the field will recombine at the
beam splitter, and part of this sum of fields will propagate
to the detector; the remaining part of the sum will propa-
gate back toward the source. Therefore the total electric
field at the detector may be related to the electric field at
the source by

E(t):fJ {a(w)explip;(w,t) + iwt]

+ Blw)explipy(w,t) + it E(0)dw.  (11)
For simplicity, hereafter we define

m(w,t) = dw)explidy(w,t)]+ Blw)expligy(w,t)]. (12)

Therefore Eq. (11) may be rewritten as
E@) = J m(w,t)exp(iot)Ey(w)do. (13)

In Eq. (13) both E(¢) and I:]s(w) are stochastic processes.
Given that the source field E,(¢) obeys circular Gaussian
statistics, (E,(¢)) is zero. This implies that E(¢) is also a
Gaussian random process with (E(¢)) equal to zero.

Taking the statistical average over all random pro-
cesses, Eq. (8) may be rewritten to give the mean photo-
current as

o [
«I(@))) =<<Ef_x r(t -t )N(¢')d¢ >>

e [~
= A_tf_w r(t = )NG@ )Nt (14)

Noting again that N(¢) is a doubly stochastic Poisson
random process, the conditional mean of N(¢) is given by

_  RA
N(t) = —E'@®)E@t) = pE')E(), (15)
€7

where R is the responsivity of the detector, A is the area
of the detector, and 7, is the impedance of free space
(377 Q). The quantity p is defined as

RA
p=—". (16)
€
From the conditional mean, the overall mean of the out-
put is written as

(N@D) = (N@)) = p(ET)E@)). 17

In Eq. (17), ((N(¢))) is the average of N(¢) over the Pois-
son noise associated with detection and the Gaussian
noise associated with the source field. On the other hand,
(N(t)) averages N(t) over the Gaussian statistics only,
since the Poisson noise has already been averaged out to
get N(t). If we combine Eqs. (13) and (17), ((N(¢))) can be
rewritten as
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(N =p f f m"(o,t)m(o',t)expli(o’ — w)t]

X (El(0)Ey(0))dodo’. (18)

We will assume that the source field is a stationary ran-
dom process and define the scalar autocovariance func-
tion of the source field as

G(7) = (El(t - DE(?)). (19)

The stationarity assumption is related to the stability of
the source. We may relax this assumption to quasi-
stationarity in order to account for other sources of varia-
tion in the source field.* The scalar autocovariance func-
tion has the property

G'(n=G(-. (20)

This property ensures that the Fourier transform G(w) is
real. Hereafter, G(w) will be denoted S(w) to represent the
PSD of the source.

The expectation (I:]:(w)ﬁs(w’)> from Eq. (18) may be ex-
pressed by means of the inverse Fourier transform as

. . 1 ("
(El(@)E (o) = mf f expli(w'ty — wty)]

X (EL(t)Eq(t))dt dty

1 (= (>
ZQJ f expli(w'ty — wtq)]

XG(ty - t,)dt,dts

1 / * .<w'+w)
=;T§(w —cu)f_oc exp| i p s [G(s)ds

=8 - w)S(w). (21)

Inserting Eq. (21) into Eq. (18), we rewrite ((N(¢))) as
N = PJ Im(w,t)]*S(0)dw. (22)
Finally, the mean photocurrent can be expressed as

<<I(t)>>=§ f r(t—t')l f |m(w,t)|25'(w)dw}dt'.

(23)

2. Autocovariance Function of the Photocurrent

Now that we have an expression for the mean photocur-
rent, we next need the autocovariance function of the pho-
tocurrent in order to compute the detectability index.
Starting with the autocovariance function expressed in
Eq. (3) and substituting into it the expression in Eq. (8)
for the various photocurrents, we can write the autocova-
riance function as
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e \2(” (™
K@J')=(E)J f r(t —t)r(t" —to) Kn(ty,to)de dts,

(24)

where Ky(t1,%9) is the autocovariance function of the ran-
dom process N(¢). This autocovariance function is ex-
pressed as

Ki(t1,ts) = (N(£)N(22))) = (NEDNUN(£2)))
= (NN t1 = t2) + Ky(t1,t9). (25)

The term Kx(¢1,%9) is the conditional autocovariance func-
tion, meaning that the Poisson statistics of the detection
process are taken care of in the preceding term. This con-
ditional autocovariance function is given by4

Kx(t1,t) = (N(¢)N () = (N(£1) XN (25)). (26)

The first term on the right-hand side of Eq. (26) can be
expressed in terms of the statistical properties of the field
as

(N(t1)N(t5)) = pXE (1) E(t1)E (¢5)E(t2))
= pXE'(t)E(t) (E (£ E(ty))
+p? tr(E)E (t) (E(t)E'(¢)))]
= (N(t)XN(tp)) + p* tr[(E(t)E'(£5))
X(E(to)ET(t1)], (27)

where tr is the three-dimensional trace function. Combin-
ing Egs. (26) and (27), we can rewrite the conditional au-
tocovariance function as

Kiy(t1,t5) = p* tr{(E(t)E (1) XE(t)E' (¢))]
= p? tr[d (t1,22)d (£9,t1)] = p? tr[d (¢4, t2)d 7 (£1,25)],
(28)
where
J(t1,ts) = (Et)E (). (29)

Now that we have the conditional autocovariance func-
tion in terms of the field at the detector, we can express it
in terms of the field at the source. We define the autoco-
variance matrix of the source as

G(7) = (E,(OE[(t - 7). (30)

This matrix has the following two properties:
G'(D=G(-7, (31)
G(7) =tr[G(7)]. (32)

Next, J(¢1,t9) is computed as
I(ty,t5) = f J m(w,t)m’ (o' ty)expli(wt; — 0'ts)]

X (By(0)El(0)dodo’ . (33)

The expectation (Es(w)EZ(w’» from Eq. (33) may be ex-
pressed by means of the inverse Fourier transform, fol-

Rolland et al.

lowing the same scheme as in Eq. (21), as
(E()E[(0) = 8o - 0)G(0). (34)

Combining Egs. (28), (33), and (34) produces the condi-
tional autocovariance function Kx(tq,t5) as

KN(tl’tZ) = sz f m(w’tl)m*(w)tZ)m*((v”tl)

X m(w',to)expli(w— o')(t —t9)]

X tr[G(0)G(0)]dwde’ . (35)

Hence the total autocovariance function is given by

9
Kit,t') = (A%) f Pt = t)r(t’ - )Nty

2 o £
+ <i) j f r(t —t)r(t’ —t9) Ky(tq,tq)dt diy
(36)

It is shown in Appendix A that if the PSD has as large a
bandwidth as required by OCI, on the order of 10!3 Hz,
the second term on the right-hand side of Eq. (36) can be
neglected so that the total autocovariance function can be
approximated as

2 o
K(M’)*(i)f r(t =t rt’ —¢)NEDNdE;  (37)

3. Specimen Model
For the sake of our assessment, a specimen model, which

is described mathematically by the term ,é(w), will be de-
fined as a single layer bounded by two interfaces as
shown in Fig. 2. The first interface is a boundary between
air and the layer refractive index n. The second interface
is a boundary between the layer refractive index n and a
substrate refractive index n+An. A distance [ separates
the two interfaces. The expression for the reflection from
this specimen model is given in Eq. (38), with the Fresnel
reflections r; and ry, and the phase delay 8(w) given by
Eq. (39).

1 n n+An

8 RSy )

3 82(1'71)’2 i
S(1-r1)(1or1)r2 < 4

|
" —— §(1r,) )
>1

— ) ——

v

Fig. 2. Tllustration of the specimen model.
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Blw) =11+ (1= r)ryd(w), (38)

1-n -An

r2=—
2n +An’

nl

S w) = exp(iw—) . (39
c

ry= )
l1+n

We have ignored multiple reflections because of the low
reflected power at each interface for the changes in refrac-
tive index that we will consider.

C. Task Definitions

We shall investigate two tasks for assessing the perfor-
mance of the system: a detection task and a resolution
task.

For the detection task, we will assess the smallest
change in index of refraction at the second interface that
the system can discriminate. Therefore we define the
negative hypothesis H, as no second interface, i.e., An
=0. The positive hypothesis H is defined as having a sec-
ond interface, i.e., An=Any#0. For Hy, Any will be in-
creased so that we can see how the detectability index
and the AUC vary. To be sure that reflected fields from the
two interfaces of the specimen model do not interfere for
this task, we set the separation distance / to be the long-
est coherence length of the three theoretical sources con-
sidered.

For the resolution task, we assess the smallest separa-
tion of the two interfaces of the layer that the system can
discriminate. Therefore we have An equal to a constant.
The negative hypothesis H for this task is defined as the
two interfaces at the same location, i.e., /=0. The positive
hypothesis H; corresponds to the two interfaces separated
by a distance, i.e., [=1q# 0. For Hy, [ will be increased so
that we can see how the detectability index and the AUC
vary for various values of the constant An for each theo-
retical source considered.

3. SIMULATION

To properly simulate the detectability index associated
with the detection task and the resolution task defined in
Section 2, we must first define the theoretical setup and
choose reasonable input parameters. We will consider the
theoretical system to be the free-space interferometer sys-
tem shown in Fig. 1. The scanning mechanism will be a
mirror translating at a speed v,,. As previously stated, we
will investigate the detection task and the resolution task
for three theoretical Gaussian PSDs. These normalized
Gaussian PSDs are defined mathematically as'!

2(In 2)2 0-wy |?
S(w)=———exp) - | 2(In2)2 A . (40)

771/2Aw

where o, is the center angular frequency and Aw is the
angular-frequency bandwidth (i.e., the spectral width) at
FWHM. The angular-frequency bandwidth is related to
the coherence length /. of the source as

81ln 2
L

Aw=

c. (41)

The resolution may be considered to be half the coherence
leng‘ch.11 To define the three Gaussian PSDs, we consider
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coherence lengths of 2, 20, and 40 um, corresponding to
resolutions of 1, 10, and 20 um and angular-frequency
bandwidths of 8.32x 10 rad/s, 8.32x 10! rad/s, and
4.16 X 10" rad/s. Also, we consider the center angular
frequency of all of these PSDs to be 1.98x 10 rad/s,
which corresponds to a wavelength of 950 nm. To estab-
lish the sampling frequency of the power spectrum of the
source, we define the bandwidth B to be Aw/27 expressed
in hertz. The autocorrelation function that is the Fourier
transform of the PSD is considered to be defined in a time
range L of 3.5/B. We define the extent of the Gaussian to
be 3.5 times its sigma, given that below this value the
Gaussian is very close to zero. The maximum optical fre-
quency F of the PSD is given by (wy+ 1.75Aw)/2 7. Accord-
ing to the Nyquist sampling condition, the sampling step
AT in the time domain should be at least 1/(2F). The
number of samples in the PSD or its Fourier transform is
then given by L/AT. We computed that for the three val-
ues of the three coherence lengths in increasing order
(i.e., 2, 20, and 40 wm) and the associated PSD, the mini-
mum number of samples that the computation yields is
29, 179, and 346, respectively. In the simulations, each of
the PSDs was sampled with 600 points over the angular
frequency range of wy—1.75Aw to wy+1.75Aw, which is
well above the minimum required; this range minimizes
sampling in the tails of each Gaussian PSD, where the
PSDs have values near zero. Also, the power for each of
these three theoretical sources is set to 3 mW. For ease in
comparing the results, in the simulation we will vary no
parameters other than the coherence length and therefore
the angular-frequency bandwidth and the parameter to
be varied for each task.

We must also provide quantitative parameters for the
values of &(w), ¢1(w,t), and ¢o(w,t) given in Eq. (12), the
value of At given in Eq. (7), the values of R and A given in
Eq. (16), and the value of n given in Eq. (39). The losses
and phase shifts of the beam splitter are ignored, and the
mirror is assumed to have a unit reflection for all frequen-
cies: a(w) is 1. The phase terms ¢(w,t) and ¢o(w,t) are
set to w(2l,/¢)+v,,t and w(2l,/c), respectively. The con-
stants [, and [, are the distances from the point where the
field is split to the initial location of the reference mirror
and the specimen, respectively. For the purpose of the
simulation, [, is chosen to be 3 mm, and /, is chosen to be
3 mm less 28 um. The speed of the mirror v,, is chosen to
be 0.154 m/s, and ¢ is increased from zero by steps of
0.4 us over the total scan time of 0.8 ms for a total of 2000
time samples. The detector integration time At¢ is 4 us
(i.e., bandwidth is 125 KHz); thus time sampling at
2.5 MHz (i.e., every 0.4 us) ensures that the Nyquist sam-
pling condition will be satisfied. The responsivity R of the
detector is assumed to be 1 for all frequencies, and the
area A of the detector is chosen to be 0.79 mm?; these
quantities result in a p value of 1.3097 X 101 m?/(V?2s).
The value of the refractive index n is set to 1.4.

Finally, finite-width integrations, and more particu-
larly trapezoidal numerical integrations, were performed
in the simulations.

A. Detection Task
As previously stated for the detection task, we will assess
the smallest change in refractive index at the second in-
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terface that our system can discriminate. To be sure that
the interference between the two interfaces of the speci-
men model does not influence this measure, we set the
distance between the two interfaces / to 40 um, the long-
est coherence length considered. The value of Ang is then
increased from 0 to 3 X 1072, The plots for the detectabil-
ity index and the AUC versus the value of An for each
coherence length considered are given in Fig. 3.

B. Resolution Task

For the task of resolution, we assess the smallest separa-
tion of the two interfaces of the layer defined in Section 2
that the system can discriminate. To compute the detect-
ability index and the AUC for the resolution task, we
chose a change in refractive index corresponding to (a) a
75% probability of detection (AUC=0.75), (b) the smallest
change in refractive index corresponding to 100% prob-
ability of detection (AUC first reaches 1), and (c) twice the
smallest change in refractive index corresponding to
100% probability of detection for the detection task for
each of the three coherence lengths; these three refractive
indices will be denoted An;, Any, and Angs, respectively.
These changes in refractive indices are An;=6.51Xx1075,
Ang=3x%1075 and Ang=6Xx107° for a coherence length of
2 um; Any=2.06X1078, Any=1.05X107°%, and Ang=2.1

400 T
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Fig. 3. Detection task. (a) Detectability index, (b) AUC for

Gaussian sources of 2, 20, and 40 um coherence length.
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X 1075 for a coherence length of 20 um; and An,=1.45
X 1078, Any=9x107%, and An5=1.8 X 107 for a coherence
length of 40 um. For each of the three coherence lengths,
the value of [ is increased from 0 to the coherence length
so we can see how the detectability index and the AUC
change with the separation distance /;. The plots for the
detectability index and the AUC versus the value of [, the
separation distance, for each of the cases are given in
Fig. 4.

4. DISCUSSION

In this section we discuss the results of the simulation for
both the detection task and the resolution task. Also, we
reiterate the assumptions made in this paper and present
the possible extensions of the mathematical framework
provided.

A. Detection Task

As expected and as seen in Fig. 3, the increase in the de-
tectability index and the AUC as a function of increasing
change in refractive index signifies that it becomes easier
for the observer to discriminate between a second inter-
face and no second interface as the change in refractive
index increases. Specifically, according to the plot of the
AUC in Fig. 3(b), with the parameters used and the sys-
tem modeled the observer can detect a second interface
with 100% probability when a change in index of 3
X 107% occurs for a coherence length of 2 um, 100% prob-
ability when a change in index of 1.05X 1072 occurs for a
coherence length of 20 um, and 100% probability when a
change in index of 9 X 1078 occurs for a coherence length
of 40 um. These three changes in refractive index consti-
tute the benchmark performance for the detection task.
Overall, a longer coherence length source has a greater
detectability index for a lower change in refractive index.
This phenomenon stems from the fact that under exactly
the same conditions, a longer coherence length source has
larger values for the X vector than a shorter coherence
length source, as shown in Fig. 5.

B. Resolution Task

As expected and as seen in Figs. 4(d)-4(f), the AUCs in-
crease as the separation distance between the two inter-
faces increases. However, within a separation distance
that is less than half the coherence length of the source,
oscillations are observed in both the detectability index
[Figs. 4(a)-4(c)] and the AUCs [Figs. 4(d)—4(f)], at least for
the smallest change in refractive index indicated in the
curve definitions; these oscillations correspond to interfer-
ence from fields reflected from the first and second inter-
faces of the specimen model. Indeed, when the separation
of the two interfaces of the specimen model is smaller
than half the coherence length of the source, the reflected
fields from the two interfaces interfere constructively if
the optical path difference between the two layers is a
multiple of the central wavelength of the source. Simi-
larly, for separations corresponding to out-of-phase inter-
fering fields, the fields interfere destructively. As the
separation increases, the contrast of the fringes decreases
as a consequence of the nonmonochromatic light field.
Upon first observing these oscillations, we validated that
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the oscillations’ period corresponded to optical separa-
tions that are multiples of the source’s central wave-
length. Although this phenomenon is not speckle, since
we are dealing only with two layers rather than with a
scattering medium, it is reminiscent of speckle, which cor-
responds to multiple-scatterers’ interference for interfer-
ences localized within the coherence length of the source.
In practice, given a specimen with varying properties
such as unequal thickness layers or slight inhomogene-
ities in the refractive index defining a layer, the rapid os-
cillations will be averaged out. Such averaging may also
apply when new sources of system noise are considered.
Thus we expect that in practice, these high-frequency os-
cillations will have no effect on system optimization.
Interestingly, even when the layer separation is beyond
half the coherence length of the source, the observer can
discriminate between two separated layers and two coin-
ciding layers with only <100% probability for the small-
est change in index of refraction. Also, through inspection
of the AUC in Figs. 4(d)-4(f), it can be seen that for
shorter coherence lengths, the resolution performance of
the system depends less on the detection limit established
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in the detection task study; the shorter the coherence
length, the higher the probability of distinguishing be-
tween two separated layers or two coinciding layers for
refractive indices below the detection limit determined by
the detection task. Thus the resolution performance of the
system depends on both the broadband source and the
specimen being imaged.

For the change in refractive index Ang, while the de-
tectability index has the same general behavior as the
change in refractive indices An; and Ang, it can be seen
that the AUC has changed tremendously. In fact, the AUC
shows that for any separation distance greater than zero,
the observer can discriminate between two separated lay-
ers and two coinciding layers with 100% probability. This
finding is in agreement with the following statement by
Harris'%:

“In the classic case of resolving two point sources in the
presence of Gaussian noise, results indicate that although
diffraction increases the difficulty of rendering a correct
binary decision, it does not prevent a correct binary deci-
sion from being made, no matter how closely spaced the
two point sources may be” (p. 611).

Although this statement concerns incoherent imaging,
it is easily extended to the case of two layers in OCI.
Therefore for a sufficient change in refractive index at the
second interface, there is a 100% probability of distin-
guishing between two separated layers and two coincid-
ing layers. This sufficient change in refractive index is ap-
proximately Ans. Thus for each of the three theoretical
sources, the resolution benchmark is 100% probability of
discrimination of two separated layers from two coincid-
ing layers for An=Anj for the corresponding source re-
gardless of /. This finding is further supported by previ-
ous observation by Richards-Kortum and associates, who
state that “changes in scattering occur on a microscopic
spatial scale well below the typical resolution of OCT im-
aging systems, yet these changes still impact OCT im-
ages” (Ref. 13, p. 465).

C. Assumptions and Possibilities

Although the mathematics for the mean and autocovari-
ance of the photocurrent output of the OCI system were
derived for the simple case of unpolarized light, an isotro-
pic specimen model, and normal incidence of the propa-
gating beam, these derivations can be extended to include
polarization dependence, a nonisotropic specimen, and
nonnormal incidence. We will include these cases as part
of future work.

The three PSDs considered within this paper are all the
commonly used Gaussian shapes. However, the math-
ematical framework provided allows for any arbitrary
PSD to be used. We have done precisely this in a previ-
ously published study. 14

Furthermore, the demonstrated system did not include
any noise other than the Gaussian noise from the source
and the Poisson noise of the detection process; this system
was simulated in order to verify that the model behaves
as expected. This model provides the basic framework for
which inclusion of more-realistic system components and
other sources of noise can be carried out for any general
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OCI system. Also, the benchmark performance introduced
is set forth so that in the future, the results obtained with
more-complex models can be compared with the results of
the simple OCI system modeled in the current study.

5. CONCLUSION

We have presented the basics of a model to optimize and
assess the performance of a general OCI system based on
the basis of task performance and statistical decision
theory. This general model was adapted to a simple OCI
system to allow us to assess the performance of the sys-
tem in terms of a specific detection task and a specific
resolution task.

For a task-based performance assessment on the detec-
tion task for the simple OCI system presented, the small-
est change in refractive index detectable was shown to be
dependent on the angular-frequency bandwidth of the
source. Considering the system parameters, a benchmark
performance for the detection task is that a change in re-
fractive index of 3X107® is detectable for a Gaussian
source of 2 um coherence length, a change in refractive
index of 1.05X 1075 is detectable for a Gaussian source of
20 pum coherence length, and a change in refractive index
of 9X107% is detectable for a Gaussian source of 40 um
coherence length, with 100% probability.

Furthermore, the performance of this system based on
the resolution task was shown to be dependent on the
specimen model and the angular-frequency bandwidth of
the source for small changes in the refractive index at the
second interface. Also, the performance of the system
based on the resolution task for changes in refractive in-
dex well beyond the detection limit was seen to agree with
previous findings. This agreement is that for infinitely
close interfaces of sufficient change in index, i.e., changes
well beyond the detection limit of 100%, the binary clas-
sification task of whether there are two separated layers
or two coinciding layers can be carried out with 100% ac-
curacy.

APPENDIX A

By performing order-of-magnitude estimation, we will
show that the Poisson statistics’ contribution to the auto-
covariance dominates the Gaussian statistics’ contribu-
tion to the autocovariance. The Gaussian statistics’ contri-
bution to the autocovariance of the photocurrent can be
written as

e 2 o0 o)
Kq(t,t') = (E) f f r(t —t)r(t' —to)Ky(ty,to)dt disy,
(A1)
where

Ki(t4,t9) =sz f m(w,t)m’ (o,ty)m’ (o' ,t)m(e’,ty)

X expli(w - ' )(t; - to) 11 G(0)G(0')dodo’ .
(A2)

The term m(w,t) is defined as
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m(w,t) = & w)expli ¢y (w,8)] + Blw)expli do(w,1)]
=Cy(w,t) + Colw,t). (A3)

The term tdé(w)é*(m’)] can be expanded as
Gm(w)Gj;x(w') + Gy ()G, (w)

G(0)Gry (@) + Gy ()G, (0)

trG(w)G'(0')] =

2
= 2 Gon(@)Gon(@), x=1, y=2.

m=1n=1

(A4)

Using the definition in Eq. (A3) and the expansion in Eq.
(A4), Eq. (A2) can be rewritten as

©

Kﬁ(tlitZ) = Ch(w7t1)c_;‘k(w7t2)

1n=1J -

X expliw(t; - t2>]émn<w)dw
X f Ch(w',t1)C1(w' ta)exp[—iw' (t1 - t5)]

G, (0)dw'. (A5)

Equation (A5) has a total of 64 terms. The two integration
terms are Fourier transforms of the composite functions
Ci(@,61)Cj(@,t9)Gpp(w) and  Cplw’,t1)Ci(w’ ,t5)G,p (@)
we are concerned with the behavior of these autocovari-
ance terms only in terms of the difference between ¢; and
to. If we assume that the functions &(w) and B(w) have
very broad spectral responses, i.e., the spectral responses
of these functions are much greater than the bandwidth
of the PSDs represented by Gmn(w), and that the phase
functions ¢(w,t) and ¢y(w,t) are real, these Fourier
transform terms will have widths in the time (¢;-%3) do-
main on the order of the inverse of the frequency band-
width of the PSDs. Also, by the central ordinate theorem,
these terms will have a peak value proportional to the in-
tegral of the PSDs. We will not concern ourselves with the
integrations in time in Eq. (Al). These integrations will
serve only to smooth the autocovariance.

If we use angular-frequency bandwidths of the PSDs on
the order of 27X 1013 rad/s, the Fourier transform has a
width in the time domain on the order of 1x 10712 5. As-
suming a normalized area of 1 for the PSDs for ease and
using the value of 1 X 101° m?2/(V2s) for p, we can consider
the autocovariance as an equivalent delta function with

Kif(t1,t9) = 0[6.4 X 107°8(¢; — )], (A6)

where O represents “on the order of.”

The autocovariance term of the Poisson statistics
(N(t1))8(t1—t9), with the same broad approximations, is
equivalently

((N(t1))) 81— t5) = O[1 X 1008(¢1 - t5)]. (A7)
Thus the Gaussian statistics’ contribution to the autoco-

variance can be considered negligible in comparison with
that of the Poisson statistics.
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