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Recently, Fourier-domain (FD) optical delay lines (ODLs) were introduced for high-speed scanning and
dispersion compensation in imaging interferometry. We investigate the effect of first- and second-order
dispersion on the photocurrent signal associated with an optical coherence imaging system implemented
with a single-mode fiber, a superluminescent diode centered at 950 nm � 35 nm, a FD ODL, a mirror, and
a layered LiTAO3 that has suitable dispersion characteristics to model a skin specimen. We present a
practical and useful method to minimize the effect of dispersion through the interferometer and the
specimen combined, as well as to quantify the results using two general metrics for resolution. Theoretical
and associated experimental results show that, under the optimum solution, the maximum broadening
of the point-spread function through a 1-mm-deep specimen is limited to 57% of its original rms width
value (i.e., 8.1 �m optimal, 12.7 �m at maximum broadening) compared with approximately 110% when
compensation is performed without the specimen taken into account. © 2005 Optical Society of America

OCIS codes: 120.3180, 170.4500, 170.0110.

1. Introduction

Fiber-optic imaging interferometers such as those
employed in optical coherence tomography (OCT)
have been developed to image backscattered photons
from internal structures in biological tissues and
other turbid materials accurately, rapidly, and non-
invasively by use of the partial temporal coherence of
a broadband light source.1–3 Because of the broad-
band nature of the light source, dispersion is an im-
portant issue in imaging interferometry because the
fiber optics, the specimen, and other dispersive com-
ponents may have significant dispersion in a fiber-
optic interferometer. A dispersion mismatch between
the interferometer arms affects the temporal width
and shape of the interferometric signal formed by the
low-coherence interferometer and consequently af-
fects the longitudinal resolution of the imaging sys-
tem. Therefore balancing dispersion between the
reference and the specimen arms in low-coherence
interferometry is necessary to achieve the highest

possible axial resolution throughout the imaging
depth of the specimen.

There are two approaches to compensate disper-
sion. One is a postimaging digital technique such as
numerical dispersion compensation; the other is a
preimaging optical technique. Within postimaging
compensation, numerical algorithms based on the
fast Fourier transform4 or the numerical correlation
of the depth scan signal with a depth variant kernel5
were presented to computationally correct the effect
of material dispersion on OCT signal data. An auto-
focus algorithm was also presented for rapid image
correction.6 Recently, other numerical methods based
on Fourier-transform techniques were adopted to
compensate dispersion in spectral domain OCT by
correcting the frequency-dependent nonlinear phase
of the received spectral OCT signal.7–9 Within preim-
aging compensation, optical dispersion balancing be-
tween the specimen and the reference arms is
typically achieved by placing a dispersive optical el-
ement, such as a pair of prisms employed as a vari-
able thickness dispersive plate, in the reference arm.
More recently, a Fourier-domain (FD) optical delay
line (ODL) was presented for dispersion compensa-
tion,10 an approach that is the focus of this paper. The
FD ODL was first introduced for high-speed scan-
ning11,12 and proposed for the potential assessment of
dispersion in the sample.13 In addition to these meth-
ods, numerical and optical methods were also used
together,14 and the methods used either the fre-
quency entanglement of a twin-photon source15 or

K.-S. Lee, A. C. Akcay, T. Delemos, and J. P. Rolland
(jannick@odalab.ucf.edu) are with the College of Optics and Pho-
tonics, Center for Research and Education in Optics and Lasers,
Florida Photonics Center of Excellence, University of Central Flor-
ida, Orlando, Florida 32816. E. Clarkson is with the Department of
Radiology, University of Arizona, Tucson, Arizona 85720.

Received 11 May 2004; revised manuscript received 29 October
2004; accepted 2 December 2004.

0003-6935/05/194009-14$15.00/0
© 2005 Optical Society of America

1 July 2005 � Vol. 44, No. 19 � APPLIED OPTICS 4009



proposed an optimal center wavelength for the source
where the dispersion of water in tissue was ineffec-
tive.16

The schematic diagram of a FD ODL is shown in
the reference arm of the fiber-optic interferometer in
Fig. 1. A collimated beam is incident on a diffraction
grating and dispersed spatially. After propagating
through the lens, the light is then projected on a
tiltable mirror. The pivot point of the mirror can be
offset from the optical axis by a distance x0. The re-
flected, dispersed light is focused back onto the grat-
ing through the lens and then reflected by a double-
pass mirror. The double-pass mirror returns the light
to the collimator through the same path of the light
propagated. The dispersion introduced by the FD
ODL in the reference arm of the fiber-optic inter-
ferometer can be controlled by the grating axial shift
�z from the focal plane of the lens, as well as the tilt
angle �g of the grating normal with respect to the
optical axis of the FD ODL.17 Therefore the grating
axial shift and tilt angle have an effect on the axial
point-spread function (PSF), which is the envelope of
the interferometric autocorrelation of the optical field
reflected from the specimen and the optical field re-
flected from the reference mirror of the FD ODL.
Consequently, these parameters do effect the axial
resolution.

In this paper the novelty of our research lies in the
derivation of the photocurrent signal function in the
interferometer accounting for up to second-order dis-
persion, together with an experimental validation of
the theoretical predictions. Furthermore, we propose
a practical and useful optical method using a FD ODL
to minimize the broadening effect of first-order dis-
persion and asymmetry of second-order dispersion on
the PSF throughout a layered material. The method
is experimentally demonstrated for a layered LiTAO3
material having a similar dispersion at 950 nm as a
skin specimen.

In Section 2 the theoretical framework derived to
perform the simulations is presented. In Subsection
2.A we present an expression or the photocurrent
signal in the interferometer, and in Subsection 2.B
we provide the relation between the first-order dis-
persion effects of the FD ODL and that induced by
the fiber-length mismatch between the two inter-

ferometer arms. Simulations and experimental val-
idations are presented in Section 3. In Subsection
3.A we present the photocurrent signal with up to
second-order dispersion. Also, the effect of first- and
second-order dispersion caused by the fiber-length
mismatch between the two arms is quantified to
assess its effect on the photocurrent signal. In Sub-
section 3.B we consider LiTAO3 in place of the mirror
to study the effect of dispersion on the photocurrent
given that LiTAO3 has suitable dispersion character-
istics to model a skin specimen. The photocurrent
signals are investigated both theoretically and exper-
imentally for different dispersion compensation
schemes. We then compute the axial resolutions for
each case with two resolution metrics that are best
suited for asymmetric signal functions. The com-
puted axial resolutions are then compared with each
other, and we present an optimum solution for the FD
ODL setting, where optimal is defined as the overall
highest resolution throughout the imaging depth of
the specimen.

2. Theory

In Subsection 2.A we derive the mathematical model
of the photocurrent signal at the output of a fiber-
optic imaging interferometer employing a FD ODL in
one arm and a specimen in the other as shown in Fig.
1. In Subsection 2.B, the quantitative relation be-
tween the first-order dispersion effects of the FD ODL
and the optical fiber is derived to estimate the optical
fiber-length mismatch.

A. Expression of the Photocurrent Signal in a Fiber-Optic
Imaging Interferometer with a Fourier-Domain Optical
Delay Line

To represent the output signal of the system, we must
first start with the input signal, which is the electric
field emitted by the source. Given the broadband na-
ture of the light source, it is desirable to express this
field by its Fourier components as

Es(t) ��
��

�

exp(i�t)Ês(�)d�, (1)

where the caret (ˆ) denotes a function in the Fourier
domain. Bold letters denote vectors or matrices. Next
we can express the field at the detector in terms of the
field at the source as

E(t) ��
��

�

	1 exp[i
1(�, t) � i�t]Ês(�)d�

��
��

�

	̂2(�)exp[i
2(�, t) � i�t]Ês(�)d�, (2)

where the first term is the electric field from the
reference arm and the second term is the electric field
from the specimen. Because we use vector field the-
ory, the expression given in Eq. (2) applies to any

Fig. 1. Schematic diagram of a fiber-optic imaging interferometer
with a frequency-domain ODL in the reference arm.
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state of polarization. The term 	1 exp�i
1��, t�
� i�t� contains a real number 	1 that is the relative
amplitude at the detector of the wave reflected from
the mirror in the FD ODL and the phase 
1��, t� that
accounts for the optical path length to the mirror and
the associated phase change along the path. We can
use the FD ODL in the reference arm to induce a
phase change, which is a function of frequency. The
function 	̂2��� is the amplitude at the detector of the
component of the wave backscattered from the spec-
imen at the frequency � and is determined by the
refractive-index profile of the specimen. Finally, the
term 
2��, t� accounts for the optical path length in
the specimen arm and the associated phase changes
caused, for example, by reflection, dispersion, and
movement of the specimen among other possible ef-
fects. If we write

m(�, t) � 	1 exp[i
1(�, t)] � 	̂2(�)exp[i
2(�, t)], (3)

then we have

E(t) ��
��

�

m(�, t)exp(i�t)Ês(�)d�. (4)

In Eq. (4) both E�t� and Ês��� are stochastic processes.
Because of its broadband nature we assume that the
source field Es�t� obeys circular Gaussian statistics.18

This assumption implies that E�t� is also a Gaussian
random process. In particular, the mean source field
satisfies

�Es(t)� � 0,

which implies that

�E(t)� � 0.

Given that the detector has an integration time of �t,
the detected photocurrent is given by

I(t) �
e

�t�
��t

t

N(t�)dt� �
e

�t �
��

�

r(t � t�)N(t�)dt�,

(5)

where e is the electron charge and r�t� denotes the
time integration window of the detector, which is
given by

r(t) �
1 for 0 � t � �t
0 otherwise . (6)

In this integral, N�t� is a doubly stochastic Poisson
random process representing the photoelectrons pro-
duced by the field impinging on the detector. Its mean
is then given by

��N(t)�� � 
�E†(t)E(t)�, (7)

where � is proportional to the detector responsivity
and area, and the double angled brackets are used
to indicate statistical averages over the two sources
of randomness. Therefore the mean current is given
by

��I(t)�� �
e

�t �
��

�

r(t � t�)��N(t�)��dt�. (8)

The expectation in the integrand is given by

��N(t�)�� � 
 �
��

� �
��

�

m*(�, t�)m(��, t�)

� exp[i(�� � �)t�]�Ês
†(�)Ês(��)�d�d��.

(9)

We assume that the source field is a stationary ran-
dom process and define the scalar autocovariance
function of the source field as

G(�) � �Ês
†(t � �)Es(t)�. (10)

The stationarity assumption is related to the stability
of the source. This assumption can be relaxed to
quasi-stationarity to account for other sources of vari-
ation in the source field. The scalar autocovariance
function has the property

G*(�) � G(��), (11)

which ensures that the Fourier transform Ĝ��� is
real. The expectation �Ês

†���Ês����� from Eq. (9) can
be expressed by means of the inverse Fourier trans-
form as

�Ês
†(�)Ês(��)� �

1

4�2�
��

� �
��

�

exp[�i(��t2 � �t1)]

� �Es
†(t1)Es(t2)�dt1dt2

�
1

4�2�
��

� �
��

�

exp[�i(��t2 � �t1)]

� G(t2 � t1)dt1dt2. (12)

By using

��t2 � �t1 �
1
2 (�� � �)(t2 � t1) �

1
2 (�� � �)(t2 � t1),

(13)

we can reduce Eq. (12) to
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�Ês
†(�)Ês(��)� �

1
2�

�(�� � �) �
��

�

� exp	�i
(�� � �)

2 s
G(s)ds

� �(�� � �)Ĝ(�). (14)

Hereafter Ĝ��� is represented as S���, which is the
power spectral density of the source. Inserting
�Ês

†���Ês����� into Eq. (9) yields

��N(t�)�� � 
 �
��

�

|m(�, t�)|2S(�)d�. (15)

In the integrand we have

�m(�, t�)|2 � 	1
2 � |	̂2(�)|2 � 2	1 Re{	̂2(�)

� exp[�i
1(�, t�) � i
2(�, t�)]}. (16)

The last term is the interference term, which is usu-
ally the focus of detection. Combining Eqs. (15) and
(8) further yields

��I(t)�� �

e
�t �

��

�

r(t � t�)

� 	�
��

�

|m(�, t�)|2S(�)d�
dt�. (17)

If we assume that the response time of the detector is
instantaneous, i.e., r�t � t�� � ��t � t��, Eq. (17)
simplifies to

��I(t)�� �

e
�t �

��

�

|m(�, t)|2S(�)d�. (18)

To first quantify the effect of dispersion from the
fiber and the FD ODL, the specimen is taken to be a
mirror. We then introduce the effect of the biological
specimen. With the mirror as the specimen, 	̂2��� can
be replaced by 	2, and Eq. (16) can be written as

|m(�, t)|2 � 	1
2 � 	2

2 � 2	1	2 Re{exp[�i
1(�, t)
� i
2(�, t)]}. (19)

When we filter out the dc term of the photocurrent
signal, the remaining ac term representing the inter-
ference can be written as

��Iac(t)�� ��
��

�

Re{exp i[
2(�, t) � 
1(�, t)]}S(�)d�

��
��

�

Re[exp i�
(�, t)]S(�)d�. (20)

The phase difference �
��, t� can be expanded as a
Taylor series as follows:

�
(�, t) � 
2(�, t) � 
1(�, t)

� �0tp(t) � (� � �0)tg(t) � D�(t)
(� � �0)

2

2!

� D�
(1)(t)

(� � �0)
3

3! � · · · , (21)

�0 is the center frequency of the light source, tp�t� is
the phase delay, tg�t� is the group delay, D��t� is the
first-order group-delay dispersion, and D�

�1��t� is the
second-order group-delay dispersion. Furthermore
each parameter can be further defined as

tp(t) � �
(�0, t)��0,

tg(t) � �[�
(�, t)]���|���0
,

D�(t) � �2[�
(�, t)]���2|���0
,

D�
(1)(t) � �3[�
(�, t)]���3|���0

. (22)

Inserting Eq. (21) up to the fourth terms into rela-
tion (20), ��Iac�t��� can be expressed as

��Iac(t)�� � Re��
��

�

S(� � �0)exp
i	D�

(� � �0)
2

2!

� D�
(1)

(� � �0)
3

3! 
��exp(i�0tp)exp[i(� � �0)tg]d�, (23)

where S�� � �0� is the source power spectral density
centered at �0. It can be observed that relation (23) is
the inverse Fourier transform of the frequency-
domain function given by

Îac(��) � S(��)exp
i	D�

��2

2! � D�
(1)

��3

3! 
�exp(i�0tp),

(24)

where �� � � � �0. We now apply relation (24) to the
fiber-optic interferometer with a FD ODL in the ref-
erence arm. However, we first need to establish some
expressions for the phase and group delays, as well as
the first- and second-order group-delay dispersion as-
sociated with the FD ODL. Zvyagin et al.17 derived
expressions for tp ODL�t�, tg ODL�t�, D� ODL�t�, and D� ODL

�1�

�t� in a FD ODL, which have been adapted here for a
double-pass system. Such expressions are derived in
Appendix A and given by
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tp ODL(t) �
4�z

c �
4��(t)x0

c , (25)

tg ODL(t) �
4�z

c �
4��(t)x0

c �
8���(t)f

p�0 cos �g
, (26)

D�, ODL(t) � �
16�2c[�z � f��(t)tan �g]

p2�0
3 cos2 �g

, (27)

D�, ODL
(1) (t) �

48�2c[�z � f��(t)tan �g]

p2�0
4 cos2 �g

� �1 �
2�c sin �g

p�0 cos2 �g
�, (28)

where p is the grating period, f is the focal length of
the lens, �z is the axial shift of the grating with
respect to the focal plane of the lens, �g is the tilt of
the grating with respect to the lens, x0 is the lateral
offset of the pivot point of the scanning mirror with
respect to the optical axis of the lens, ���t� is the scan
angle of the mirror, and c is the speed of light.

With the set of Eqs. (25)–(28), the effect of both the
fiber-length mismatch between two arms and the ef-
fect of the specimen can be added to the equations of
a double-pass FD ODL as follows:

tp(t) � tp ODL(t) � tp fiber(t) � tp sample(t)

�
4�z

c �
4��(t)x0

c �
2�

c �
2�ds

�p sample
, (29)

tg(t) � tg ODL(t) � tg fiber(t) � tg sample(t)

�
4�z

c �
4��(t)x0

c �
8��(t)f

p�0 cos �g
�

2�

c �
2�ds

�g sample
,

(30)

where � is the potential optical path-length mismatch
lr � ls between the reference arm and the specimen
arm, lr is the optical path length in the reference arm,
ls is the optical path length in the specimen arm up to
the specimen surface, and �ds is the depth of pene-
tration in the specimen. The mismatch is caused by
the implementation challenge in setting an equal fi-
ber length in both arms of the interferometer. The
phase velocity �p sample is given by c�np sample, and the
group velocity �g sample is given by c�ng sample, where
np sample is the mean refractive index of the specimen,
and the group-velocity index ng sample is given by
np sample � ��dnp sample�d��. The overall first- and
second-order dispersion equations in the interferom-
eter caused by the FD ODL, the fiber-length mis-
match, and the specimen are given by

D�(t) � D� ODL(t) � D� fiber(t) � D� sample(t)

� �
16�2c[�z � f��(t)tan �g]

p2�0
3 cos2 �g

� 2�2 fiber�d

� 2�2 sample�ds, (31)

D�
(1)(t) � D� ODL

(1) (t) � Dw fiber
(1) (t) � Dw sample

(1) (t)

�
48�2c[�z � f��(t)tan �g]

p2�0
4 cos2 �g

�1 �
2�c sin �g

p�0 cos2 �g
�

� 2�3 fiber�d � 2�3 sample�ds, (32)

where �d is the fiber-length mismatch dr � ds be-
tween the reference arm and the specimen arm; dr is
the fiber length in the reference arm; ds is the fiber
length in the specimen arm; �2 fiber and �2 sample are the
first-order dispersion coefficient of the fiber and the
specimen, respectively; and similarly �3 fiber and
�3 sample are the second-order dispersion coefficient of
the fiber and the specimen, respectively. In Eqs. (31)
and (32) we define the dispersion in the reference arm
to be positive if the reference arm fiber is longer than
the specimen arm fiber (i.e., �d � 0). Therefore the
dispersion in the specimen arm, which can be intro-
duced by a specimen, should be negative because
D��t� or D�

�1� would be zero if the first-order or second-
order dispersion in both arms were the same, i.e.,
they cancel each other. The FD ODL is employed to
induce negative or positive dispersion in the refer-
ence arm depending on �d and the dispersion char-
acteristics of the specimen to match the total first- or
second-order dispersion in the interferometer arms.

B. Relation Between the First-Order Dispersion Effects of
the Fourier-Domain Optical Delay Line and the Optical
Fiber

With a mirror employed as the specimen, the relation
between the first-order dispersion owing to fiber-
length mismatch �d and the first-order dispersion
owing to the axial grating shift �z of the FD ODL
with respect to the focal plane of the lens can be
investigated. An axial shift of the tiltable mirror of
the FD ODL with respect to the lens will not affect
dispersion because the lens is telecentric in the space
of the mirror. This axial shift would simply add a
constant optical path length to all wavelengths and
also decrease the coupling efficiency in the inter-
ferometer. To determine the amount of axial shift of
the grating that induces a first-order dispersion equal
to the first-order dispersion imposed by a given fiber-
length mismatch in the interferometer arms, we de-
rive a relation from Eq. (31) given by

D�(t) � D� ODL(t) � D� fiber(t)

� �
16�2c[�z � f��(t)tan �g]

p2�0
3 cos2 �g

� 2�2 fiber�d.

(33)

The first-order dispersion is related to �z as well as to
the tilt angle of the mirror ���t�, which can be a
sinusoidal or a triangular function of time in the case
where �g is nonzero. Therefore the dispersion would
be a time-varying function if the grating tilt angle
was nonzero. Compensation of a time-varying disper-
sion would need a dynamic grating axial shift syn-
chronized to the tilt angle of the mirror, which is
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complicated to accomplish. Hence we set the tilt of the
grating �g to zero. Therefore the relation between the
amount of axial shift �z of the grating from the focal
plane of a lens and a fiber-length mismatch �d to
make the overall first-order dispersion D��t� zero is
given by

�z
�d �

�2 fiberp
2�0

3

8�2c
. (34)

Thus the axial shift �z required to remove the first-
order dispersion caused by the fiber-length mismatch
�d can be set according to the first-order dispersion
coefficient of the fiber �2 fiber, the grating period p, and
the center frequency of the source �0, all known or
measurable parameters. Therefore the ratio provided
by Eq. (34) can be computed, and if either one of the
two parameters �z or �d was known, the other could
then be determined. In practice, �z can be theoreti-
cally established and �d can then be computed by use
of Eq. (34) as detailed in Subsection 3.A.

3. Simulation and Experimental Validation

In a dispersionless system the power spectral density
of the superluminescent diode (SLD) and its autocor-
relation function form a Fourier-transform pair as
given by the Wiener–Khinchin theorem.19 Figure 2(a)
shows the measured power spectral density of the
SLD, and Fig. 2(b) presents the corresponding pho-
tocurrent signal simulated by taking the inverse Fou-
rier transform of the measured power spectral
density of the SLD. Given the power spectral density
of the SLD shown in Fig. 2(a), Fig. 2(b) presents the
ideal photocurrent signal.

We implemented the fiber-optic interferometer
shown in Fig. 1. A SLD (SLD-47HP Superlum Diodes)

centered at 950 nm with a spectral bandwidth of ap-
proximately 70 nm and a power of 7 mW illuminated
the interferometer. An attenuator was employed to
prevent optical feedback into the SLD, which would
cause permanent damage to the source. A circulator
or isolator centered at 950 nm and of large bandwidth
would have been preferred but such components are
not yet commercially available. The light emitted by
the SLD went through two fused fiber couplers. A
splitting ratio of 80�20 enabled transmission of max-
imum power into the specimen, reducing the excess
noise arising from the reference arm. Figure 1 also
shows the FD ODL that was used for depth scanning
and dispersion compensation. We used a balanced
detector (Nirvana 2017) connected to a real-time os-
cilloscope (Tektronix TDS210) to observe the pho-
tocurrent signal. The oscilloscope was connected to a
computer that was employed to record the signal.

In Subsection 3.A we combine experimental re-
search with the theoretical analysis of dispersion in
the interferometer up to second order given in Section
2. We first employ a mirror as the specimen and then
analyze the effect of first- and second-order dispersion
effects on the photocurrent signal. We then perform
first-order dispersion compensation by adjusting �z in
the FD ODL to improve the degraded photocurrent
signal. In Subsection 3.B we simulate and demon-
strate experimentally the effect of dispersion with a
LiTaO3 specimen that was chosen because of its suit-
able dispersion characteristics to model a skin spec-
imen.

A. First-Order Dispersion Compensation and Effect of
Second-Order Dispersion on the Photocurrent Signal when
the Specimen is a Mirror

The parameters related to the single-mode optical
fiber and the FD ODL are given in Table 1. Inserting

Fig. 2. (a) Measured power spectral density of the SLD, (b) corresponding ideal photocurrent signal.
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these parameters into Eq. (34), we obtained the ratio
�z��d � 0.0168.

The grating was set to be parallel to the lens so that
the tilt angle of the grating was zero. To obtain the
narrowest photocurrent signal, we shifted the grating
axially to match the first-order dispersion in the arms
of the fiber-optic interferometer. We then simulated
the photocurrent signal of the system by theoretically
varying �z and x0. The value of x0, validated theoret-
ically, was set experimentally at 0.4 mm. Such a
value enforces a low modulation frequency of the pho-
tocurrent signal, which is directly proportional to x0
as shown in Eqs. (24) and (25). �z was set at 0.06 mm
and validated theoretically as well. The fiber-length
mismatch�d was then computed to be 3.6 mm by use
of Eq. (34). Figure 3(a) shows the narrowest photocur-
rent signal obtained experimentally by adjusting the
grating axial shift �z to compensate the first-order
dispersion induced by the fiber-length mismatch. Fig-
ure 3(b) represents the corresponding photocurrent
signal simulated with �z � 0.06 mm, �d � 3.6 mm,
and x0 � 0.4 mm. Figures 3(a) and 3(b) show that the
first-order dispersion induced by �z � 0.06 mm com-
pensates the first-order dispersion induced by the
3.6 mm of fiber-length mismatch between the two
arms. Under such a setting, there remains no overall
first-order dispersion. However, the second-order dis-
persion corresponding to �z � 0.06 mm and �d

� 3.6 mm is nonzero and is best shown by the asym-
metric small oscillations in Figs. 3(a) and 3(b).

To further validate the set value of x0, we increased
�z from 0.06 to 0.13 mm. The first-order dispersion
caused by �z � 0.06 mm out of the total grating axial
shift �z � 0.13 mm compensates the 3.6 mm of the
fiber-length mismatch between the two arms because
the first-order dispersion due to the FD ODL is linear
with the grating axial shift �z as given by Eq. (27).
Thus there remains first-order dispersion due to the
grating additional axial shift of 0.07 mm, second-
order dispersion due to the overall grating axial shift
�z � 0.13 mm, and second-order dispersion due to
the fiber-length mismatch �d � 3.6 mm. The corre-
sponding photocurrent signal is shown in Figs. 4(a)
and 4(b).

To isolate the contribution of the first-order disper-
sion, we also simulated the photocurrent signal
shown in Fig. 4(c), where the total second-order dis-
persion was simply set to zero in the simulation. We
next simulated the photocurrent signal shown in Fig.
4(d) by setting the total first-order dispersion in the
simulation to zero, so that the contribution of the
second-order dispersion could be next isolated and
visualized. The results of these simulations show that
the asymmetric shape and sidelobes in the photocur-
rent signal are caused by the total second-order dis-
persion of the interferometer.

Fig. 3. (a) Experimental result corresponding to the parameters listed in (b); (b) simulation result for �z � 0.06 mm, �d � 3.6 mm, and
x0 � 0.4 mm.

Table 1. Parameters of the Single-Mode Optical Fiber and the FD ODL

�0 �2 fiber at �0 �3 fiber at �0 p f ��max�t�

950 nm 34.95 fs2�mm 420 fs3�mm 1.204 �m 25 mm 2°
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B. Experimental Validation of First-Order Dispersion
Compensation and Effect of Second-Order Dispersion on
the Photocurrent Signal

In Subsection 3.A we investigated the effect on the
signal photocurrent of the first- and second-order dis-
persion induced by the fiber-length mismatch be-
tween the interferometer arms and the FD ODL. We
quantified the compensation of the first-order disper-
sion induced by the fiber-length mismatch using the
FD ODL. The specimen employed was a mirror and
thus was nondispersive. In this subsection we add the
effect of dispersion due to a dispersive specimen on
the photocurrent signal. A layered LiTaO3 specimen
was selected because of its suitable dispersion char-
acteristics to model a skin specimen. A skin specimen

is highly scattering, thus quantifying the effect of
dispersion of skin on an isolated photocurrent signal
and its envelope is not doable.

Given that the first-order dispersion coefficient of
LiTaO3 is approximately twice as large as that of skin
at 950 nm as shown in Table 2, a light beam centered
at 950 nm obtains the same first-order dispersion af-
ter going through 0.5 mm of LiTaO3 as 1.085 mm of

Table 2. Dispersion Coefficients of Skin and LiTaO3

Specimen �2 at 950 nm �3 at 950 nm

Skin 109 fs2�mm 159 fs3�mm
LiTaO3 236.8 fs2�mm 188 fs3�mm

Fig. 4. (a) Experimental result with an additional 0.07-mm axial grating shift from the initial 0.06 mm; (b) simulation result for �z
� 0.13 mm, �d � 3.6 mm, and x0 � 0.4 mm; (c) isolated effect of first-order dispersion; (d) isolated effect of second-order dispersion.
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skin specimen. The second-order dispersion slight
mismatch between the skin and the LiTaO3 speci-
mens is found to be negligible. The dispersion coeffi-
cients provided in Table 2 were derived from the
formula for the refractive indices of skin and LiTaO3
given as a function of wavelength in Refs. 20 and 21.
Using this function and the definitions given in Refs.
22 and 23, we computed the first- and second-order
dispersion coefficients �2 and �3 of skin and LiTaO3.
These coefficients indicate that the first-order disper-
sion in a skin specimen is large compared with that in
the optical fiber, and thus the specimen must be ac-
counted for in any compensation scheme. Since we
are focusing in this paper essentially on dispersion
and its effect on resolution, we do not model the
power loss due to reflections, scattering, and absorp-
tion within LiTaO3.

The simulations and experiments of the photocur-
rent signal were based on the experimental setup
described in Subsection 3.A, with the exception that
x0 was increased to 3 mm to modulate the photocur-
rent signal at a higher frequency where the noise
level drops and the signal-to-noise ratio increases.
The grating axial shift �z was set to 0.06 mm, where
the first-order dispersion induced by the fiber-length
mismatch of 3.6 mm between the interferometer
arms was compensated.

The first case presented in Fig. 5 shows the pho-
tocurrent signals when the first-order dispersion was
compensated for the light reflected from layer A in-
dicated with a bold line in Fig. 5(a). The two-
dimensional image of the specimen is shown in Fig.
5(b). The photocurrent signals are shown in Fig. 5(c)
when two layers of LiTaO3 separated by an air gap of
80 �m were scanned through the single line S shown
in Fig. 5(b). Figures 5(d), 5(e), and 5(f) present the
zoomed measured photocurrent signal induced by the
reflections off layers A, B, and C, respectively. Also
shown in Figs. 5(d), 5(e), and 5(f) are the envelopes of
the measured photocurrent signal and the envelopes
of the simulated photocurrent signal. The broadening
and asymmetry of the envelopes of the photocurrent
signal caused by uncompensated first- and second-
order dispersion induced by LiTaO3 and the FD ODL
are observed in Figs. 5(e) and 5(f), and the photocur-
rent shown in Fig. 5(d) suffers only from second-order
dispersion. For the light reflected from the back end
of LiTaO3, which is layer C, the effect of dispersion is
so severe that the corresponding photocurrent signal
is broadened maximally.

Observing the severe degradation in the photocur-
rent signal due to the reflection from the back end of
LiTaO3, i.e., from layer C, we investigated a case in
which the grating of the FD ODL was moved closer to
the lens of the FD ODL, i.e., �z was decreased, so that
the total first-order dispersion in the system was zero
for the light reflected in the midplane of LiTaO3, i.e.,
from layer B, as shown in Fig. 6(a). We computed the
corresponding grating axial shift to be 0.005 mm.
Figure 6(c) presents the measured photocurrent sig-
nals resulting from reflections off of layers A, B, and
C, respectively, through the single line S shown in

Fig. 6(b). The zoomed photocurrent signals and their
envelopes are shown in Figs. 6(d)–6(f). In this case,
the results show a lessened overall broadening of the
photocurrent signal envelopes across the depth of the
specimen and a weaker effect of first-order dispersion
in the photocurrents. The photocurrent signal less
affected by the first-order dispersion is naturally the
one detected from layer B as shown in Fig. 6(e).

To be comprehensive, we investigated a final case,
where we further decreased the grating axial shift �z
down to �0.055 mm so that the total first-order dis-
persion was set to zero for the light reflected at the
back end of LiTaO3 shown with a bold line in Fig. 7(a).
The severe effect of the first- and second-order dis-
persion is demonstrated in Fig. 7(d) for the photocur-
rent signal resulting from the reflection off of layer A
of the specimen. The photocurrent signal shown in
Fig. 7(f) presents a slight effect of second-order dis-
persion, and Fig. 7(e) shows the photocurrent signal
measured from the reflection off of layer B of LiTaO3.

Photocurrent signals presented in Figs. 5(d), 6(e),
and 7(f) with overall first-order dispersion equal to
zero are not the same since the second-order disper-
sion for each case is different. For example, the pho-
tocurrent signal in Fig. 5(d) presents significant
sidelobes whereas the one shown in Fig. 7(f) does not
possess any significant sidelobes. Therefore we do not
necessarily expect the axial resolution for each case
to be the same because of the effect of second-order
dispersion.

Table 3 presents the computed axial resolutions of
the photocurrent signals shown in Figs. 5, 6, and 7
(i.e., lA, lB, lB�, lC). The ASI is the absolute square in-
tegral of the envelopes of the photocurrent signals
and is a metric used to quantify the axial resolution
in OCT, and rms width (i.e., �rms) is the root mean
square of the envelopes of the photocurrent sig-
nals.24,25

With the results presented and Table 3 that quan-
tify resolution, we have shown that the axial resolu-
tion in the OCT system is not fixed over the specimen
scanned for a biological specimen because of disper-
sion. When the total first-order dispersion is set to
zero for the middle plane of the specimen by shifting
the grating of the FD ODL axially, the effect of the
first-order dispersion on the photocurrent signal is
minimized over the entire depth of the specimen con-
sidered for imaging. In the case of this optimal set-
ting, the small broadening and asymmetry combined
of the photocurrent signal are a combination of first-
order residual dispersion away from the plane of
compensation and the associated second-order dis-
persion, respectively.

4. Conclusion

In this paper we demonstrated the effect of dispersion
up to second order in a fiber-optic interferometer that
has the general structure of an OCT system. The
dispersion effects induced by LiTaO3 were included
for its similarity of dispersion characteristics to skin
specimens. We presented a theoretical and associated
experimental framework for minimizing broadening
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Fig. 5. (a) Schematic of two layers of 0.5�mm LiTaO3 separated by an air gap; (b) two-dimensional image of the specimen when the
first-order dispersion compensation is set for the signal reflected off the front surface A of the specimen; (c) single depth scan through the
line S shown in (b) of the specimen image; (d)–(f) solid curves are zoomed photocurrent signal envelopes and the dashed curves are
simulated photocurrent signal envelopes for light reflected off of (d) the front surface A, (e) the second surface (i.e., from layer B), and (f)
the back surface C of the specimen for �z � 0.06 mm, �d � 3.6 mm, and x0 � 3 mm.
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Fig. 6. Schematic of two layers of 0.5�mm LiTaO3 separated by an air gap; (b) two-dimensional image of the specimen when the first-order
dispersion compensation is set for the signal reflected off of the middle surface B of the specimen; (c) single depth scan through the line
S shown in (b) of the specimen image; (d)–(f) solid curves are zoomed photocurrent signal envelopes and the dashed curves are simulated
photocurrent signal envelopes for light reflected off of (d) the front surface A, (e) the second surface (i.e., from layer B), and (f) the back
surface C of the specimen for �z � 0.005 mm, �d � 3.6 mm, and x0 � 3 mm.
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Fig. 7. Schematic of two layers of 0.5�mm LiTaO3 separated by an air gap; (b) two-dimensional image of the specimen when the first-order
dispersion compensation is set for the signal reflected off of the back surface C of the specimen; (c) single depth scan through the line S
shown in (b) of the specimen image; (d)–(f) solid curves are zoomed photocurrent signal envelopes and the dashed curves are simulated
photocurrent signal envelopes for light reflected off (d) the front surface A, (e) the second surface (i.e., from layer B), and (f) the back surface
C of the specimen for �z � � 0.055 mm, �d � 3.6 mm, and x0 � 3 mm.
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of the envelopes of the photocurrent signals observed
across the depth of the specimen. We quantified how
first-order dispersion in the overall system with a
biological specimen can be compensated by employ-
ing a FD ODL with a grating with variable axial
position. Results showed that the second-order dis-
persion cannot be compensated together with the
first-order dispersion. However, we proposed a dis-
persion compensation method for highest overall ax-
ial resolution across the depth of the specimen.
Particularly, the method proposed is suitable for im-
aging a few millimeters deep into the specimen. Spe-
cifically, if the overall first-order dispersion
compensation is set for the photocurrent signal re-
sulting from the light reflected from around the mid-
dle plane of the specimen, the effect of first-order
dispersion on the photocurrent signal is overall min-
imized and resolution is highest across the depth of
the specimen.

Appendix A

Zvyagin et al.17 derived the phase difference �
��, t�
in FD ODL between the phase acquired by a ray of
arbitrary frequency � when ��t� is nonzero and the
phase acquired when ��t� � 0, i.e.,

�
(�, t) �
2��z

c cos � �
2�x0�(t)

c �
2��(t)f

c sin �,

(A1)

where ��t� and � are defined as shown in Fig. 8.
Equation (A1) is changed for a double-pass FD

ODL in Fig. 8 as

�
ODL(�, t) �
4��z

c cos � �
4�x0��(t)

c

�
4���(t)

c sin �

�
4��z

c �
8��z

c sin2
�

2 �
4�x0

c ��(t)

�
4���(t)f

c sin �, (A2)

where ���t� � ��t� � �min.
The grating equation is used to replace sin � in Eq.

(A2), which is given by17

p[sin(� � �g) � sin �g] � 2�mc�1
�

�
1
�0
�. (A3)

The �
ODL��, t� in a double-pass FD ODL is the phase
difference between the phase acquired by a ray of
arbitrary frequency � when ��t� is nonzero and the
phase acquired when ��t� is �min. We find the phase
delay tp�t�, the group delay tg�t�, the first-order group-
delay dispersion D��t�, and the second-order group-
delay dispersion D�

�1��t� in a double-pass FD ODL by
the definitions of each value as

tp ODL(t) �
�
ODL(�0, t)

�0
�

4�z
c �

4��(t)x0

c , (A4)

tg ODL(t) �
���
ODL(�, t)�

�� �
� � �0

�
4�z

c �
4��(t)x0

c �
8���(t)f

p�0 cos �g
, (A5)

D�ODL(t) �
�2��
ODL(�, t)�

��2 �
� � �0

� �
16�2c��z � f��(t)tan�g

p2�0
3 cos2 �g

, (A6)

D� ODL
(1) (t) �

�3��
ODL(�, t)�
��3 �

� � �0

�
48�2c[�z � f��(t)tan �g]

p2�0
4 cos2 �g

�1 �
2�c sin �g

p�0 cos2 �g
�.

(A7)
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rms width 12.67 8.05 8.05 12.14

Back surface ASI 14.45 8.25 8.25 6.00
dispersion
compensation

rms width 18.34 11.96 11.96 7.33

Fig. 8. Schematic diagram of the double-pass FD ODL in the case
of a grating tilted from the normal and offset from the focal plane.
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