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We demonstrate the effect of the spectral shape of broadband light sources in a task-based approach for
assessment of signal detection and resolution in optical coherence tomography. We define two binary
tasks: The signal is either present or absent and the signal can be either resolved or not. In a transparent
sample bounded by two uniform interfaces we study the minimum detectable change in the index of
refraction as well as the minimum resolvable distance between the layers in correlation with the source
spectral shape and power. Results show that the area under the receiver operating curve (AUC) for a
signal-detection task is not affected by the shape of the spectrum but solely by its optical power, whereas
spectral shaping has an effect, which we quantify, on the AUC for the resolution task. Moreover, the AUC
is demonstrated in relation to the concept of system sensitivity for a signal-detection task. © 2005
Optical Society of America
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1. Introduction

Optical coherence tomography1 (OCT) is an interfero-
metric biomedical imaging technique based on the
temporal coherence property of a broadband light
source that is used to generate cross-sectional images
of biological tissues at high axial resolution. The axial
resolution of the imaging system is often described by
the point-spread function of the imaging system,
which is defined as the envelope of an interference
signal formed by varying the optical path length in
the sample or reference arm, that is, scanning a scat-
tering or reflecting point object throughout the depth
of focus in the specimen, i.e., the sample.2 We previ-
ously quantified the effect of change in source
spectral shape on axial resolution3 and then demon-
strated how to improve the point-spread function of
an OCT system by shaping the source power spec-
trum.4

Recently we developed a mathematical framework
based on task performance that uses statistical deci-
sion theory for the optimization and assessment of
OCT.5 The development of such a framework was
motivated by the art of diagnosis in medical imaging,
in which image quality is estimated based on the
performance of an observer on specific tasks.6 Assess-
ing the image quality provided by an imaging system
without a given task and based on the observer’s
opinion is called subjective assessment. Subjective
assessment provides arguable results as it may
change with the system or observer and it does not
fulfill a purpose.7 Therefore a definition of task is
necessary for objective assessment. Two major task
categories may be defined: classification and estima-
tion. We define two tasks for an OCT signal or image:
a signal-detection task and a resolution task. A
signal-detection task is generated to investigate
whether the OCT signal can be detected. The purpose
of a resolution task is to study whether two interfaces
or features can be resolved with the OCT system.5

In this paper, we apply such a framework to ana-
lyze the effect of the source spectral shape on two
tasks, a signal-detection task and a resolution task.
Such tasks are binary classification tasks since they
each consist of only two hypotheses, which are the
negative hypothesis H0 and the positive hypothesis
H1. We have two classes defined for these tasks: the
zeroth class for the cases when H0 is true and the first
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class for the cases when H1 is true. Different types of
observer models have been described and discussed
in the literature.5,7–10 An ideal observer can be em-
ployed to perform the task if all statistical informa-
tion of the data is available to the observer, i.e., a
probability density function (PDF) is known under
each hypothesis. The ideal observer provides the
maximum performance one can get from any ob-
server. When the PDF information is not available,
the Hotelling observer8 is a preferred alternative.
The Hotelling observer is a linear discriminant that
depends on the second-order statistics of the data. In
this paper, we employ the Hotelling observer to per-
form the defined classification tasks. The Hotelling
observer generates a scalar detectability index5 to
discriminate data into the given classes according to
the negative and positive hypotheses. In Ref. 5 we
proposed to use the detectability index and the area
under the receiver operating characteristics curve
(AUC) to determine how well an optical coherence
imaging system, which we considered a free-space
Michelson interferometer, performs a given task. We
thereafter investigated the change in the perfor-
mance of the Hotelling observer on the detection and
resolution tasks when the source power spectrum is
smoothed by optical spectral shaping.

2. Mathematical Model

We can represent any object data, i.e., signal or im-
age, as an N � 1 column vector I, which is in our case
a set of photocurrent signal I�t� acquired and sampled
at the output of the OCT photodetector. The detect-
ability index, or effective signal-to-noise-ratio (SNR),
associated with the performance of the Hotelling
observer is given by

d2 � X†K�1X, (1)

where X is an N � 1 column vector representing the
difference in the ensemble-averaged vectors of the
two classes of binary classification task for hypothesis
H0 and hypothesis H1 and † denotes the transpose
and complex conjugate. If the detected photocurrent
signal supports hypothesis H0, then it belongs to the
zeroth class and the signal vector is denoted by I0.
Similarly, if the photocurrent signal indicates that
hypothesis H1 is true, we denote the signal vector by
I1. Hence vector X will be given by

X � �I1� � �I0�, (2)

where � � indicates the ensemble average over all
sources of randomness. The quantity K in Eq. (1) is
an N � N matrix that represents the weighted-
average covariance matrices across the two classes
based on their a priori probability. If we assume that
the probability of occurrence of each class is the same,
i.e., one half, then K will be given by

K �
1
2�K1 � K0�, (3)

where Ki are the autocovariance matrices under each
class �i.e., i � 0, 1�. The elements of the autocovari-
ance matrix may be written as

Ki�tn, tm� � �Ii�tn�Ii�tm�� � �Ii�tn� � �Ii�tm��. (4)

The Hotelling observer makes a decision by taking
the inner product of a template vector with the data
vector and comparing the resulting scalar with a
threshold. The Hotelling template is the product of the
inverse of the average covariance matrix K with the
vector X presented. This template maximizes the ef-
fective SNR of the resulting test statistic, and the re-
sulting maximal effective SNR is called the Hotelling
trace. Unlike the conventional concept of sensitivity of
an OCT signal,11–13 in which the sensitivity corre-
sponds to the SNR obtainable with a 100% reflective
sample and provides a measure for minimum detect-
able sample reflectivity,13 the detectability index or
effective SNR is a measure of separability of the
classes that comprise an ensemble of images span-
ning various instances of the noise. The separability
is determined by the ratio between the distance of the
ensemble averages of each class, i.e., the difference
between them, and scatter around the ensemble av-
erages of each class. Such a detectability index com-
plements the conventional concept of sensitivity by
providing a statistical approach to the classification
of data, i.e., assignment of a signal to a certain class
around the limit of detectable minimum reflectivity,
given that the classification of noisy data sets is a
stochastic process.

We can relate the detectability index to a common
scalar quantity called the AUC, under the assump-
tion that the Hotelling test statistic is normally
distributed under each class.6,8 This normality as-
sumption can be justified under the central limit the-
orem since the Hotelling test statistic is a linear
combination of the components of the data vector
and, for the task we are considering, these compo-
nents are statistically independent random vari-
ables. The AUC relation is given by

AUC �
1
2 �

1
2 erf ��d2

2 �, (5)

where erf( ) is the error function. The AUC is a com-
mon figure of merit for task performance. The value
of the AUC changes between 0.5 and 1, as indicated
in Eq. (5). The AUC represents the probability of
correct discrimination when a test datum is evalu-
ated to determine whether it belongs to a certain
class (0 or 1). An AUC value of 0.5 means that the
discrimination of classes is not possible, while an
AUC value of 1 corresponds to a perfect discrimina-
tion.

3. Photocurrent Signal

A well-known characteristic of light sources em-
ployed in OCT imaging is the broadness of their
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spectral bandwidth. The electric field emitted by the
source consists of multiple plane waves with different
angular optical frequencies in the spectral band of the
source power spectrum. Hence the source electric
field Eso�t� can be expressed as the sum of its Fourier
components as

Eso�t� �	
��

�

exp�i�t� Êso��� d�, (6)

where the caret �
� denotes a Fourier domain func-
tion and boldface variables are vector or matrix quan-
tities. The angular optical frequency � equals 2��,
where � is the optical frequency. In a Michelson in-
terferometer, which is the common setup used for
optical coherence imaging, the amplitude of the
source electric field is split at the beam splitter and
directed into a reference arm and a sample arm of the
interferometer. We can describe the losses as being
due to the beam splitter, the absorption in the inter-
ferometer arms, nonequal reflection from the refer-
ence mirror and sample mirror, or a sample as a
frequency-dependent function as 	̂r��� for the field
propagating in the reference arm and as 	̂s��� for the
field propagating in the sample arm. Therefore, the
expression for the electric field at the photodetector,
which consists of the electric fields recombined at the
beam splitter, can be given by

E�t� �	
��

�

�	̂r��� exp�i
r��, t� � i�t

� 	̂s��� exp�i
s��, t� � i�t� Êso���d�, (7)

where 
r��� and 
s��� are the phases accumulated
through propagation in the reference and sample
arms of the interferometer, respectively. We repre-
sent the expression in curly brackets � � in Eq. (7) as
m��, t� for the sake of simplicity.

The photocurrent signal I�t� generated at the pho-
todetector is related to the number of photoelectrons
N�t� induced by the incident electric field over the
integration time of the photodetector �t. We know
that the creation of photoelectrons obeys Poisson
statistics, whereas the electric field emitted by the
broadband light source presents characteristics of cir-
cular Gaussian statistics with �E�t�� equal to zero.14

Because the photodetector provides a mean photocur-
rent at the output, the relation between the output
photocurrent and the number of photoelectrons is
given by

��I�t��� ��� e
�t	

��

�

r�t � t��N�t��dt���
�

e
�t 	

��

�

r�t � t����N�t��� � dt�, (8)

where e is the charge of an electron �1.6 � 10�19 C�,
the double angle brackets represent statistical aver-
aging over both random processes, and r�t� is the
integration time window of the photodetector given
by

r�t� ��1, 0 � t � �t
0, otherwise. (9)

The mean number of photoelectrons ��N�t���, indicat-
ing averaging over both the Poisson noise associated
with detection and the Gaussian noise associated
with the source field, is defined as �E†�t�E�t��, where
 is given by RA��e�0�, where R and A are the respon-
sivity and area of the detector, respectively, and �0 is
the impedance of free space �377 ��. The detector
responsivity R, which is a function of optical fre-
quency, is assumed to be unity for all frequencies.
From Eq. (7) we derive the mean number of photo-
electrons as

��N�t��� � 	
��

� 	
��

�

m*��, t�m���, t� exp�i��� � ��t

� �Êso
†���Êso����� d� d��, (10)

where * denotes the complex conjugate. Assuming
that the source field is a stationary random process,
we can express �Êso

†���Êso����� in terms of the source
power spectrum S��� as5,14,15

�Êso
†���Êso����� � ��� � ���S���. (11)

When Eq. (11) is inserted into Eq. (10), the mean
photocurrent in Eq. (8) becomes

��I�t��� �
e
�t 	

� �

�

r�t � t��

� �	
��

�

�m��, t���2 S���d��dt�, (12)

where

�m��, t���2 � �	̂r����2 � �	̂s����2

� 2 Re �	̂r*���	̂s��� exp��i
r��, t��
� i
s��, t���. (13)

Inserting Eq. (11) into Eq. (10) yields

��N�t��� � 	
��

�

�m��, t��2 S� d�. (14)

4. Evaluation of the Hotelling Observer Performance

We described in the previous section the basics on
how to quantify the performance of a Hotelling ob-

10 December 2005 � Vol. 44, No. 35 � APPLIED OPTICS 7575



server by computing the associated detectability
index and AUC. Given the two sources of randomness
in the system together with Eq. (1) for the mean
photocurrent, the sampled autocovariance matrix
elements shown in Eq. (4) should be updated as

Ki�tn, tm� � ��Ii�tn�Ii�tm��� � ��Ii�tn�����Ii�tm���.
(15)

A more explicit expression for the autocovariance ma-
trix elements for the ith class is needed to simulate
the detectability index and AUC for a task. Such an
expression is given by5

Ki�tn, tm� � � e
�t�2	

��

�

r�tn � t��r�tm � t����Ni�t���� dt�.

(16)

As shown in Eqs. (12) and (14) and approximation
(16), the source power spectrum is related to the
mean number of photoelectrons ��N�t���, the mean
photocurrent ��I�t���, and the autocovariance matrix
K, which are critical parameters for the computation
of the detectability index and thus the AUC. There-
fore the spectral characteristic of the light source
employed is expected to strongly affect the perfor-
mance of the Hotelling observer.

Having the mathematical expressions to compute
the detectability index and AUC of the Hotelling ob-
server, we need to model a sample to be employed in
the imaging system, so the performance of the ob-
server may be computed for a given task. In this
investigation, we choose as a sample model a single
layer, such as a glass plate, bounded by two different
interfaces (A and B), as shown in Fig. 1. The first
interface is assumed to be between air and the front
surface of the sample that reflects a portion of the
light beam, which is assumed to be normally incident
upon the surface, because of the change in refractive
index from 1 to n, where n is the refractive index in
the sample. The second interface is modeled to be
between the sample and a substrate with a refractive
index given by n � �n. The Fresnel reflection coeffi-

cients at the first and second interfaces at normal
incidence are given by

r1 �
1 � n
1 � n, r2 �

��n
2n � �n . (17)

The more general expressions of the Fresnel coeffi-
cients would be used for nonnormal incidence.15 With
the thickness of the layer represented by a variable l,
the phase accumulation of light propagating in the
layer is given by exp�i�nml�c�, where m is the num-
ber of passes through the layer and c is the speed of
light in vacuum. Assuming the rest of the system as
ideal, the frequency response of the sample arm 	̂s���
is given by the response of the modeled sample as

	̂s��� � r1 � �1 � r1
2�r2 exp�i� n2l

c �, (18)

where we assume that the reflected optical power
becomes negligible for the second- and higher-order
reflections at the interfaces, indicated by a dashed
line in Fig. 1. We ignore the losses and phase shifts of
the beam splitter. The reference mirror is assumed to
have a flat reflection response with 100% reflectivity
for all frequencies; 	̂r��� is 1.

5. Tasks

We focus this investigation on two classification
tasks, a signal-detection task and a resolution task,
for the performance assessment of the Hotelling ob-
server in OCT imaging. These tasks are performed by
the Hotelling observer, as described above, and the
performance is evaluated by use of the detectability
index and AUC analysis.

The signal-detection task is established to specify
the minimum change in refractive index �n between
the sample layer and the substrate at the second
interface, which can be detected by the system. The
thickness of the layer l is set to a constant quantity
that is approximately twice the source coherence
length so that the light beams reflected from the first
and second interfaces (A and B) of the sample do not
interfere. If there is no second interface to be de-
tected, then hypothesis H0 is true. Under ideal con-
ditions there is no second interface if �n equals zero.
On the other hand, the second interface can be de-
tected, i.e., there is a second interface, for any �n
larger than zero. This is the case when hypothesis H1
is true. The observer computes the detectability index
and AUC as a function of �n to determine how they
behave with increasing values of �n.

The goal of the resolution task is to assess the
minimum thickness of the sample layer that the sys-
tem can discriminate and to observe the performance
of the observer with increasing thickness of the sam-
ple. We set the change in refractive index from the
sample layer to the substrate �n to various constant
values. When the thickness of sample layer l equals
zero, the second interface overlays the first interface.
This is the true case for hypothesis H0. On the other

Fig. 1. Sample model: n is the refractive index of the sample and
�n is the change of refractive index from sample to substrate.
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hand, for a nonzero thickness l, hypothesis H1 is true,
that an interface may be resolved. The observer
performance is quantified by computation of the
detectability index and AUC as functions of the sam-
ple layer thickness l.

6. Simulation Results

We investigated the signal-detection and resolution
tasks defined in the previous section while the
Hotelling observer performed the task for different
source power spectra. The first power spectrum we
used in our simulation was that of a broadband am-
plified spontaneous emission (ASE) source (Newport
BBS-430) emitting at 1565 � 40 nm. Our goal is to
compare the detectability index and AUC for un-
shaped and shaped power spectra of the same ASE
source. The shaping process was detailed in Ref. 4.
We prepared the measured wavelength power spec-
tra of the source before and after spectral shaping for
simulations by first converting them to frequency
spectra. The power spectra as functions of optical
frequency were then normalized by the area under
the original power spectrum, i.e., the source power
before spectral shaping was performed. Figure 2 pre-
sents each power spectrum �S0, the original source
power spectrum; S1 and S2, shaped power spectra)
prepared to be employed in the simulations. The orig-
inal power spectrum of the ASE source contained
significant spectral dips known to cause sidelobes in
the point-spread function of the imaging system.
With the spectral shaping process, smoother power
spectra S1 and S2 with no spectral dips were created
at the cost of 2.3 and 3.4 dB loss of optical power over
the original power spectrum S0, as shown in
Ref. 4.

A. Signal-Detection Task

We previously described the signal-detection task
and stated that it is performed to determine the effect

of a change in refractive index �n on the detectability
index and AUC generated by the Hotelling observer,
whereas the sample thickness l was set to a constant.
We set the sample thickness l to 50 �m, which is ap-
proximately twice the longest coherence length com-
puted for each power spectrum shown in Fig. 2.4 In all
simulations, the refractive index of the sample n,
which was considered to be skin, was chosen to be 1.4.
We simulated the detectability index as a function of
a change in refractive index �n and presented the
results for each power spectrum in Fig. 3(a) as �n was
increased from zero to 2 � 10�5. We then computed
the AUC by using Eq. (5) and plotted the relation
between the AUC and �n in Fig. 3(b). We did not
increase �n beyond 2 � 10�5 because all AUC curves
already reached their maximum, i.e., one, before �n
equals 2 � 10�5. The value of the AUC corresponds to
the probability of a correct classification in a two-
alternative forced-choice test. For example, AUC
equals one when the probability of correct classifica-
tion of a detected signal is 100%. For AUC values of
less than unity, for example, 0.75, the probability of
correct classification is 75%, and there is also a 25%
chance for the signal not to be classified correctly, i.e.,
as present, because the signal will be under the noise
level 25% of the time.

Figure 3(a) shows that the detectability index for

Fig. 2. Solid curve, original power spectrum of the ASE source S0;
dotted curve, power spectrum after the first shaping operation S1;
dashed curve, power spectrum after the second shaping operation
S2.

Fig. 3. (a) Detectability and (b) AUC as a function of change in
refractive index at the second interface.
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the original power spectrum is larger than those for
the two shaped power spectra for any nonzero �n.
The optical spectral shaping is based on attenuat-
ing the optical power at certain wavelengths, and
thus it causes an inevitable power loss. Indeed, we
see in Fig. 3(a) that the power spectrum that encloses
larger optical power provides higher detectability in-
dex values at a given value of �n when compared
with the others. Furthermore, a detectability curve
with a larger value than the others leads to an AUC
curve that reaches its maximum, i.e., one, for smaller
�n, as shown in Fig. 3(b). At AUC equal to one, a
smaller �n ensures a smaller reflection coefficient
given by Eqs. (17) and thus smaller reflectivity at the
second interface, which is evaluated as the minimum
reflectivity at the second interface, providing a cor-
rect classification of a present signal with 100%
probability. The minimum reflectivity for 100% prob-
ability of correct classification of a present signal can
be related to the concept of system sensitivity broadly
published in the OCT literature.11–13 When the three
AUC curves in Fig. 3(b) are compared, it can be seen
that the AUC curve for spectrum S0 reaches one at �n
equal to 1.007 � 10�5, whereas for S1 and S2 the cor-
responding values of �n are 1.160 � 10�5 and 1.365
� 10�5, respectively. Inserting those values of �n into
Eqs. (17) and computing the square of the reflection
coefficient values with a sample refractive index n of
1.4 yields reflectivities of �108.9, �107.6, and
�106.2 dB for a 100% probability of correct classifi-
cation of a present signal for the sources with the
power spectra S0, S1, and S2, respectively, where
0 dB corresponds to 100% reflectivity.

To suppress the effect of difference in optical power
in the simulation, we normalized each power spec-
trum individually with its optical power, i.e., the area
under the measured power spectrum, so that each
normalized power spectrum enclosed the same opti-
cal power, which is unity. For each power spectrum
shown in Fig. 4(a), we present in Fig. 4(b) the AUC
curves as functions of changes in the refractive index.
Although the AUC curve for the original power spec-
trum is the same in Figs. 3(b) and 4(b), we observe
that the AUC curves generated from power spectra
with different spectral shapes but the same power
overlap closely. Both simulations demonstrate that
the optical power is the dominant parameter while
simulating the detectability index and AUC for var-
ious changes in refractive index �n in a detection
task.

B. Resolution Task

The goal of the resolution task is to quantify the
minimum sample thickness l for which the OCT sys-
tem can resolve the reflections from interfaces A and
B of the sample shown in Fig. 1. To study the perfor-
mance of the Hotelling observer for the resolution
task, we set �n to certain constant values and vary
the sample thickness l for each value of �n. We used
the information presented in Fig. 3(b) to select values
of �n. From Fig. 3(b), for each curve we selected the

�n, denoted as �n1, providing an AUC value of 0.75,
and the minimum �n, denoted as �n2, providing an
AUC value of 1; we then doubled �n2, which is de-
noted as �n3.

To simulate the performance of the Hotelling ob-
server for the resolution task, we determined �n1,
�n2, and �n3 from Fig. 3(b) respectively as 1.543
� 10�6, 1.007 � 10�5, and 2.014 � 10�5 for the power
spectrum S0 in Fig. 2, 1.976 � 10�6, 1.160 � 10�5,
and 2.320 � 10�5 for the power spectrum S1 in Fig.
2, and 2.362 � 10�6, 1.365 � 10�5, and 2.730
� 10�5 for the power spectrum S2 in Fig. 2. The
detectability index and AUC as a function of the sam-
ple thickness l for each power spectrum and for each
selected change in refractive index value are shown
in Fig. 5.

In Figs. 5(a)–5(c) we observe that the detectability
index for the resolution task increases with an in-
creasing change in refractive index. The AUC curves
shown in Figs. 5(d)–5(f), which equal 0.5 for zero
sample thickness, i.e., two overlapping interfaces,
reach the value of one faster for larger values of �n.
On the other hand, for all minimum changes in re-
fractive index chosen �n1, the AUCs never reach one,
which means that the probability of resolution for
small changes in refractive index never becomes
100%. However, those AUC curves tend to approach
an asymptote about an AUC value of 0.85. Until the
asymptote is reached, we observe oscillations in AUC

Fig. 4. (a) Power spectra each normalized to have unit power,
(b) AUC as a function of change in refractive index for the power
spectra shown in (a).
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curves as well as detectability index curves for sam-
ple thicknesses of less than half the coherence length
of the source in the sample. The oscillation period is
measured as half the center wavelength of the source,
which is the period of the interference fringes for any
broadband light source centered at the same wave-
length. Thus the oscillations indicate that the light
beam reflected from the first interface interferes with
the one reflected from the second interface, if the
sample thickness satisfies the condition that the light
beam travels an optical path less than half the coher-
ence length. The oscillations in the AUC of the
sources represented with power spectra S1 and S2
show that the probability of discrimination of inter-
faces by the Hotelling observer fluctuates continu-
ously over a broader range of sample thickness even
if it is well above half the source coherence length in
the sample.

7. Discussion

We have demonstrated the effect of the source spec-
tral shape on the performance of the Hotelling ob-
server derived for an OCT system and two tasks, a
signal-detection task and a resolution task. The noise
sources considered in the simulations are Gaussian
noise from the broadband source and Poisson noise
from the detector. Except for those sources of noise,
the system is assumed to be ideal with unpolarized
light, no dispersion in the sample and imaging sys-
tem, and linear scanning of a homogeneous sample
with normally incident light experiencing Fresnel re-
flections at the boundaries of the sample.

As a continuation of previous studies, in which the
effect of spectral shape on the point-spread function
and image of the OCT systems was discussed,3,4 we
show in this paper that the spectral shape is a major
factor in the quantitative assessment of performance
when a resolution task is considered. Our analysis

indicates that, for a signal-detection task, the area
under the power spectrum curve, i.e., the optical
power of the light source, is dominant and sources
with higher power are expected to provide a larger
detectability index, irrespective of their shape, and
an associated AUC that increases faster with the
same change in refractive index �n and reaches one
for smaller values of �n. When we equalized the op-
tical power of the light source under various shaping,
results showed that the AUC for each power spec-
trum overlapped closely. This finding indicates that
shaping the source power spectrum does not have an
effect on the OCT performance for the signal-
detection task we defined and that the optical power
of the light source is the major factor defining the
performance of the system for that task. As part of
this investigation, the relation of the AUC to the
concept of the system sensitivity was demonstrated
in a signal-detection task.

The second set of simulations presented the perfor-
mance of the Hotelling observer in the assessment of
a resolution task. Results showed that spectral irreg-
ularities in the source power spectrum lead to fluc-
tuations in the detectability index and AUC curves
over a large range of sample thicknesses while the
change in refractive index �n is relatively small, e.g.,
1.543 � 10�6. For larger values of �n, we observed
that the detectability index as a function of the sam-
ple thickness had larger values and the AUC curves
reached one for small values of sample thickness.
This phenomenon means that the Hotelling observer
can discriminate the interfaces for any nonzero dis-
tance between them if �n has a relatively large
value.5 The AUC paradigm presented in this study is
considered to utilize not only one optical coherence
tomogram but a set of them at various noise instances
to evaluate the signal detection, i.e., the layer is
present or not, or distinguishability of interfaces, i.e.,
resolution of two successive layers, based on a statis-
tical decision theory framework, in which classifica-
tion is measured in a probability scale from 50% to
100%, as opposed to a binary scale.

8. Conclusion

This study has quantified the AUC performance of
the Hotelling observer for the tasks of detection and
resolution in OCT as a function of the spectral shape
of the light source, the output optical power, as well
as the sample optical characteristics, i.e., change in
refractive index. Results show that spectral shaping
leaves the AUC performance for a signal-detection
task invariant for equal power of the light source,
whereas it plays a role in the resolution task. Future
work will include the investigation of the role of spec-
tral shaping as well as other engineering parameters
for both more complex and different tasks along
with additional noise sources and different signal-
detection schemes. In this study we considered that
the sample had a simple structure with two layers,
i.e., interfaces, to establish a benchmark performance
for the Hotelling oberserver performing the two de-

Fig. 5. Detectability index as a function of the sample thickness
for the ASE source (a) with the power spectrum S0, (b) with the
shaped power spectrum S1, and (c) with the shaped power spec-
trum S2, and the corresponding AUC as a function of the sample
thickness for the power spectra (d) S0, (e) S1, and (f) S2.
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fined tasks. Real biological samples may have many
interfaces within the source coherence length; thus
future studies will be extended to include more com-
plex and multilayered models.

This research was supported by the Florida Pho-
tonics Center of Excellence, the National Institutes
of Health and National Cancer Institute grant
CA87017, and the University of Central Florida Pres-
idential Instrumentation Initiative.
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