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An iterative zonal wave-front estimation algorithm for slope or gradient-type data in optical testing acquired
with regular or irregular pupil shapes is presented. In the mathematical model proposed, the optical surface,
or wave-front shape estimation, which may have any pupil shape or size, shares a predefined wave-front esti-
mation matrix that we establish. Owing to the finite pupil of the instrument, the challenge of wave front shape
estimation in optical testing lies in large part in how to properly handle boundary conditions. The solution we
propose is an efficient iterative process based on Gerchberg-type iterations. The proposed method is validated
with data collected from a 15X 15-grid Shack—Hartmann sensor built at the Nanjing Astronomical Instru-
ments Research Center in China. Results show that the rms deviation error of the estimated wave front from
the original wave front is less than AN/130—\/150 after ~12 iterations and less than A\/100 (both for A
=632.8 nm) after as few as four iterations. Also, a theoretical analysis of algorithm complexity and error propa-

gation is presented. © 2005 Optical Society of America

OCIS codes: 220.4840, 220.4610, 120.6650.

1. INTRODUCTION

Wave-front estimation from wave-front slope data is a
classic mathematical problem in optical testing. It con-
verts the wave-front slope data into wave-front optical
path differences (OPDs) or, equivalently, wave-front
phases defined as the OPDs multiplied by 27/\. We shall
refer to the OPDs as the wave-front values. Let us sup-
pose that the wave-front differences or other type of slope
data have been obtained from a slope wave-front sensor.
The task is how to estimate the wave-front values from
such data, which is a numerical solution to the Neumann
boundary problem of the Poisson equation.1
Mathematical methods and algorithms for wave-front
estimation as it applies to optical testing have been con-
tributed by many authors."™* Of most interest to the
work presented in this paper are those algorithms that
can handle general pupil shapes. Such algorithms can be
categorized into Fourier-transform (FT)-based algorithms
and linear least-squares (LS)-based algorithms. For FT-
based algorithms, Gerchberg and Saxton proposed in
1972 iterative fast-Fourier-transform (FFT)-based phase
retrieval from amplitude measurements in the aperture
and the image planes.'® The Gerchberg—Saxton algorithm
was later improved further by Fienup for phase
retrieval.'® Freischlad and Koliopoulos in 1985 proposed a
discrete Fourier-transform-based algorithm for model es-
timation from wave-front slope measurements for square-
shaped pupils.lz’13 Later, Freischlad extended this algo-
rithm for general pupil shapes.14 In Freischlad’s method,
additional LS matrix equations needed to be set up to
generate the missing slope data for extending the
general-shaped pupil to a square one. Roddier and Rod-
dier proposed a technique to extrapolate the wave front
outside of the pupil employing Gerchberg-type iterations
and obtained an FFT-based algorithm for irregular-
shaped pupils.”’18 Finally, Zou and Zhang proposed in
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2000 a linear LS-based algorithm to handle any pupil
shapes. The algorithm used zero padding of the slope data
outside of the sampling pupil, and the discontinuity of the
test domain extension introduces remarkable deviation
errors (i.e., up to A/4 peak to valley). Such errors may not
be acceptable for most optical tests.'®

In this paper we first present in Section 2 the wave-
front estimation approach that we have pursued; we
briefly review in Section 3 the work done by Zou and
Zhang in 2000.'° We then present in Section 4 the pro-
posed iterative wave-front estimation algorithm followed
in Section 5 by two examples of wave-front estimations.
Finally, we discuss in Section 6 the theoretical complexity
and in Section 7 the noise-error propagation of the pro-
posed algorithm in relation to previous algorithms.

2. MOTIVATION AND PROPOSED
APPROACH

Usually, changes in the pupil shape or size will cause
changes in the wave-front estimation matrix and require
a new setup of the wave-front estimation process for each
new size or shape. Thus a mathematical formulation that
could automatize the wave-front estimation for any size
and shape pupil would not only help in maximizing the
efficiency of the testing process but also in minimizing the
potential errors necessarily associated with setting up
new matrices for wave-front estimation.

While the Zou and Zhang LS algorithm suffered re-
markable deviation errors owing to discontinuous bound-
ary conditions, its strength of formulizing a predefined
matrix for wave-front estimation provides immediate
plug-in of wave-front slope measurements for any pupil
shape or size.’® To illustrate the errors associated with
discontinuous boundary conditions and the error propaga-
tion within the pupil of interest, we now give an example.

© 2005 Optical Society of America
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Fig. 1. (a) Ground-truth or original wave front, (b) wave front
estimated from measured slope data with the algorithm without
iteration, (¢) wave-front deviation error computed as the differ-
ence between the ground-truth and the estimated wave front.

An original wave front (i.e., an estimated wave front that
is considered to represent ground truth of wave-front es-
timation, as will be further explained in Section 5) is
shown in Fig. 1(a), and the estimated wave front from
slope data with Zou and Zhang’s algorithm is shown in
Fig. 1(b). The difference between the estimated and the
original wave front is shown in Fig. 1(c), which represents
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the deviation errors associated with the domain extension
made across the boundary. Therefore, while the domain
extension technique is quite useful for developing a pre-
defined and regular estimation matrix for any irregular
pupil shapes, the challenge lies in how to establish conti-
nuity constraints at the boundaries across the original
pupil to remove the deviation errors in the estimated
wave front.

In this paper we propose to build on the Zou and
Zhang19 algorithm by adding Gerchberg-type iterations
for wave-front estimation, which will permit extrapola-
tion of the slope data outside of the pupil in order to sat-
isfy continuity boundary conditions. In the iteration pro-
cess proposed, the slope data in the pupil under test will
be replaced with the sampled raw slope data iteratively
until the estimated wave front converges to a solution.

3. REVIEW OF WAVE-FRONT ESTIMATION
FROM SLOPE DATA BY Z0U AND
ZHANG

Zou and Zhang proposed a noniterative linear LS method
to perform wave-front estimation based on a domain ex-
tension technique.19 The proposed algorithm was moti-
vated by the need in practical settings to automatize the
estimation process regardless of the pupil shape or size of
the input slope data set. Regardless of the method
adopted, a sampling geometry had to be first considered
in performing wave-front estimation. There are basically
three sampling geometries available for wave-front
estimates: the Fried geometry,5 the Hudgin geome‘cry,6
and the Southwell geometry,'” illustrated in Fig. 2. Owing
to its superiority over other geometries in error
propagation,lo Zou and Zhang adopted the Southwell ge-
ometry, which is characterized by taking the wave-front
slope measurements and wave-front values estimation at
the same nodes. In a problem with discrete slope mea-
surements as a starting point, a two-dimensional array of
discrete values w; (i=1,2,3, ...t X¢t) was used to map the
estimated wave-front values. Furthermore, an interlaced
array of j nodes was introduced to facilitate the estima-
tions of wave-front slopes at the midpoints between wave-
front nodes. Figure 3 shows the geometry in one direction
(e.g., the y direction) with both the nodes i and the inter-
laced nodes j. Let us denote the wave-front slopes at the
nodes ¢ in the y and z directions as s, and s, (
=1,2,3...t Xt), respectively. The slope data between two
adjacent nodes was assumed to change linearly with
distance,?’ which allowed us to perform linear interpola-
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Fig. 2. Wave-front estimation schemes. From left to right: the
(1) Hudgin, (2) Southwell, and (3) Fried models. In these figures,
the small circles symbolize the wave-front values and the small
arrows represent the partial derivatives of the wave front.
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Fig. 3. Double sampling grid systems illustrated in the y
direction.

tion to estimate the slopes between nodes. The slope at
node j was then estimated as an average of the slopes at
nodes i and i+ 1 by

8y, E(Syi + S3’i+1)’ 1)

where the slope s,; could also be expressed as the differ-
ence quotient of the wave-front values at nodes i and i
+1 to their separation a, so that

w; —Ww;
g, = — 1 2)

i a

By combining Egs. (1) and (2), a relationship between the
wave-front slopes and the wave-front values at i+1 and i
was established as
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a
Wi —W; = E(Syi +s

). (3)

Yis1

Similarly, in the z direction and accounting for the sign
convention shown in Fig. 3,

a
W; —Wip1= E(Szi Sz,

). 4)

1

The wave-front estimation model of Zou and Zhang'® fol-
lowed these steps:

1. Without loss of generality, the authors supposed
that the regular square net had a ¢ X¢t=m grid points.

2. Furthermore, the authors supposed that the origi-
nal sampling domain () (i.e. exit pupil, simply connected
domain or multiple connected domains) was embedded
into a regular square domain (), that contained the sam-
pling domain Q. Then the square domain ; was thought
of as being composed of two parts: the real part ), and
the imaginary part Q;\ Qg, both shown in Fig. 4.

3. The grid points in (); were indexed sequentially
from 1 to m row by row (the grid points could also be in-
dexed equivalently column by column as an alternative).

4. The slopes were set to zero in the imaginary part
01\ Q.

From the geometry adopted, Egs. (3) and (4) were writ-
ten in matrix form as

wq Ca1
Wsy C32
=
Wy Cei-1
Wy Ct+2,t+1

Wyig

™ Waoy Cn-1,m
dt+1,t ) (5a)

Wm-2t+1 dt+2,t L
Wm-2t+2

= d

2tt
-1 1

Wt
Win—t+1 dive1

M (Wm-1 m-1,m-t-1

FH = = = =

dm,m—t —

o o0 -~ 0 -1
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Fig. 4. Domain extension for an irregular-shaped pupil.

or
CW=8§, (5b)

where ¢, ; and d;,,; were defined as

a

Civ1,i = E(Sym +5y), (6a)
a

dipei= E(Szi+1 +5s.). (6b)

The corresponding normal equation set was written as
c'cw=CTs. (7)

The desired solution region was embedded in a larger
square region to obtain the predefined matrix for any pu-
pil shape. After the authors determined the zero point of
the estimated wave front, the matrix equation became
positive. The authors employed the Cholesky decomposi-
tion method in solving the normal matrix.'® Results were
limited by up to N\/4 peak-to-valley deviation errors, as
shown in Fig. 1.

4. WAVE-FRONT ESTIMATION FOR ANY
PUPIL SHAPE: A GERCHBERG-TYPE
ITERATIVE LINEAR LEAST-SQUARES
APPROACH

The method proposed expands on the method by Zou and
Zhang19 by proposing to add an iterative process with the
promise to improve the accuracy of the final wave-front
estimation within the measured pupil. The merit of the it-
erative procedure is that it yields minor rms deviation er-
rors while it still shares a predefined estimation matrix
for any pupil shape and size. As such, all the matrix coef-
ficients are predetermined and known once and for all.
The proposed algorithm detailed hereafter will first re-
quire calculating slope data from the estimated wave
front in order to enable the iterative process. Such com-
putations will be presented first.

A. Wave-Front Slope Computations

Slope computation from a known wave front could be
thought of simply as the inverse problem of wave-front es-
timation from slope data. In this case, one would inverse

Vol. 22, No. 5/May 2005/J. Opt. Soc. Am. A 941

the equations established by Zou and Zhang'® to obtain a
matrix equation set for slope computation. However, such
a resultant matrix is rank deficient; this property is in-
trinsically linked to the Southwell geometry chosen for
the problem. However, this geometry as described above
is optimal in terms of lowest noise propagation, and thus
such geometry will be conserved in the algorithm. There-
fore additional independent equations will be required for
slope extractions from the estimated wave front. We
choose to establish such equations on the basis of curva-
ture estimates. We shall first describe the matrix formu-
lation for the y-direction slope computations and then
provide the matrix formulation for z-direction slope com-
putation.

1. Wave-Front Slope Computation in the y Direction
For the slope at the midpoint between the nodes i and i
+1, Eq. (3) may be written as

Sy, TSy, =€ (8)
where
2
ej= a—(wi+1—wi), i=1,2...m-1, but i #¢,2¢,3t,...m.
9)
In matrix form, Eq. (8) may be written as
A;S,=E, (10)

which is not a full-rank matrix equation set. Curvature-
based equations are then considered in order to deter-
mine a unique solution for slope computation. The curva-
ture at a midpoint node j+1 is proportional to the slope
difference between adjacent points i+1 and i+2. Accord-
ing to Fig. 3, we have

syi+2_syi+1=f}+1’ (11)
where
F: Wisg = Wiyl Wi~ W; 1 (
j+1 = - =, Wiz~ Wiyg —W;
J+1 2 % 2 +3 +2 +1
+ wi). (12)

If Eq. (12) is divided by the grid separation a, it will ac-
tually be a discrete approximation of the wave-front cur-
vature at node j+1, which is of O(a®) precision as shown
in Eq. (A12) in Appendix A. In matrix form, Eq. (11) may
be expressed as

A.S,=F. (13)

When Egs. (10) and (13) are combined, a matrix-form
equation set may be written as

AS,-=T, (14)

where
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ac|™ 15
- A2 ’ ( )
Sy_[Syl Sy2 REE] Sym]T7 (16)
U e 17
- F ’ ( )
with
Al = diag[Dl}Dh 7D1]7 (18)
A, =diag[Dy, Dy, ..., Dy], (19)
where
11
11
A (20)
11
-1 1
-1 1
D, = . @)
-1 1
-11

Then the normal equation set for the wave-front slope ex-
traction in the y direction can be written as

ATAS, =ATU. (22)

2. Wave-Front Slope Computation in the z Direction
Similarly, the slope-based equations along the z direction
are given by

Sz, + 582, = &) 1=1,2,.... m—t, (23)

where
2
gi= ;(wi Wity (24)

In matrix form, Eq. (23) may be written as
BS. =G, (25)

which is not a full-rank matrix equation. To get a full-
rank equation set, we add the curvature-based equations

Rijis, (26)

S ) =
it Z1+2t

where
R = ——(W; = Wiy — Wior + Wissy), (27)
2a

and i=1,2,... ¢;t+1,t+2,... 2t-3,...,m-3t. The deri-
vation of Eq. (27) is given in Appendix A [i.e., Eq. (A14)].
In matrix form, Eq. (26) becomes
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B,S,=H. (28)

Combining Eqgs. (25) and (28) in a matrix-form equation
set, we obtain

BS,=V, (29)
where
B,
B= 30
» w“
Sz_l:Szl Sz2 Szm]Tr (31)
G
= 2
o[e].
and
L I,
I I,
B, = : (33)
I I,
I I
I, -1
I, -1,
B,= . (34
I, -1,
I, -L
1
1
I= N . (35)
L 1o

Then the normal equation set for the z-direction slope
extraction may be written as

B™BS,=B"V. (36)

B. Gerchberg-Type Iterative Wave-Front Estimation
Algorithm

On the basis of the equation sets just established for
wave-front slope computations combined with the algo-
rithm of wave-front estimation from slope data given by
Zou and Zhang'® in Section 2, we shall now detail the new
iterative LS-based wave-front estimation algorithm illus-
trated in the flow chart in Fig. 5. With Eq. (7), the wave-
front values are first estimated from the slope data in ;.
The matrix equation sets given by Egs. (22) and (36) then
serve to compute the y and z slopes in (; from the esti-
mated wave front. The computed slopes are compared
with the original slope data within Q. If the differences
are negligible (i.e., less than a termination criterion), the
estimation wave front over (};, among which only the
wave front within () is of interest, is output. Otherwise,
the slope data in (), are replaced with the original mea-
sured slope data, while the slope data in the extended
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Fig. 5. Flow chart of the Gerchberg-type iterative least-squares
wave-front estimation algorithm based on the domain extension
technique.

area O\, are kept unchanged. The iterative process
continues until the established termination criterion is
reached.

Such iterative process is referred to as the Gerchberg-
type iterations, because the iterative process bears anal-
ogy to the Gerchberg—Saxton algorithm, which consists in
replacing the computed amplitude of a discrete complex
function in the pupil under test with the sampled ampli-
tude across iterations until both amplitude and phase
converge to a solution.'® The iterative algorithm pre-
sented in this paper replaces the slope data in the pupil
under test with the sampled raw slope data iteratively
until the estimated wave front converges to a unique so-
lution. In a fundamental sense, the Gerchberg—Saxton it-
erations were based on FTs, whereas the algorithm de-
tailed in this paper is based on the linear LS method. The
algorithm proposed here bears similarity to the algorithm
proposed by Roddier and Roddier in 1991 in the sense
that both algorithms use Gerchberg-type iterations to ex-
trapolate the wave front outside the boundary.’” A basic
difference is that Roddier and Roddier’s algorithm is
based on FFTs instead of the linear LS method.

Without the iterative process, the slope data inside the
pupil under test are from wave-front measurements, and
the slopes outside of the pupil under test are zero. There-
fore the slope data crossing the original pupil boundaries
between (g and O\ Q) are not continuous, and such dis-
continuous boundary conditions yield severe errors in the
estimated wave front not only at the edge of the pupil but
also within the pupil of interest through propagation of
errors, as shown in Fig. 1. This is because the slopes do
not satisfy the derivative continuity condition of the Pois-
son equation, so deviation errors will be induced. The it-
erative process makes possible a continuous practical ex-
trapolation of the slope data outside the optical pupil Qy,
while it does not interfere with the internal region of ().
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The iterative algorithm converges quickly to an unbiased
solution, while at the same time the smoother the wave-
front surface under construction, the smaller the residue
deviation error, as expected, and the fewer iterations
needed. Theoretically, the deviation error of this unique
solution will decrease to zero. However, measurement
noise prohibits the deviation errors from reaching zero, so
they stagger to its minimum.

5. RESULTS

To validate and assess the capability of the algorithm
across irregular shaped pupils, we present two examples,
one with a circular 30-mm-diameter pupil and the other
with the same-size pupil but with a 10% central obstruc-
tion. Both data sets were acquired from a previous experi-
ment reported in a previous palper.19 The 30-mm-diameter
pupils, with a sampling grid of 2 X 2-mm? element size in
both cases, were conjugated to a 500-mm-diameter mirror
under test. The obstructed wave front was obtained by
considering the slope data within the obstructed pupil
only. To establish the ground truth for each set of data, we
estimated the wave front from the same set of slope data
without domain extension but with the conventional it-
erative or direct methods such as the Jacobi iterative
method, the Gauss elimination method, and the Cholesky
decomposition method.'®?! All these methods yield ex-
actly the same estimated wave front, which we thus con-
sider to represent ground truth (i.e., the original wave
front), against which the proposed iterative wave-front es-
timation algorithm could be assessed.

A. Case 1: Circular Pupil without Central Obstruction
A circular pupil without obstruction is a simply connected
domain. The considered 30-mm-diameter pupil with an
array of 161 Shack—Hartmann grid points is shown in
Fig. 6. The points outside the circular pupil in the square
lattice are the imaginary grid points. The ground-truth
wave front is also shown in Fig. 6. Deviation-error maps
of the wave front estimated by the Gerchberg-type itera-
tive algorithm with several numbers of iterations (i.e., i
=0,1,2,3,4,13) are shown in Fig. 7. Results show that
for A\=632.8 nm, the rms deviation error was reduced
from \/16 to N/129 after 13 iterations, where it reached
its minimum. The residual deviation is 12% of its original,
and 88% of the deviation error was removed.

B. Case 2: Circular Pupil with a 10% Central
Obstruction

A 30-mm circular pupil with a 10% central obstruction is
shown in Fig. 8. Such a percent of obscuration is common
for astronomical telescope mirrors. In testing such mir-
rors during the fabrication process and telescope assem-
bly, an algorithm that permits testing of any pupil shapes
without any additional steps in preparing and setting up
for such a test provides key advantages not only in time
efficiency but also in minimizing the risk of test-induced
errors. Deviation-error maps of the wave-front values es-
timated by the Gerchberg-type iterative algorithm with
several numbers of iterations (i.e., 1=0,1,3,5,7,10) are
shown in Fig. 9. Results show that for A=632.8 nm, the
rms deviation error was reduced from A/14 to A/154 after
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Fig. 6. (a) 30-mm-diameter circular pupil without central ob-
struction shown within the extended domain ();. (b) The ground-
truth wave front within the circular pupil Q, on a vertical scale
of +1 pum.

ten iterations, where it reached its minimum. The re-
sidual deviation error is 9% of its original, and 91% of the
deviation error was removed.

C. Algorithm Convergence

The deviation error reduction through Gerchberg-type it-
erations was found to be efficient. Specifically, the final
deviation error after a maximum of four iterations for the
two examples considered was less than A/100 for \ equal
to 632.8 nm, as shown in Figs. 7 and 9. The convergence
indicated by the rms wave-front error in units of wave-
length as a function of the number of iterations is plotted
in Fig. 10. Such a finding is high performance for optical
testing, and the algorithm can be said to be very efficient.

6. THEORETICAL ANALYSIS OF
COMPUTATIONAL COMPLEXITY

In this iterative wave-front estimation algorithm, three
m X m (note that m=¢X¢) linear equation sets need to be
solved at each iteration. One is the equation set for wave-
front estimation from the slope data, and the two others
are the equation sets for y-slope and z-slope computations
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from a known wave front. The three equation sets are
highly sparse. If we define a fill-in factor, an indicator of
matrix sparsity, as the quotient of the number of nonzero
elements to the total number of the matrix elements, then
the fill-in factor of the wave-front estimation matrix CTC
is (5t—4)/t3, and the fill-in factors of the slope computa-
tion matrices ATA and BTB are both (¢t+4)/t3. For ex-
ample, the fill-in factors of the wave-front estimation ma-
trix and the slope computation matrices are 4.6% and
1.4%, respectively, for t=10, and they decrease to 0.05%
and 0.01% at ¢=100.

A. Spatial Complexity of the New Linear
Least-Squares-Based Solution

Besides their high sparsity, all three matrices are sym-
metrical, positive, and banded once the wave-front zero
point has been determined for the wave-front estimation.
The extremely regular and symmetrical banded matrices
allow efficient computations in solving linear equation
sets because the nonzero elements in these matrices are
regularly patterned with the numbers 4,3,2,1,-1 only.
Therefore the matrix storage problem is avoided in this
algorithm except for approximately ¢2 elements space re-
served for the banded Cholesky decomposition of CTC,
which is a much smaller part than the /2 element space
set for a conventional Cholesky decomposition. Naturally,
a space of 3t2 elements is necessary in each algorithm for
storing the slope data and the wave-front values.

B. Computational Complexity of the New Linear
Least-Squares-Based Solution

Before we discuss the computational complexity of our al-
gorithm, we shall introduce “FLOPS,” an acronym for
“floating-point operations,” to denote the arithmetic op-
erations that a computer performs, such as multiplica-
tions or additions (or subtractions).?? The positive-definite
slope-extraction matrices ATA and B™B are banded and
diagonal with semibandwidths of 2 and ¢, respectively. In
computing the slope data from a wave front, it is an ad-
vantage to employ a direct solution method such as the
Cholesky method to solve the normal equation sets, be-
cause we can decompose the matrices ATA and BTB into
two unique triangular matrices by several simple deriva-
tions once and for all. Thereby no more Cholesky decom-
positions are needed in computation. The computations
needed in solving the two systems of equations are sub-
stitutions only, which incur arithmetic costs of ~4m times
the bandwidth,?? yielding 8t2 FLOPS for ATA and 4¢3
FLOPS for BTB . As a comparison, the computational cost
needed for substitutions in solving an equation without
exploiting the band structure is 2¢* FLOPS.??

To solve the linear system of equations for wave-front
estimation, we first set the zero point for the wave front
under construction to make the matrix CTC positive defi-
nite before the Cholesky decomposition can be performed.
Since it is a banded sparse matrix with a semibandwidth
of ¢, we can solve this equation set by a banded Cholesky
decomposition method, which requires ~¢* FLOPS for de-
composition and 4¢3 FLOPS for substitutions.?? As a com-
parison, employing the conventional Cholesky method to
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ian elimination and the singular-value decomposition

(SVD) methods, but such methods are more computation-

8+ 24 FLOPS.??

Other direct solution methods are also available in

solve this equation set without exploiting the band struc-
1
3

solving the above three equation sets, such as the Gauss-

ture of the matrix yields ~

ally expensive. Generally, the conventional Gaussian

t® FLOPS, and the SVD

2
3

elimination method requires ~
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Fig. 7. Wave-front deviation error (on a vertical scale of +1 um, \

632.8 nm) for a 30-mm-diameter circular pupil without obstruction
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across a sampled 15X 15 point grid, for the number of iterations (a) i=0, rms
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Fig. 8. (a). A 30-mm diameter circular pupil with a 10% central
obstruction. (b). The ground-truth wave front at this pupil on a
vertical scale of +1 um (right).

method requires ~12t8 FLOPS.2 Because the SVD
method yields a unique solution with minimum norm for
a rank-deficient LS problem, it is a good method in prac-
tice if the computational complexity is not a constraint.

An alternative for solving linear systems is to use itera-
tive methods, such as the successive over-relaxation
(SOR) algorithm, which is said to be one of most efficient
among the classical iterative methods. The convergence
rate of the SOR method is closely related to the problem
model, the discretization mesh size, the relaxation factor,
and the grid indexing orders. However, we can estimate
the iteration counts needed for the optimal SOR method
to converge to a solution with an error-reduction factor of
1078 py?2:23

2

-1
R, =- 8(10g10(1 - :)) ~2.94(t+1)~3t. (37)

If it requires approximately 5¢2 FLOPS operations in each
iteration,?? then the computational cost needed for solv-
ing Eq. (7) with the optimal SOR method is ~15¢3
FLOPS. The analysis indicates that the banded Cholesky
method requires fewer FLOPS of computational cost for a
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small grid size (¢<11), but for a large grid size the SOR
method is computationally less expensive. The complexity
of the optimal SOR method increases with a cubic curve,
whereas the complexity of banded Cholesky method in-
creases with a quartic curve.

C. Comparison of Complexity with Fast-Fourier-
Transform-Based Iterative Algorithms

1. Comparison of Computational Complexity

The FFT of a data set of length m =27 (g is a positive in-
teger) requires approximately m logg(m) complex multi-
plications, which is equivalent to 5m logy(m) FLOPS of
arithmetic operations according to a detailed analysis by
Brigham.?*?® The FFT-based iterative algorithm pro-
posed by Roddier and Roddier'® requires computation of
two FFTs in addition to the computations of the y and the
z slopes from the wave front at each iteration.!” There-
fore, if we assume that the computation of the slope ex-
tractions takes the same computational cost in both algo-
rithms and we ignore this cost, the computational cost
needed in one iteration of the FFT-based iterative algo-
rithm is approximately (20 logy(¢)+7)t2 FLOPS, which is
usually much smaller than that of the optimal SOR-based
(i.e., 153 FLOPS) iterative algorithm. Thus, on the basis
of the evaluation of the computational complexity of one
iteration, the FFT-based algorithm is superior in perfor-
mance to the proposed algorithm, which could be signifi-
cant for large values of grid-array size ¢ (¢ X¢t=m). Also,
the required number of iterations for each algorithm will
significantly affect the overall computational time. The
number of iterations is a factor of the overall grid-array
size, measurement-noise levels, etc. The FFT-based algo-
rithms wusually converge slowly; for example, the
Gerchberg—Saxton algorithm requires at least tens to
hundreds or even thousands of iterations to converge to a
solution, while we found that the algorithm proposed in
this paper converges to less than \/100 deviation error af-
ter a maximum of approximately four iterations.

2. Comparison of Spatial Complexity

It has been established that the space complexity re-
quired for a FFT is ~O(¢*), which corresponds to the stor-
age of complex matrix arrays. For the Gerchberg-type it-
erative algorithm that we have proposed with the banded
Cholesky solution method, the spatial complexity is only
~0(t3).

7. ERROR PROPAGATION

If we neglect the perturbations introduced by the round-
ing errors, wave-front errors may occur from two
sources: the algorithm discretization errors that depend
on the basic estimation scheme adopted and the wave-
front sensor measurement error, such as the CCD cen-
troiding error. The discretization errors of the wave-front
estimation scheme adopted in this paper have been dis-
cussed in detail previously.’ In this paper we discuss the
error propagation of the wave-front estimation from the
wave-front measurements. For convenience, we define the
noise coefficient as Southwell did.°

Let us define a wave-front estimation matrix C. The
wave-front slope measurement error vector may be given
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(38)

C'CW’ =aC"S’,
tween grid points. If we introduce the Euclidian norm of

where C was defined in Eq. (5) and a is the distance be-

w, )T If we ig-

)T, and the wave-front error vector
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vector X as
X[, = (X™X)"2 (39)

and the corresponding matrix norm for a matrix C as®!

luby(C) = max

X#0

XTCcTcx
XX

172
) =[p(CTC)]"?,  (40)

where X is an arbitrary vector and p(CTC) is the spectral
radilllgs of CTC, and if CTC is invertible, Zou et al. proved
that

[cond(CTC)]2
W'y < awﬂs’ﬂz, (41)
2

where cond(CTC) is defined as the matrix condition num-
ber of CTC, and

cond(CTC) := luby(CTC)luby(CTC)™!| = p(CTC)p[(CTC)1].

(42)
Since p(CTC)=|\paxl, then p[(CTC)]=|Apinl™t, where
Amax and A, are the maximum and minimum of the ei-

genvalues of matrix CTC, respectively. Therefore the con-
dition number of CTC can be written as

Nmaxl
cond(CTC) = (43)
| min|
Then Eq. (41) becomes
s,
W, = = (44)
VI|Nmin

If the wave-front slope errors are independent and have
the same variance o7, then consider

1 m 1/2
Wl = m(;E |w;|2) “to,, @)
i=1

W. Zou and J. P. Rolland

1m 1/2
— r
157l = \f'm(;E |si|2) =10, (46)

i=1

where o, and o, are the rms errors of the wave front and
of the wave-front slope measurements, respectively. From
Eqgs. (44)—(46), we have

ao,

W. (47)

<
oy =

Let o4 be the rms error of the wave-front difference mea-
surements with oy=aoy; then we have

Op < Y04, (48)
where
= |)\min|_1/2' (49)

It is a limit estimation of error-propagation coefficients,
where 97 is the limit ratio of the mean square of the wave-
front error to the mean square of the wave-front differ-
ence error, which is called the noise coefficient or error-

propagation coefficient,>%1% where

02/05 < ¥ = Npin| 1. (50)

Equation (50) points to the fact that the error-propagation
coefficient is limited by the reciprocal of the minimum ei-
genvalue of the normal matrix.

The analysis is also applicable to the error propagation
of slope computation provided by Eqgs. (22) and (36). The
problem is then reduced to evaluating the minimum ei-
genvalue of the normal matrix. Since the normal equation
matrix is symmetric, the classical Jacobi method can be
employed to compute eigenvalues.26 The eigenvalues of
the two slope-computation matrices of Egs. (22) and (36)
are found to be 2-12, 2+12, and 4 when ¢>4. For t=4,
the eigenvalues are 2—\2 and 2+12 only. Thereby the
condltlon numbers of these two matrices are both 4/(2
—\2) 6.83 at ¢>4 and (2+\2)/(2—\2) 5.83 at t=4.
Therefore for y- (or, equivalently, z-) slope computations,
we have

Ao? < —=1+—~171, t=4. 51
S w 2_\“’!2 2 ( )

For the wave-front estimation matrix in Eq. (7), the esti-
mation of the error propagation coefficient is a little more
complex because the eigenvalues of this matrix are sensi-
tive to the variation of the wave-front zero point, the ma-
trix dimension size, and even the parity of the number of
the matrix dimension. Employing the classical Jacobi
method to compute the eigenvalues of Eq. (7), we obtain
the curve of the noise-coefficient limit versus the grid size
of the wave front, which is shown in Fig. 11. Results show
that the wave-front estimation has a better performance
in error propagation when the dimension number of the
estimation matrix is odd. Therefore an odd number of the
sampling grid array is preferable to its closest even num-
ber. Making a least-squares fitting of this curve, we can
express the relationship quantitatively as
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— 44 + 28.58 ¢ /8925
—31.875+20.61e"77%6 ¢ is odd

t is even
(52)

The error propagation of parity dependence is also re-
flected in the curve of the matrix condition numbers as
shown in Fig. 12. By making a least-squares fitting of this
curve, we obtained the condition number of the wave-
front estimation matrix by

- 243.442 + 150.87 7518 ¢ is odd

d,(CTC) =
cond,(C"C) {- 355.157 + 223.750 ¢ /683 ¢ is even

(53)

When the matrix dimension becomes larger, the Jacobi
method converges slowly. It takes approximately 68,000
iterations to obtain the eigenvalues with 10~7 accuracy for
the case of t=15. We obtained that at =15 the maximum
eigenvalue is 7.87 and the minimum eigenvalue is 0.009;
therefore the condition number is 865. Such a condition
number indicates that the error propagation in the wave-
front estimation is stable and slow.

Some relatively subtle differences between the Roddier
and Roddier'® algorithm and the algorithm proposed here
is the fact that in performing FFTs, the square-array ma-
trix satisfies m =29, and therefore m must be even. In the
case of the proposed algorithm, there is no such require-

200+

-

o

o
1

= % (Even Number of Grid size) /
s % (Odd Number of Grid size) /

S
100 /

Error Propagation Coeff. Limit
g
1

=]
i

Grid size(t)

Fig. 11. Noise-coefficient limit versus the dimension size of the
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1500 -

= % (Even number of Grid size)
o % (Odd number of Grid size)

1000 o

Condition Number

500 +

T T T T 1
4 6 8 10 12 14 16

Grid size(t)

Fig. 12. Normal matrix condition number versus grid dimen-
sion size.
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ment, and we have shown that odd matrix sizes yield
lower error propagation than even matrix sizes.

8. CONCLUSION

Klaus Freischlad pointed out in 1992 that a wave-front
estimation algorithm suitable for practical optical testing
must have the following properties’*: (1) The wave-front
estimates must be unbiased; (2) the error-propagation co-
efficient must be slow; (3) the computation must be effi-
cient, especially for large data sets, and the necessary
memory space should be small enough to be applicable in
the laboratory; and (4) finally, the algorithm should be
easily adaptable to various pupil shapes. In this paper we
combined a Gerchberg—Saxton-type iterative process with
a linear least-squares method to obtain a practical unbi-
ased wave-front estimation algorithm for optical testing
that combines the accuracy of the iterative wave-front ex-
trapolation technique with the efficiency of the linear
sparse matrix. With the domain extension technique, we
obtained a predefined wave-front estimation matrix and
the associated predefined slope-computation matrices for
any pupil shape or size. The matrix coefficients are thus
fully predetermined and known once and for all. An
analysis of the error propagation showed that the wave-
front estimation matrix is well-conditioned, yielding low
propagation errors. A U.S. patent application has been
filed for this iterative wave-front estimation algorithm; its
provisional application number is 60/507, 657.

APPENDIX A: DERIVATION OF EQS. (11),
(12), (26), and (27)

Let us denote
ITW

&yn

as the nth derivative of the wave front at point i and

IW
&yn

+1/2

as the nth derivative of the wave front at the midpoint be-
tween points i and i+1. According to Taylor’s series, we
can write

a W a? PW
Wi =Wi2— 35 + Y
2 W e 4X 2! a? i+1/2
a® PW at FW
- | —3 + ; —4 + O(a5),
X3y | e 16X4L T |
(A1)
a W a? PW
Wiy1=Wir12+ - + o
2 Y [ 4X 2l o? i+1/2
a® W at PW
+ s + s +0(ad).
X3l 7 |1 16X 4L % |,
(A2)

By subtracting Eq. (A1) from Eq. (A2), we can write
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W a®  PFW
Wi—wi=a — + — +0(a?).
W e 4A%X30 N e
(A3)
By adding Eqgs. (A1) and (A2), we can write
a® PW at W
Wi +W;=2Wi10+— —4 + -
4 i 8% 4 * i+1/2
+0(af). (A4)
The replacement of w with ¢W/dy yields
oW oW oW a? PW
- + —| =2 — +— +0(a%).
N i w1 W e 4 P lipe
(A5)
Thus
W 1( oW 14 ) a® FW
_ _ | = o — o= —
Qy i+1/2 2 (2)’ i+1 éb} i 8 ’ +1/2
+0(ab). (A6)
And using Eq. (A6), we may express Eq. (A3) as
al W W a® FW
Wi -—w;=—| — + —| |- % +0(ad).
2\ |, dy 1209y | e
(A7)

Let us now replace w with dW/dy in Eq. (A7), to yield

oW W| af PW PW
e - Tol T Ty
Wl W1 2\ g T,
IV o, @)
— — +0(a’). 8
12 67_)/4 i+1/2
Remember that'®
) FW| ot W .
wi+1—2wi+wi_1=a ? i+E W i+0(a ),
(A9)
S0
&ZW Wit —2wl- +W;_1 a2 (?4W
| =~ 1 +0(a%).
e, a 12 o* |,
(A10)

Applying Eqs. (A10) in (A8), we have
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aW W a (wi+2 - 2w; 1+ w;
Wl wl 2l e
Wi —2w; +w;_q at( IW
) 2 2
AW\ @ W ]
’ ? z+1) 12 ? i+1/2+0(a )
(A11)
or
4 W 1 5
g » - g i= Z(wwz —win - wi+w; 1) +0(a”).

(A12)

Let us neglect the higher-order small-value terms on the
right-hand side of Eq. (A12) and denote the first deriva-
tive of the wave front in the y direction as s,; then we
have

1

Sy iy " Syq = Z(wns — Wi~ Wi +wy),  (Al3)

where 1=1,2,...¢-3; t+1,t+2,...2t-3,...m-3.
Similarly, in the z direction we can write

1

= (W =~ Wisy — Wisor + Wige),

Sz T Sz = %

=12, .. tt+1,6+2,...2¢,...,m-3t. (Al4)
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