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Iterative zonal wave-front estimation algorithm for
optical testing with general-shaped pupils
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An iterative zonal wave-front estimation algorithm for slope or gradient-type data in optical testing acquired
with regular or irregular pupil shapes is presented. In the mathematical model proposed, the optical surface,
or wave-front shape estimation, which may have any pupil shape or size, shares a predefined wave-front esti-
mation matrix that we establish. Owing to the finite pupil of the instrument, the challenge of wave front shape
estimation in optical testing lies in large part in how to properly handle boundary conditions. The solution we
propose is an efficient iterative process based on Gerchberg-type iterations. The proposed method is validated
with data collected from a 15315-grid Shack–Hartmann sensor built at the Nanjing Astronomical Instru-
ments Research Center in China. Results show that the rms deviation error of the estimated wave front from
the original wave front is less than l /130–l /150 after ,12 iterations and less than l /100 (both for l
=632.8 nm) after as few as four iterations. Also, a theoretical analysis of algorithm complexity and error propa-
gation is presented. © 2005 Optical Society of America
OCIS codes: 220.4840, 220.4610, 120.6650.
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. INTRODUCTION
ave-front estimation from wave-front slope data is a

lassic mathematical problem in optical testing. It con-
erts the wave-front slope data into wave-front optical
ath differences (OPDs) or, equivalently, wave-front
hases defined as the OPDs multiplied by 2p /l. We shall
efer to the OPDs as the wave-front values. Let us sup-
ose that the wave-front differences or other type of slope
ata have been obtained from a slope wave-front sensor.
he task is how to estimate the wave-front values from
uch data, which is a numerical solution to the Neumann
oundary problem of the Poisson equation.1

Mathematical methods and algorithms for wave-front
stimation as it applies to optical testing have been con-
ributed by many authors.1–14 Of most interest to the
ork presented in this paper are those algorithms that

an handle general pupil shapes. Such algorithms can be
ategorized into Fourier-transform (FT)-based algorithms
nd linear least-squares (LS)-based algorithms. For FT-
ased algorithms, Gerchberg and Saxton proposed in
972 iterative fast-Fourier-transform (FFT)-based phase
etrieval from amplitude measurements in the aperture
nd the image planes.15 The Gerchberg–Saxton algorithm
as later improved further by Fienup for phase

etrieval.16 Freischlad and Koliopoulos in 1985 proposed a
iscrete Fourier-transform-based algorithm for model es-
imation from wave-front slope measurements for square-
haped pupils.12,13 Later, Freischlad extended this algo-
ithm for general pupil shapes.14 In Freischlad’s method,
dditional LS matrix equations needed to be set up to
enerate the missing slope data for extending the
eneral-shaped pupil to a square one. Roddier and Rod-
ier proposed a technique to extrapolate the wave front
utside of the pupil employing Gerchberg-type iterations
nd obtained an FFT-based algorithm for irregular-
haped pupils.17,18 Finally, Zou and Zhang proposed in
1084-7529/05/050938-14/$15.00 © 2
000 a linear LS-based algorithm to handle any pupil
hapes. The algorithm used zero padding of the slope data
utside of the sampling pupil, and the discontinuity of the
est domain extension introduces remarkable deviation
rrors (i.e., up to l /4 peak to valley). Such errors may not
e acceptable for most optical tests.19

In this paper we first present in Section 2 the wave-
ront estimation approach that we have pursued; we
riefly review in Section 3 the work done by Zou and
hang in 2000.19 We then present in Section 4 the pro-
osed iterative wave-front estimation algorithm followed
n Section 5 by two examples of wave-front estimations.
inally, we discuss in Section 6 the theoretical complexity
nd in Section 7 the noise-error propagation of the pro-
osed algorithm in relation to previous algorithms.

. MOTIVATION AND PROPOSED
PPROACH
sually, changes in the pupil shape or size will cause

hanges in the wave-front estimation matrix and require
new setup of the wave-front estimation process for each
ew size or shape. Thus a mathematical formulation that
ould automatize the wave-front estimation for any size
nd shape pupil would not only help in maximizing the
fficiency of the testing process but also in minimizing the
otential errors necessarily associated with setting up
ew matrices for wave-front estimation.
While the Zou and Zhang LS algorithm suffered re-
arkable deviation errors owing to discontinuous bound-

ry conditions, its strength of formulizing a predefined
atrix for wave-front estimation provides immediate

lug-in of wave-front slope measurements for any pupil
hape or size.18 To illustrate the errors associated with
iscontinuous boundary conditions and the error propaga-
ion within the pupil of interest, we now give an example.
005 Optical Society of America
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n original wave front (i.e., an estimated wave front that
s considered to represent ground truth of wave-front es-
imation, as will be further explained in Section 5) is
hown in Fig. 1(a), and the estimated wave front from
lope data with Zou and Zhang’s algorithm is shown in
ig. 1(b). The difference between the estimated and the
riginal wave front is shown in Fig. 1(c), which represents

ig. 1. (a) Ground-truth or original wave front, (b) wave front
stimated from measured slope data with the algorithm without
teration, (c) wave-front deviation error computed as the differ-
nce between the ground-truth and the estimated wave front.
he deviation errors associated with the domain extension
ade across the boundary. Therefore, while the domain

xtension technique is quite useful for developing a pre-
efined and regular estimation matrix for any irregular
upil shapes, the challenge lies in how to establish conti-
uity constraints at the boundaries across the original
upil to remove the deviation errors in the estimated
ave front.
In this paper we propose to build on the Zou and

hang19 algorithm by adding Gerchberg-type iterations
or wave-front estimation, which will permit extrapola-
ion of the slope data outside of the pupil in order to sat-
sfy continuity boundary conditions. In the iteration pro-
ess proposed, the slope data in the pupil under test will
e replaced with the sampled raw slope data iteratively
ntil the estimated wave front converges to a solution.

. REVIEW OF WAVE-FRONT ESTIMATION
ROM SLOPE DATA BY ZOU AND
HANG
ou and Zhang proposed a noniterative linear LS method
o perform wave-front estimation based on a domain ex-
ension technique.19 The proposed algorithm was moti-
ated by the need in practical settings to automatize the
stimation process regardless of the pupil shape or size of
he input slope data set. Regardless of the method
dopted, a sampling geometry had to be first considered
n performing wave-front estimation. There are basically
hree sampling geometries available for wave-front
stimates: the Fried geometry,5 the Hudgin geometry,6

nd the Southwell geometry,10 illustrated in Fig. 2. Owing
o its superiority over other geometries in error
ropagation,10 Zou and Zhang adopted the Southwell ge-
metry, which is characterized by taking the wave-front
lope measurements and wave-front values estimation at
he same nodes. In a problem with discrete slope mea-
urements as a starting point, a two-dimensional array of
iscrete values wi si=1,2,3, . . . t3 td was used to map the
stimated wave-front values. Furthermore, an interlaced
rray of j nodes was introduced to facilitate the estima-
ions of wave-front slopes at the midpoints between wave-
ront nodes. Figure 3 shows the geometry in one direction
e.g., the y direction) with both the nodes i and the inter-
aced nodes j. Let us denote the wave-front slopes at the
odes i in the y and z directions as syi

and szi
si

1,2,3. . . t3 td, respectively. The slope data between two
djacent nodes was assumed to change linearly with
istance,20 which allowed us to perform linear interpola-

ig. 2. Wave-front estimation schemes. From left to right: the
1) Hudgin, (2) Southwell, and (3) Fried models. In these figures,
he small circles symbolize the wave-front values and the small
rrows represent the partial derivatives of the wave front.
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ion to estimate the slopes between nodes. The slope at
ode j was then estimated as an average of the slopes at
odes i and i+1 by

syj
=

1

2
ssyi

+ syi+1
d, s1d

here the slope syj could also be expressed as the differ-
nce quotient of the wave-front values at nodes i and i
1 to their separation a, so that

syj
=

wi+1 − wi

a
. s2d

y combining Eqs. (1) and (2), a relationship between the
ave-front slopes and the wave-front values at i+1 and i
as established as

ig. 3. Double sampling grid systems illustrated in the y
irection.
wi+1 − wi =
a

2
ssyi

+ syi+1
d. s3d

imilarly, in the z direction and accounting for the sign
onvention shown in Fig. 3,

wi − wi+1 =
a

2
sszi

+ szi+1
d. s4d

he wave-front estimation model of Zou and Zhang19 fol-
owed these steps:

1. Without loss of generality, the authors supposed
hat the regular square net had a t3 t=m grid points.

2. Furthermore, the authors supposed that the origi-
al sampling domain V0 (i.e. exit pupil, simply connected
omain or multiple connected domains) was embedded
nto a regular square domain V1 that contained the sam-
ling domain V0. Then the square domain V1 was thought
f as being composed of two parts: the real part V0 and
he imaginary part V1\V0, both shown in Fig. 4.

3. The grid points in V1 were indexed sequentially
rom 1 to m row by row (the grid points could also be in-
exed equivalently column by column as an alternative).
4. The slopes were set to zero in the imaginary part

1\V0.
From the geometry adopted, Eqs. (3) and (4) were writ-

en in matrix form as
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r

CW = S, s5bd

here ci+1,i and di+t,i were defined as

ci+1,i =
a

2
ssyi+1

+ syi
d, s6ad

di+t,i =
a

2
sszi+1

+ szi
d. s6bd

he corresponding normal equation set was written as

CTCW = CTS. s7d

he desired solution region was embedded in a larger
quare region to obtain the predefined matrix for any pu-
il shape. After the authors determined the zero point of
he estimated wave front, the matrix equation became
ositive. The authors employed the Cholesky decomposi-
ion method in solving the normal matrix.19 Results were
imited by up to l /4 peak-to-valley deviation errors, as
hown in Fig. 1.

. WAVE-FRONT ESTIMATION FOR ANY
UPIL SHAPE: A GERCHBERG-TYPE
TERATIVE LINEAR LEAST-SQUARES
PPROACH

he method proposed expands on the method by Zou and
hang19 by proposing to add an iterative process with the
romise to improve the accuracy of the final wave-front
stimation within the measured pupil. The merit of the it-
rative procedure is that it yields minor rms deviation er-
ors while it still shares a predefined estimation matrix
or any pupil shape and size. As such, all the matrix coef-
cients are predetermined and known once and for all.
he proposed algorithm detailed hereafter will first re-
uire calculating slope data from the estimated wave
ront in order to enable the iterative process. Such com-
utations will be presented first.

. Wave-Front Slope Computations
lope computation from a known wave front could be
hought of simply as the inverse problem of wave-front es-
imation from slope data. In this case, one would inverse

Fig. 4. Domain extension for an irregular-shaped pupil.
he equations established by Zou and Zhang19 to obtain a
atrix equation set for slope computation. However, such
resultant matrix is rank deficient; this property is in-

rinsically linked to the Southwell geometry chosen for
he problem. However, this geometry as described above
s optimal in terms of lowest noise propagation, and thus
uch geometry will be conserved in the algorithm. There-
ore additional independent equations will be required for
lope extractions from the estimated wave front. We
hoose to establish such equations on the basis of curva-
ure estimates. We shall first describe the matrix formu-
ation for the y-direction slope computations and then
rovide the matrix formulation for z-direction slope com-
utation.

. Wave-Front Slope Computation in the y Direction
or the slope at the midpoint between the nodes i and i
1, Eq. (3) may be written as

syi+1
+ syi

= ej, s8d

here

ej =
2

a
swi+1 − wid, i = 1,2 . . . m − 1, but i Þ t,2t,3t, . . . m.

s9d

n matrix form, Eq. (8) may be written as

A1Sy = E, s10d

hich is not a full-rank matrix equation set. Curvature-
ased equations are then considered in order to deter-
ine a unique solution for slope computation. The curva-

ure at a midpoint node j+1 is proportional to the slope
ifference between adjacent points i+1 and i+2. Accord-
ng to Fig. 3, we have

syi+2
− syi+1

= fj+1, s11d

here

fj+1 = Swi+3 − wi+1

2a
−

wi+2 − wi

2a
D =

1

2a
swi+3 − wi+2 − wi+1

+ wid. s12d

f Eq. (12) is divided by the grid separation a, it will ac-
ually be a discrete approximation of the wave-front cur-
ature at node j+1, which is of Osa3d precision as shown
n Eq. (A12) in Appendix A. In matrix form, Eq. (11) may
e expressed as

A2Sy = F. s13d

hen Eqs. (10) and (13) are combined, a matrix-form
quation set may be written as

ASy = U, s14d

here
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A = FA1

A2
G , s15d

Sy = fSy1 Sy2 , . . . , SymgT, s16d

U = FE

FG , s17d

ith

A1 = diagfD1,D1, . . . ,D1g, s18d

A2 = diagfD2,D2, . . . ,D2g, s19d

here

D1 = 3
1 1

1 1

� �

1 1
4 , s20d

D2 =3
− 1 1

− 1 1

� �

− 1 1

− 1 1
4 . s21d

hen the normal equation set for the wave-front slope ex-
raction in the y direction can be written as

ATASy = ATU. s22d

. Wave-Front Slope Computation in the z Direction
imilarly, the slope-based equations along the z direction
re given by

szi
+ szi+t

= gj, i = 1,2, . . . ,m − t, s23d

here

gj =
2

a
swi − wi+td. s24d

n matrix form, Eq. (23) may be written as

B1Sz = G, s25d

hich is not a full-rank matrix equation. To get a full-
ank equation set, we add the curvature-based equations

szi+t
− sz1+2t

= hj+t, s26d

here

hj+t =
1

2a
swi − wi+t − wi+2t + wi+3td, s27d

nd i=1,2, . . . t ; t+1, t+2, . . . 2t−3, . . . ,m−3t. The deri-
ation of Eq. (27) is given in Appendix A [i.e., Eq. (A14)].
n matrix form, Eq. (26) becomes
B2Sz = H. s28d

ombining Eqs. (25) and (28) in a matrix-form equation
et, we obtain

BSz = V, s29d

here

B = FB1

B2
G , s30d

Sz = fSz1 Sz2 . . . SzmgT, s31d

V = FG

HG , s32d

nd

B1 =3
It It

It It

� �

It It

It It

4 , s33d

B2 =3
It − It

It − It

� �

It − It

It − It

4 , s34d

It = 3
1

1

�

1
4

t3t

. s35d

Then the normal equation set for the z-direction slope
xtraction may be written as

BTBSz = BTV. s36d

. Gerchberg-Type Iterative Wave-Front Estimation
lgorithm
n the basis of the equation sets just established for
ave-front slope computations combined with the algo-

ithm of wave-front estimation from slope data given by
ou and Zhang19 in Section 2, we shall now detail the new

terative LS-based wave-front estimation algorithm illus-
rated in the flow chart in Fig. 5. With Eq. (7), the wave-
ront values are first estimated from the slope data in V1.
he matrix equation sets given by Eqs. (22) and (36) then
erve to compute the y and z slopes in V1 from the esti-
ated wave front. The computed slopes are compared
ith the original slope data within V0. If the differences
re negligible (i.e., less than a termination criterion), the
stimation wave front over V1, among which only the
ave front within V0 is of interest, is output. Otherwise,

he slope data in V0 are replaced with the original mea-
ured slope data, while the slope data in the extended
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rea V1\V0 are kept unchanged. The iterative process
ontinues until the established termination criterion is
eached.

Such iterative process is referred to as the Gerchberg-
ype iterations, because the iterative process bears anal-
gy to the Gerchberg–Saxton algorithm, which consists in
eplacing the computed amplitude of a discrete complex
unction in the pupil under test with the sampled ampli-
ude across iterations until both amplitude and phase
onverge to a solution.15 The iterative algorithm pre-
ented in this paper replaces the slope data in the pupil
nder test with the sampled raw slope data iteratively
ntil the estimated wave front converges to a unique so-

ution. In a fundamental sense, the Gerchberg–Saxton it-
rations were based on FTs, whereas the algorithm de-
ailed in this paper is based on the linear LS method. The
lgorithm proposed here bears similarity to the algorithm
roposed by Roddier and Roddier in 1991 in the sense
hat both algorithms use Gerchberg-type iterations to ex-
rapolate the wave front outside the boundary.17 A basic
ifference is that Roddier and Roddier’s algorithm is
ased on FFTs instead of the linear LS method.
Without the iterative process, the slope data inside the

upil under test are from wave-front measurements, and
he slopes outside of the pupil under test are zero. There-
ore the slope data crossing the original pupil boundaries
etween V0 and V1\V0 are not continuous, and such dis-
ontinuous boundary conditions yield severe errors in the
stimated wave front not only at the edge of the pupil but
lso within the pupil of interest through propagation of
rrors, as shown in Fig. 1. This is because the slopes do
ot satisfy the derivative continuity condition of the Pois-
on equation, so deviation errors will be induced. The it-
rative process makes possible a continuous practical ex-
rapolation of the slope data outside the optical pupil V0,
hile it does not interfere with the internal region of V .

ig. 5. Flow chart of the Gerchberg-type iterative least-squares
ave-front estimation algorithm based on the domain extension

echnique.
0

he iterative algorithm converges quickly to an unbiased
olution, while at the same time the smoother the wave-
ront surface under construction, the smaller the residue
eviation error, as expected, and the fewer iterations
eeded. Theoretically, the deviation error of this unique
olution will decrease to zero. However, measurement
oise prohibits the deviation errors from reaching zero, so
hey stagger to its minimum.

. RESULTS
o validate and assess the capability of the algorithm
cross irregular shaped pupils, we present two examples,
ne with a circular 30-mm-diameter pupil and the other
ith the same-size pupil but with a 10% central obstruc-

ion. Both data sets were acquired from a previous experi-
ent reported in a previous paper.19 The 30-mm-diameter

upils, with a sampling grid of 232-mm2 element size in
oth cases, were conjugated to a 500-mm-diameter mirror
nder test. The obstructed wave front was obtained by
onsidering the slope data within the obstructed pupil
nly. To establish the ground truth for each set of data, we
stimated the wave front from the same set of slope data
ithout domain extension but with the conventional it-

rative or direct methods such as the Jacobi iterative
ethod, the Gauss elimination method, and the Cholesky

ecomposition method.19,21 All these methods yield ex-
ctly the same estimated wave front, which we thus con-
ider to represent ground truth (i.e., the original wave
ront), against which the proposed iterative wave-front es-
imation algorithm could be assessed.

. Case 1: Circular Pupil without Central Obstruction
circular pupil without obstruction is a simply connected

omain. The considered 30-mm-diameter pupil with an
rray of 161 Shack–Hartmann grid points is shown in
ig. 6. The points outside the circular pupil in the square

attice are the imaginary grid points. The ground-truth
ave front is also shown in Fig. 6. Deviation-error maps

f the wave front estimated by the Gerchberg-type itera-
ive algorithm with several numbers of iterations (i.e., i
0,1,2,3,4,13) are shown in Fig. 7. Results show that

or l=632.8 nm, the rms deviation error was reduced
rom l /16 to l /129 after 13 iterations, where it reached
ts minimum. The residual deviation is 12% of its original,
nd 88% of the deviation error was removed.

. Case 2: Circular Pupil with a 10% Central
bstruction
30-mm circular pupil with a 10% central obstruction is

hown in Fig. 8. Such a percent of obscuration is common
or astronomical telescope mirrors. In testing such mir-
ors during the fabrication process and telescope assem-
ly, an algorithm that permits testing of any pupil shapes
ithout any additional steps in preparing and setting up

or such a test provides key advantages not only in time
fficiency but also in minimizing the risk of test-induced
rrors. Deviation-error maps of the wave-front values es-
imated by the Gerchberg-type iterative algorithm with
everal numbers of iterations (i.e., i=0,1,3,5,7,10) are
hown in Fig. 9. Results show that for l=632.8 nm, the
ms deviation error was reduced from l /14 to l /154 after
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en iterations, where it reached its minimum. The re-
idual deviation error is 9% of its original, and 91% of the
eviation error was removed.

. Algorithm Convergence
he deviation error reduction through Gerchberg-type it-
rations was found to be efficient. Specifically, the final
eviation error after a maximum of four iterations for the
wo examples considered was less than l /100 for l equal
o 632.8 nm, as shown in Figs. 7 and 9. The convergence
ndicated by the rms wave-front error in units of wave-
ength as a function of the number of iterations is plotted
n Fig. 10. Such a finding is high performance for optical
esting, and the algorithm can be said to be very efficient.

. THEORETICAL ANALYSIS OF
OMPUTATIONAL COMPLEXITY

n this iterative wave-front estimation algorithm, three
3m (note that m= t3 t) linear equation sets need to be

olved at each iteration. One is the equation set for wave-
ront estimation from the slope data, and the two others
re the equation sets for y-slope and z-slope computations

ig. 6. (a) 30-mm-diameter circular pupil without central ob-
truction shown within the extended domain V1. (b) The ground-
ruth wave front within the circular pupil V0 on a vertical scale
f ±1 mm.
rom a known wave front. The three equation sets are
ighly sparse. If we define a fill-in factor, an indicator of
atrix sparsity, as the quotient of the number of nonzero

lements to the total number of the matrix elements, then
he fill-in factor of the wave-front estimation matrix CTC
s s5t−4d / t3, and the fill-in factors of the slope computa-
ion matrices ATA and BTB are both st+4d / t3. For ex-
mple, the fill-in factors of the wave-front estimation ma-
rix and the slope computation matrices are 4.6% and
.4%, respectively, for t=10, and they decrease to 0.05%
nd 0.01% at t=100.

. Spatial Complexity of the New Linear
east-Squares-Based Solution
esides their high sparsity, all three matrices are sym-
etrical, positive, and banded once the wave-front zero

oint has been determined for the wave-front estimation.
he extremely regular and symmetrical banded matrices
llow efficient computations in solving linear equation
ets because the nonzero elements in these matrices are
egularly patterned with the numbers 4,3,2,1,−1 only.
herefore the matrix storage problem is avoided in this
lgorithm except for approximately t3 elements space re-
erved for the banded Cholesky decomposition of CTC,
hich is a much smaller part than the t4 /2 element space

et for a conventional Cholesky decomposition. Naturally,
space of 3t2 elements is necessary in each algorithm for

toring the slope data and the wave-front values.

. Computational Complexity of the New Linear
east-Squares-Based Solution
efore we discuss the computational complexity of our al-
orithm, we shall introduce “FLOPS,” an acronym for
floating-point operations,” to denote the arithmetic op-
rations that a computer performs, such as multiplica-
ions or additions (or subtractions).22 The positive-definite
lope-extraction matrices ATA and BTB are banded and
iagonal with semibandwidths of 2 and t, respectively. In
omputing the slope data from a wave front, it is an ad-
antage to employ a direct solution method such as the
holesky method to solve the normal equation sets, be-
ause we can decompose the matrices ATA and BTB into
wo unique triangular matrices by several simple deriva-
ions once and for all. Thereby no more Cholesky decom-
ositions are needed in computation. The computations
eeded in solving the two systems of equations are sub-
titutions only, which incur arithmetic costs of ,4m times
he bandwidth,22 yielding 8t2 FLOPS for ATA and 4t3

LOPS for BTB . As a comparison, the computational cost
eeded for substitutions in solving an equation without
xploiting the band structure is 2t4 FLOPS.22

To solve the linear system of equations for wave-front
stimation, we first set the zero point for the wave front
nder construction to make the matrix CTC positive defi-
ite before the Cholesky decomposition can be performed.
ince it is a banded sparse matrix with a semibandwidth
f t, we can solve this equation set by a banded Cholesky
ecomposition method, which requires ,t4 FLOPS for de-
omposition and 4t3 FLOPS for substitutions.22 As a com-
arison, employing the conventional Cholesky method to
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olve this equation set without exploiting the band struc-
ure of the matrix yields , 1

3 t6+2t4 FLOPS.22

Other direct solution methods are also available in
olving the above three equation sets, such as the Gauss-

ig. 7. Wave-front deviation error (on a vertical scale of ±1 mm,
cross a sampled 15315 point grid, for the number of iteration
ms=l /86; (e) i=4, rms=l /105; (f) i=13, rms=l /129.
an elimination and the singular-value decomposition
SVD) methods, but such methods are more computation-
lly expensive. Generally, the conventional Gaussian
limination method requires , 2

3 t6 FLOPS, and the SVD

.8 nm) for a 30-mm-diameter circular pupil without obstruction
=0, rms=l /16; (b) i=1, rms=l /37; (c) i=2, rms=l /63; (d) i=3,
l=632
s (a) i
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ethod requires ,12t6 FLOPS.23 Because the SVD
ethod yields a unique solution with minimum norm for
rank-deficient LS problem, it is a good method in prac-

ice if the computational complexity is not a constraint.
An alternative for solving linear systems is to use itera-

ive methods, such as the successive over-relaxation
SOR) algorithm, which is said to be one of most efficient
mong the classical iterative methods. The convergence
ate of the SOR method is closely related to the problem
odel, the discretization mesh size, the relaxation factor,

nd the grid indexing orders. However, we can estimate
he iteration counts needed for the optimal SOR method
o converge to a solution with an error-reduction factor of
0−8 by22,23

Rvb = − 8Xlog10S1 −
2p

t − 1
DC−1

< 2.94st + 1d < 3t. s37d

f it requires approximately 5t2 FLOPS operations in each
teration,22 then the computational cost needed for solv-
ng Eq. (7) with the optimal SOR method is ,15t3

LOPS. The analysis indicates that the banded Cholesky
ethod requires fewer FLOPS of computational cost for a

ig. 8. (a). A 30-mm diameter circular pupil with a 10% central
bstruction. (b). The ground-truth wave front at this pupil on a
ertical scale of ±1 mm (right).
mall grid size st,11d, but for a large grid size the SOR
ethod is computationally less expensive. The complexity

f the optimal SOR method increases with a cubic curve,
hereas the complexity of banded Cholesky method in-

reases with a quartic curve.

. Comparison of Complexity with Fast-Fourier-
ransform-Based Iterative Algorithms

. Comparison of Computational Complexity
he FFT of a data set of length m=2q (q is a positive in-
eger) requires approximately m log2smd complex multi-
lications, which is equivalent to 5m log2smd FLOPS of
rithmetic operations according to a detailed analysis by
righam.24,25 The FFT-based iterative algorithm pro-
osed by Roddier and Roddier18 requires computation of
wo FFTs in addition to the computations of the y and the
slopes from the wave front at each iteration.17 There-

ore, if we assume that the computation of the slope ex-
ractions takes the same computational cost in both algo-
ithms and we ignore this cost, the computational cost
eeded in one iteration of the FFT-based iterative algo-
ithm is approximately s20 log2std+7dt2 FLOPS, which is
sually much smaller than that of the optimal SOR-based

i.e., 15t3 FLOPS) iterative algorithm. Thus, on the basis
f the evaluation of the computational complexity of one
teration, the FFT-based algorithm is superior in perfor-

ance to the proposed algorithm, which could be signifi-
ant for large values of grid-array size t st3 t=md. Also,
he required number of iterations for each algorithm will
ignificantly affect the overall computational time. The
umber of iterations is a factor of the overall grid-array
ize, measurement-noise levels, etc. The FFT-based algo-
ithms usually converge slowly; for example, the
erchberg–Saxton algorithm requires at least tens to
undreds or even thousands of iterations to converge to a
olution, while we found that the algorithm proposed in
his paper converges to less than l /100 deviation error af-
er a maximum of approximately four iterations.

. Comparison of Spatial Complexity
t has been established that the space complexity re-
uired for a FFT is ,Ost4d, which corresponds to the stor-
ge of complex matrix arrays. For the Gerchberg-type it-
rative algorithm that we have proposed with the banded
holesky solution method, the spatial complexity is only
Ost3d.

. ERROR PROPAGATION
f we neglect the perturbations introduced by the round-
ng errors, wave-front errors may occur from two
ources: the algorithm discretization errors that depend
n the basic estimation scheme adopted and the wave-
ront sensor measurement error, such as the CCD cen-
roiding error. The discretization errors of the wave-front
stimation scheme adopted in this paper have been dis-
ussed in detail previously.19 In this paper we discuss the
rror propagation of the wave-front estimation from the
ave-front measurements. For convenience, we define the
oise coefficient as Southwell did.10

Let us define a wave-front estimation matrix C. The
ave-front slope measurement error vector may be given
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s S8= ss18 s28 ¯ sm8 dT, and the wave-front error vector
ay be expressed as W8= sw18 w28 ¯ wm8 dT. If we ig-
ore the algorithm discretization errors, we can write the
rror propagation matrix equation as

ig. 9. Wave-front deviation error (on a vertical scale of ±1 mm
15 grid and with a 10% central obstruction, for the number of i

=5, rms=l /107; (e) i=7, rms=l /135; (f) i=10, rms=l /154.
CTCW8 = aCTS8, s38d

here C was defined in Eq. (5) and a is the distance be-
ween grid points. If we introduce the Euclidian norm of

2.8 nm) for a 30-mm-diameter circular pupil sampled with a 15
ns (a) i=0, rms=l /14; (b) i=1, rms=l /26; (c) i=3, rms=l /63; (d)
, l=63
teratio
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ector X as

iXi2 = sXTXd1/2 s39d

nd the corresponding matrix norm for a matrix C as21

lub2sCd = max
XÞ0

SXTCTCX

XTX
D1/2

= frsCTCdg1/2, s40d

here X is an arbitrary vector and rsCTCd is the spectral
adius of CTC, and if CTC is invertible, Zou et al. proved
hat19

iW8i2 ø a
fcondsCTCdg1/2

lub2sCd
iS8i2, s41d

here condsCTCd is defined as the matrix condition num-
er of CTC, and

condsCTCd ª lub2sCTCdlub2bsCTCd−1c = rsCTCdrfsCTCd−1g.

s42d

ince rsCTCd= ulmaxu, then rfsCTCd−1g= ulminu−1, where
max and lmin are the maximum and minimum of the ei-
envalues of matrix CTC, respectively. Therefore the con-
ition number of CTC can be written as

condsCTCd =
ulmaxu

ulminu
. s43d

hen Eq. (41) becomes

iW8i2 ø
aiS8i2

Îulminu
. s44d

f the wave-front slope errors are independent and have
he same variance ss

2, then consider

iW8i2 = ÎmS 1

mo
i=1

m

uwi8u
2D1/2

= tsw, s45d

ig. 10. Plot of RMS deviation errors in units of wavelength as
function of the number of iterations for the two data sets

onsidered.
iS8i2 = ÎmS 1

mo
i=1

m

usi8u
2D1/2

= tss, s46d

here sw and ss are the rms errors of the wave front and
f the wave-front slope measurements, respectively. From
qs. (44)–(46), we have

sw ø
ass

ulminu1/2 . s47d

et sd be the rms error of the wave-front difference mea-
urements with sd=ass; then we have

sw ø gsd, s48d

here

g = ulminu−1/2. s49d

t is a limit estimation of error-propagation coefficients,
here g2 is the limit ratio of the mean square of the wave-

ront error to the mean square of the wave-front differ-
nce error, which is called the noise coefficient or error-
ropagation coefficient,1,5,6,10,14 where

sw
2 /sd

2 ø g2 = ulminu−1. s50d

quation (50) points to the fact that the error-propagation
oefficient is limited by the reciprocal of the minimum ei-
envalue of the normal matrix.

The analysis is also applicable to the error propagation
f slope computation provided by Eqs. (22) and (36). The
roblem is then reduced to evaluating the minimum ei-
envalue of the normal matrix. Since the normal equation
atrix is symmetric, the classical Jacobi method can be

mployed to compute eigenvalues.26 The eigenvalues of
he two slope-computation matrices of Eqs. (22) and (36)
re found to be 2−Î2, 2+Î2, and 4 when t.4. For t=4,
he eigenvalues are 2−Î2 and 2+Î2 only. Thereby the
ondition numbers of these two matrices are both 4/ s2
Î2d<6.83 at t.4 and s2+Î2d / s2−Î2d<5.83 at t=4.
herefore for y- (or, equivalently, z-) slope computations,
e have

ss
2/sw

2 ø
1

2 − Î2
= 1 +

Î2

2
< 1.71, t ù 4. s51d

or the wave-front estimation matrix in Eq. (7), the esti-
ation of the error propagation coefficient is a little more

omplex because the eigenvalues of this matrix are sensi-
ive to the variation of the wave-front zero point, the ma-
rix dimension size, and even the parity of the number of
he matrix dimension. Employing the classical Jacobi
ethod to compute the eigenvalues of Eq. (7), we obtain

he curve of the noise-coefficient limit versus the grid size
f the wave front, which is shown in Fig. 11. Results show
hat the wave-front estimation has a better performance
n error propagation when the dimension number of the
stimation matrix is odd. Therefore an odd number of the
ampling grid array is preferable to its closest even num-
er. Making a least-squares fitting of this curve, we can
xpress the relationship quantitatively as
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w
2 /sd

2 ø g2 = H− 44 + 28.58 e t/8.925, t is even

− 31.875 + 20.61 e t/7.766, t is odd J . s52d

he error propagation of parity dependence is also re-
ected in the curve of the matrix condition numbers as
hown in Fig. 12. By making a least-squares fitting of this
urve, we obtained the condition number of the wave-
ront estimation matrix by

ond2sCTCd = H− 243.442 + 150.87 e t/7.518, t is odd

− 355.157 + 223.750 e t/6.83, t is evenJ .

s53d

hen the matrix dimension becomes larger, the Jacobi
ethod converges slowly. It takes approximately 68,000

terations to obtain the eigenvalues with 10−7 accuracy for
he case of t=15. We obtained that at t=15 the maximum
igenvalue is 7.87 and the minimum eigenvalue is 0.009;
herefore the condition number is 865. Such a condition
umber indicates that the error propagation in the wave-
ront estimation is stable and slow.

Some relatively subtle differences between the Roddier
nd Roddier18 algorithm and the algorithm proposed here
s the fact that in performing FFTs, the square-array ma-
rix satisfies m=2q, and therefore m must be even. In the
ase of the proposed algorithm, there is no such require-

ig. 11. Noise-coefficient limit versus the dimension size of the
ampling grid.

ig. 12. Normal matrix condition number versus grid dimen-
ion size.
ent, and we have shown that odd matrix sizes yield
ower error propagation than even matrix sizes.

. CONCLUSION
laus Freischlad pointed out in 1992 that a wave-front

stimation algorithm suitable for practical optical testing
ust have the following properties14: (1) The wave-front

stimates must be unbiased; (2) the error-propagation co-
fficient must be slow; (3) the computation must be effi-
ient, especially for large data sets, and the necessary
emory space should be small enough to be applicable in

he laboratory; and (4) finally, the algorithm should be
asily adaptable to various pupil shapes. In this paper we
ombined a Gerchberg–Saxton-type iterative process with
linear least-squares method to obtain a practical unbi-

sed wave-front estimation algorithm for optical testing
hat combines the accuracy of the iterative wave-front ex-
rapolation technique with the efficiency of the linear
parse matrix. With the domain extension technique, we
btained a predefined wave-front estimation matrix and
he associated predefined slope-computation matrices for
ny pupil shape or size. The matrix coefficients are thus
ully predetermined and known once and for all. An
nalysis of the error propagation showed that the wave-
ront estimation matrix is well-conditioned, yielding low
ropagation errors. A U.S. patent application has been
led for this iterative wave-front estimation algorithm; its
rovisional application number is 60/507, 657.

PPENDIX A: DERIVATION OF EQS. (11),
12), (26), and (27)
et us denote

U ]nW

]yn U
i

s the nth derivative of the wave front at point i and

U ]nW

]yn U
i+1/2

s the nth derivative of the wave front at the midpoint be-
ween points i and i+1. According to Taylor’s series, we
an write

wi = wi+1/2 −
a

2
U ]W

]y
U

i+1/2

+
a2

4 3 2!
U ]2W

]y2 U
i+1/2

−
a3

8 3 3!
U ]3W

]y3 U
i+1/2

+
a4

16 3 4!
U ]4W

]y4 U
i+1/2

+ Osa5d,

sA1d

wi+1 = wi+1/2 +
a

2
U ]W

]y
U

i+1/2

+
a2

4 3 2!
U ]2W

]y2 U
i+1/2

+
a3

8 3 3!
U ]3W

]y3 U
i+1/2

+
a4

16 3 4!
U ]4W

]y4 U
i+1/2

+ Osa5d.

sA2d

y subtracting Eq. (A1) from Eq. (A2), we can write
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wi+1 − wi = aU ]W

]y
U

i+1/2

+
a3

4 3 3!
U ]3W

]y3 U
i+1/2

+ Osa5d.

sA3d

y adding Eqs. (A1) and (A2), we can write

wi+1 + wi = 2wi+1/2 +
a2

4
U ]2W

]y2 U
i+1/2

+
a4

8 3 4!
U ]4W

]y4 U
i+1/2

+ Osa6d. sA4d

he replacement of w with ]W /]y yields

U ]W

]y
U

i+1

+ U ]W

]y
U

i

= 2U ]W

]y
U

i+1/2

+
a2

4
U ]3W

]y3 U
i+1/2

+ Osa6d.

sA5d

hus

]W

]y
U

i+1/2

=
1

2SU ]W

]y
U

i+1

+ U ]W

]y
U

i
D −

a2

8
U ]3W

]y3 U
i+1/2

+ Osa6d. sA6d

nd using Eq. (A6), we may express Eq. (A3) as

wi+1 − wi =
a

2SU ]W

]y
U

i+1

+ U ]W

]y
U

i
D −

a3

12
U ]3W

]y3 U
i+1/2

+ Osa5d.

sA7d

Let us now replace w with ]W /]y in Eq. (A7), to yield

U ]W

]y
U

i+1

− U ]W

]y
U

i

=
a

2SU ]2W

]y2 U
i+1

+ U ]2W

]y2 U
i
D

−
a3

12
U ]4W

]y4 U
i+1/2

+ Osa5d. sA8d

emember that19

wi+1 − 2wi + wi−1 = a2U ]2W

]y2 U
i

+
a4

12
U ]4W

]y4 U
i

+ Osa6d,

sA9d

o

U ]2W

]y2 U
i

=
wi+1 − 2wi + wi−1

a2 −
a2

12
U ]4W

]y4 U
i

+ Osa4d.

sA10d

Applying Eqs. (A10) in (A8), we have
U ]W

]y
U

i+1

− U ]W

]y
U

i

=
a

2
Swi+2 − 2wi+1 + wi

a2

+
wi+1 − 2wi + wi−1

a2 D −
a3

24SU ]4W

]y4 U
i

+ U ]4W

]y4 U
i+1
D −

a3

12
U ]4W

]y4 U
i+1/2

+ Osa5d

sA11d

r

U ]W

]y
U

i+1

− U ]W

]y
U

i

=
1

2a
swi+2 − wi+1 − wi + wi−1d + Osa5d.

sA12d

et us neglect the higher-order small-value terms on the
ight-hand side of Eq. (A12) and denote the first deriva-
ive of the wave front in the y direction as sy; then we
ave

syi+2
− syi+1

=
1

2a
swi+3 − wi+2 − wi+1 + wid, sA13d

here i=1,2, . . . t−3; t+1, t+2, . . .2t−3, . . .m−3.
Similarly, in the z direction we can write

szi+t
− szi+2t

=
1

2a
swi − wi+t − wi+2t + wi+3td,

i = 1,2, . . . t,t + 1,t + 2, . . . 2t, . . . ,m − 3t. sA14d
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