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1 Introduction

Many imaging scenarios from microscopy to space op
can be well modeled with ray-tracing theory. Some exc
tions to that rule include modeling propagation of optic
waves in nonlinear media or accounting for coherent
partially coherent light propagation occurring in optical
bers, media with microscopic refractive index variation
and integrated optical components and systems, for
ample. A good model to describe propagation of light
such systems is the finite-element beam propaga
method.1 Another approach to modeling the propagation
optical waves in an optical system, Gaussian beam dec
position, is generally applicable in the case where
slowly varying envelope approximation holds. Such an
proach is often used to model laser beams or optical fi
propagation through bulk optics.2 Finally, for linear shift-
invariant systems, imaging can be modeled using Fou
transform methods, where the final image is obtained a
convolution of the object with a transfer function.3

The application of the scalar diffraction theory to ima
ing with quasi-monochromatic incoherent light fields pr
sented in this paper was motivated by the domain of o
cally created special effects, specifically as it applies
propagating an optical field through non-shift-invariant o
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tical phase plates strategically positioned within the opt
utilized to create the desired special effects. Furtherm
the imaging system may have a large field of view~FOV!
as in live image capture.4,5 It is beyond the scope of this
paper to detail such an imaging system for special effect
demonstrate the creation of special effects that also req
optimization of optical texture plates. We shall, howev
present a nonparaxial imaging approach that will be ess
tial in future work related to modeling image formatio
through such phase plates. The modeling approach will a
be broadly applicable to non-shift-invariant imaging sy
tems, beyond that of creating special effects.

Note that a system may be non-shift-invariant and op
cal aberration free. Such a case may be encountered in
creation of optical special effects, where the non-sh
invariance is created by the texture plates and not the o
cal aberrations of the imaging optics. However, optical a
errations may contribute to non-shift-invariant optic
imaging if optical aberrations of the imaging optics are n
fully balanced across the entire FOV. For the live ima
capture application, the imaging optics should be desig
to be distortion free and well corrected to the extent p
sible for optical aberrations, given that the optics may
utilized with or without the phase plates. Also, if a pha
1561© 2004 Society of Photo-Optical Instrumentation Engineers
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1562 Optical Engi
Fig. 1 Layout of an optical system consisting of an object illuminated with a spatially incoherent
quasi-monochromatic light field of complex amplitude Uo , an aberration-free optics, and an arbitrary
imaging plane.
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plate is utilized, the imaging optics will be used slightly o
of focus, therefore the main challenge to this problem is
to model imaging through an aberrated optics, but rathe
correctly model first-order wide-FOV imaging, in or out o
focus, and to have a modeling approach that in the fut
will naturally enable insertion of an optical phase plate a
where within the optics. If a non-shift-invariant textu
phase plate is located along the optical path, a non-s
invariant imaging model is required regardless of the f
that the imaging optics may be diffraction limited.

The ray-tracing approach was first implemented in ea
stages of our investigation, however, the application of t
approach was limited by the assumption of spatial incoh
ence everywhere along the optical path and failed to p
vide a theoretical model describing the behavior of an
tical phase plate.5 Furthermore, because phase plates
non-shift-invariant, the final image cannot be obtained a
simple convolution. Thus, the use of Fourier-transfor
based algorithms is not applicable. Specifically, there is
advantage to using Fresnel diffraction theory and the a
ciated approximations and simplifications that are conv
tionally used to introduce Fourier transforms as part of
imaging process.3 In practice, for very specific image for
mation problems, it would be interesting to compare va
ous modeling approaches with their associated approxi
tions. Moreover, because the structure of the texture pl
is rough, neither Gaussian beam decomposition algorith
nor stationary scattering techniques such as the Har
Shack technique, are applicable.6 Thus, to model the imag
ing process through a structure imposing such restrictio
a different approach had to be investigated, and cus
software implementation had to be developed.

A key contribution of this paper is the presentation o
generalized nonparaxial theoretical framework based on
Rayleigh-Sommerfeld diffraction formulation enabling th
application of the scalar diffraction theory to imaging wi
quasi-monochromatic incoherent illumination across la
FOVs. This generalized framework extends the parax
imaging framework reviewed in Sec. 2 to the nonparax
case.

2 Review of the Theoretical Framework for
Quasi-Monochromatic Incoherent
Illumination

Scalar diffraction theory has been previously proposed
model quasi-monochromatic incoherent imaging for d
scribing light propagation through a linear optical system3

Such modeling is based on the classical Raylei
neering, Vol. 43 No. 7, July 2004
-

-
s
,
-

,

Sommerfeld diffraction integral. Let us consider a line
optical system consisting of an object, an aberration-f
optics, and an imaging surface~e.g., a plane is a specia
case!, as shown in Fig. 1. If we denote the local coordina
systems in the object, the exit pupil, and the image as@j;h#,
@x;y#, and@u;v#, respectively, and the optical field in th
object plane by its complex amplitudeUo(j;h), then the
complex amplitude in the imaging planeUi(u;v) will be
expressed as

Ui~u,v !5E
2`

` E
2`

`

dj dhUo~j,h!h~u,v;j,h!, ~1!

where h(u,v;j,h) is the transfer function of the investi
gated system for a point@u,v# given @j,h#.3 Furthermore,
to express the irradiance distribution in the image, we m
consider the statistical properties of the light. By assum
ergodicity of the statistical imaging process and apply
Fubini’s theorem,7 the irradiance distribution in the imag
can be further written as

^I i&~u,v !5E
2`

` E E E ^Uo~j,h!Uo* ~j8,h8!&

3h~u,v;j,h!h* ~u,v;j8,h8! dj dh dj8 dh8,

~2!

where the brackets in the left-hand-side term denote
mean over time and the brackets on the right-hand s
denote ensemble average.8 Finally, assuming quasi-
monochronatic spatially incoherent illumination we obta

^Uo~j,h!Uo* ~j8,h8!&5^uUo~j,h!u2&d~j2j8!d~h2h8!

[^I o~j,h!d~j2j8!d~h2h8!&, ~3!

and thus Eqs.~2! and ~3! yields

^I i~u,v !&5E
2`

` E ^I o~j,h!&uh~u,v;j,h!u2 dj dh. ~4!

Thus, Eq.~4! provides the relationship between the irrad
ance distribution in the image and the irradiance distrib
tion in the object illuminated with quasi-monochromat
and spatially incoherent light under the assumption of
godicity of the imaging process. Equation~4! is similar to
Gaskill’s9 Eq. ~11.82!. It simply differs by taking into ac-
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count the statistical properties of the light. Importantly, t
expression for the transfer function must be formally est
lished to apply this framework to different imaging co
figurations~e.g., paraxial; nonparaxial aberration free; no
paraxial combined with optical aberrations; any of the
with defocus given that defocus is best considered a
first-order imaging property!.

3 Review of the Application of the Paraxial
Framework to Plane-to-Plane and Plane-
to-Curve Imaging Configurations

In the special case of a system consisting of free-sp
propagation, followed by propagation through
aberration-free optics of focal lengthf , and consequen
propagation through free space, the paraxial transfer fu
tion based on applying the Rayleigh-Sommerfeld form
is given by

h~u,v;j,h!5E
2`

` E
2`

`

dx dyP~x,y!Fexp~ jkr 1!

j lr 1
cosu1G

3H expF2 j
k

2 f
~x21y2!G J

3Fexp~ jkr 2!

j lr 2
cosu2G , ~5!

wherek is the wave number,l is the central wavelength
cosu1 and cosu2 are obliquity factors, andP(x,y) is a pu-
pil function equal to one inside the pupil and zero eve
where else. In Eq.~5!, r 1 and r 2 are defined as

r 15@~x2j!21~y2h!21z1
2#1/2,

r 25@~u2x!21~v2y!21z2
2#1/2. ~6!

The obliquity factors occur by considering the geome
of parallel object-to-pupil and pupil-to-image plane-t
plane imaging. Thus, one can infer that this express
would hold some validity in the nonparaxial region on
the parabolic approximation to the optics transfer funct
is replaced by the exact expression. We shall demons
in Sec. 4 that such inference fails. Equation~5! is quite
similar to the framework presented in Sec. 10-6 in Gask9

however, it has been made formally a function of four va
ables, thus allowing to model non-shift-invariant system

Furthermore, from the theory of first-order imagin
properties, it is known that even for perfectly stigmatic im
aging ~i.e., aberration-free imaging!, the image is not dis-
tributed on a plane surface but rather on a curved surf
called the Petzval surface, as shown in Fig. 2. Without l
of generality in illustrating the Petzval surface, Fig. 2 d
picts the case of an object at optical infinity.10,11 In this
case, the surface can be shown to describe a portion
sphere. If the object is located a finite distance from
optics, the surface shape can be computed using first o
imaging equations.12,13Thus, a next step in the formal rep
resentation of the basic framework set in Eq.~5! is to con-
sider a plane-to-Petzval-surface imaging process to f
validate that sharp imaging occurs on the predicted cur
surface. If field curvature imposed by Petzval curvature
-

e

,

a

r

severe, as occurrs if the optics is not specifically desig
with multiple elements to flatten the field and is imagin
large FOVs, the image formed on a plane will be extrem
blurred in intensity as one goes up in the FOV along
plane. Also in a simulation with a limited dynamic rang
~i.e., 0 to 255 gray levels! to represent intensity variations
most of the image will appear to fall within the lowe
levels of the gray scale, thus making it difficult to assess
validity of the imaging process, even simply according
its first order imaging properties. We demonstrate su
limitations in Sec. 5. Imaging on a curved surface, as
posed to a plane, does not signify that we ignore the Pet
curvature. To the opposite, it signifies that we take it in
account in the validation of first-order imaging propertie
Such a choice is a necessary step in the validation pro
dure. Thus the expression forr 2 in Eq. ~6! was modified to

r 285@~u2x!21~v2y!21z28
2#1/2, ~7!

wherez28 is calculated from the Descartes first-order ima
ing equation,12,13 given z1 separately for each set of poin
@j;h# and @u;v#.

4 Generalized Nonparaxial Theoretical
Framework Based on the Scalar Diffraction
Theory

Paraxial imaging is generally rigorously defined for in
nitely small object sizes and small angles of incidence
optical elements. Thus, any real imaging scenario, un
on axis only, usually violates the paraxial approximation.
imaging, one then often distinguishes between parax
quasi-paraxial imaging@i.e., which applies for FOVs
,10 deg and an optics of anF-number (F#) of 10 or
more#, and nonparaxial~i.e., FOV.10 degrees or an optic
of F# less than 10!. Nonparaxial imaging comprises tw
components in imaging: first-order properties, and hig
order imaging properties. First-order properties assume
aberration-free optics and the ability to model in focus i
aging on the Petzval surface, as well as imaging with
focus. Higher order properties include optical aberratio
This paper focuses on the first-order nonparaxial imag
properties for an aberration-free system.

A key to generalize the basic framework for nonparax
imaging was the realization that the phase transforma

Fig. 2 Illustration of stigmatic imaging on a curve surface for an
object located at optical infinity.
1563Optical Engineering, Vol. 43 No. 7, July 2004
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performed by the optics, whether it is the parabolic a
proximation or the exact form, must be applied on a tra
formation plane tilted with respect to the optical ax
Equivalently, the transformation must be applied in suc
way that it remains normal to the chief ray for each po
@j;h# in the object, as illustrated in Fig. 3. The physic
meaning of the tilted summation plane can be best un
stood by considering the special case of an extended ob

Fig. 3 Generalized nonparaxial imaging framework with the trans-
formation plane normal to the chief ray and tilted with respect to the
paraxial transformation plane.
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at infinity. The wavefront reaching the optics from a poi
in the FOV is tilted with respect to the optical axis an
perpendicular to the chief ray. The lens function is to tra
form such plane wavefront into a spherical wavefro
whose center of curvature lies off-axis on the Petzval s
face. Such an imaging property can be accomplished by
optics transformation function that is rotationally symme
ric, while not strictly speaking quadratic, with respect to t
chief ray. The concept of the tilted plane for summati
applies equally well for an object at finite distance from t
optics, given that the tilted summation plane is perpendi
lar to the chief ray in all cases and tangent to the incid
wavefront emanating from any object point in the FO
Therefore the expressions forr 1 and r 2 in Eq. ~6! were
modified to

r 185@~x82j!21~y82h!21z18
2#1/2,

r 285@~u2x8!21~v2y8!21z28
2#1/2, ~8!

where @x8,y8# are the coordinates in the tilted lens tran
formation plane. Thus, the transfer function introduced
Eq. ~2! can be reduced to
h~u,v;j,h!52E
2`

` E
2`

`

dx8 dy8P~x8,y8!

3
exp~ jkr 18!exp2 jk$~z181z28!2z18@12 ~x821y82!/z18

2#1/22z28@12 ~x821y82!/z28
2#1/2%exp~ jkr 28!

l2r 18r 28
, ~9!
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whereP(x8,y8) is equal to 1 inside the projection of th
aperture on the tilted plane and equal to zero outsidez18
andz28 are related through the Descartes equation, and
function describing the optics as a focusing element w
no aberrations is an exact expression, instead of the p
bolic approximation. The lens term in Eq.~9! was derived
by considering the dephasing required to be introduced b
converging lens to map a diverging spherical wavefront t
converging spherical wavefront. With this mathematic
formulation, the obliquity factors are not necessary giv
that the summation planes are always perpendicular to
chief rays.

5 Results

To fully demonstrate the capability of the model describ
by Eqs.~7! to ~9!, we must first choose reasonable valu
for the parameters of the optical system not only within
quasi-paraxial region, but preferably within the nonparax
region. Thus, the object was considered located at a
tance of 2f away from anF/5 aberration-free optics o
20-mm focal length, enabling testing of both the parax
and the nonparaxial frameworks for various FOVs.

The mathematical framework was implemented us
conventional numerical quadrature techniques~e.g., see
Ref. 14!. Given the high number of computations involve
the computation time for the simulation of one imagi
-

e

-

condition was over 3 weeks on a single-processor platfo
Thus, establishing an alternative computational appro
was necessary. The next-generation implementation
developed on a Beowulf cluster utilizing 96 dual 1.3-G
Athlon processor nodes.15 The computation to generate th
simulated images was easily spatially partitioned to han
subsections of the object to be imaged. This distribut
resulted in implicit load balancing. The time complexi
and accuracy in terms of the size of the matrix elements
well as the scalability on a parallel platform will be dis
cussed in a follow-up investigation, because it requires
in-depth investigation of various parallel architectures
cluding 32-bit versus 64-bit processors, as well as ass
ment of performance on symmetric multiprocessing~SMP!
and nonuniform memory access~NUMA !-based computing
platforms.16 With the Beowulf cluster implementation, th
computation time was reduced to minutes, which enab
us to further investigate the modeling approach.

The generalized nonparaxial theoretical framework
plane-to-curve imaging was compared to the paraxial
more precisely the quasi-paraxial framework for plane-
curve imaging reviewed in Sec. 3, by using a 256-gra
level bitmap object filling a 40-deg FOV. Equation~5!,
which defines the paraxial and quasi-paraxial framework
thought to be paraxial or quasi-paraxial because of
parabolic approximation to the optics transformation fun
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tion. However, the main reason for this equation to be li
ited to the quasi-paraxial region is the application of t
optics transformation function on a plane perpendicula
the optical axis, as we show in the simulations. Equat
~9! addresses both limitations of Eq.~5! by using an exact
optics transformation function and applying it in a pla
perpendicular to the chief ray for each point in the FOV

All results presented correspond to plane-to-curve im
ing, where the Petzval surface was computed for the ge
etry provided, to ensure that a lack of a good image or e
an image across the full FOV is not a consequence of P
val curvature. Under realistic imaging conditions with
optimized optics, the Petzval curvature will be modera
and in the case of plane-to-plane imaging it will cause o
slight blur as the image extends further in the FOV. Ho
ever, because we do not use a field flattener within
optics or other ways~i.e., combination of positive and
negative separated optical elements! to reduce the Petzva
curvature, the Petzval surface curves severely in the c
we considered, and must be accounted for by imaging
its curved surface. In the case where optimized optics w
their flattened Petzval curvature and associated optical
errations is considered, the optics transformation can
built accordingly. The optics transformation is always a
plied in the exit pupil to model the entire optics via on
phase transformation. Furthermore, under all imaging c
ditions, the images of the face were presented upright
easier comparison, accounting for the optics providing
verted images.

Results shown in Fig. 4~a! demonstrate that the paraxi
framework fails for large FOVs, as expected. Only a p
tion of the face imaged within the quasi-paraxial region
seen sharply. Past the quasi-paraxial region, the image
so quickly that when displayed on a 0- to 255-gray-le
scale, it is non-perceivable.

To further yield insight into the issue of dynamic ran
~i.e., relative brightness for various points in the FOV!, an
object with a small square at the edge was selected as

Fig. 4 Results of imaging a 40-deg FOV object in a 2 f imaging
configuration for plane-to-curve imaging: (a) paraxial/quasi-paraxial
model given by Eq. (2), (b) nonparaxial model given by Eq. (5) for
in-focus imaging, (c) same as (b) but with 3-mm out-of-focus imag-
ing.
-

-

e

-

s

e

object to be imaged as shown in Fig. 5~a!. The result from
the paraxial framework is demonstrated in Fig. 5~b!, where
the white square appears as expected but somewhat
mer. Also, the intensity within the square is nonuniform.
this simple stimulus case, because there is no light inten
anywhere else in the object and the nonuniformities wit
the square are relatively small, no other part of the obj
competes for the dynamic range, thus when the image
put is scaled from 0 to 255 gray levels, no matter how d
in average the square at the edge is, it will be displaye
gray levels close to 255.

If we now consider an object with two squares, one
the center and one at the edge, as shown in Fig. 6~a!, results
from both the paraxial and the nonparaxial frameworks
shown in Figs. 6~b! and 6~c!, respectively. Results indicat
that using the paraxial framework, the square at the e
now disappears, indicating that it is a lot dimmer than t
one in the center. The non-paraxial framework yields ima
ing of both squares with equal brightness on the curv
surface as one expects from an appropriate 1st-order
paraxial imaging framework.

Results shown in Fig. 4~b! demonstrate that the ex
panded nonparaxial framework works for large FOVs.
nally, to verify the first-order defocusing imaging properti
with the nonparaxial framework, the imaging surface w
placed 3 mm out of focus toward the optics. Results p
sented in Fig. 4~c! demonstrate that the generalized no
paraxial theoretical framework works for out-of-focus im
aging as well.

Fig. 5 Demonstration of the existence of low light levels at the edge
of the FOV in the case of the paraxial model and plane-to-curve
imaging: (a) object with one white square at the edge of the FOV
and (b) image.

Fig. 6 Demonstration of the existence of low light levels at the edge
of the FOV in the case of the paraxial model and for plane-to-curve
imaging: (a) object with one white square in the middle and one
white square at the edge, (b) image of (a) using the paraxial model,
the square at the edge is extremely dim with respect to that in the
center and thus cannot be seen within a limited 255-gray-levels dis-
play; and (c) image of (a) using the nonparaxial model. Such an
imaging scenario models accurately imaging with a 40-deg FOV.
1565Optical Engineering, Vol. 43 No. 7, July 2004
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Finally, we intend for this paper to bring forth the fa
that within the paraxial framework, the parabolic appro
mation to the optics transformation function can be ins
nificant compared to the fact that in that regime the op
transformation is applied in a plane perpendicular to
optical axis. Furthermore, if we are correct, the nonpara
framework would work equally well with or without the
parabolic approximation to the optics transformation fo
moderateF-number, as long as the summation occurs i
plane perpendicular to the chief ray. Thus, we ran a sim
lation with the nonparaxial equation under both cases of
optics transformation. The results presented in Fig. 7 in
cate that the nonparaxial framework works equally w
with the parabolic approximation to the optics transform
tion function and with the exact expression, while resu
presented in Figs. 4~a! and 4~b! indicated that even when
the exact expression of the optics transformation funct
was used, imaging failed if the optics transformation w
not applied in a plane perpendicular to the chief ray.

6 Conclusions and Future Work

The principles of scalar diffraction theory were applied
optical imaging of extended objects under qua
monochromatic incoherent illumination. The existing the
retical framework was generalized to nonparaxial in-foc
and out-of-focus imaging and results were obtained
verify the generalized framework. In that framework, t
optical system was considered linear. In the generali
nonparaxial framework, even the most complex linear s
tems without any assumptions for shift invariance, can
modeled and analyzed. Finally, this work will be extend
in the near future to include higher order aberrations in
optics transformation equation and special effects imag
by including a propagation stage through optical ph
plates.
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