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Abstract: Liquid crystal polarization gratings manifest several unique features, such as high 
diffraction efficiency, polarization selectivity, and fast switching time. However, few works 
address the chiral-doped liquid crystal alignment issue in such gratings. Here, we develop an 
improved relaxation method to analyze the liquid crystal director distribution in chiral-doped 
polarization gratings. Our simulation result agrees well with experimental data on a 
polarization volume grating. The criteria for forming planar or slanted polarization grating are 
discussed. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Liquid crystal polarization grating (LCPG) is a critical optical element in near-eye displays 
because of its high diffraction efficiency and polarization selectivity [1–6]. Two types of 
LCPG have been developed: half-wave polarization grating (HWPG) [3–9] and polarization 
volume grating (PVG) [1,2,10–13]. HWPG utilizes the periodic change of Pancharatnam-
Berry phase [13,14] resulting from the rotating optical axis along the x-axis, as Fig. 1(a) 
depicts. The simplest HWPG is composed of nematic liquid crystal (LC) that forms half-wave 
plate with spatially rotating optical axis. However, it usually has limited angular and spectral 
bandwidths. In order to improve its optical performance, multi-layer structure with chiral 
dopants is proposed [7–9]. The chiral dopant induces cholesteric liquid crystal (CLC) and 
offers a way to manipulate the twisting angle. However, the LC director distribution is 
presumed intuitively to be planar and multiple spin-coatings are adopted to overcome the 
critical thickness issue. The LC director deformation due to chiral dopants and weak 
anchoring strength of the pattern is not considered. Although some previous works address on 
the nematic LC alignment in LCPGs [16,17], to the best of our knowledge, no rigorous 
analysis dealing with the CLC case and weak anchoring condition has been reported. Hence, 
detailed theoretical analyses of alignment condition in terms of pattern period, anchoring 
strength, CLC pitch, and HWPG thickness is urgently needed. 

 

Fig. 1. Schematic plot of (a) HWPG and (b) PVG. The pitch corresponds to LC director 
rotating from 0 to 2π . 
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PVG, on the other hand, utilizes the periodic volumetric modulation of electric 
susceptibility tensor caused by the change of the LC director axis, as shown in Fig. 1(b). The 
grating thickness (D) is usually much larger than the grating period (P) in order to establish 
efficient Bragg diffraction. PVG can either be fabricated through multiple spin-coating 
process [1,2], one-time spin-coating [11], or cell formation [12]. In the past studies, the LC 
director distribution was often assumed planar because the bottom alignment is planar. Until 
recently, some experimental evidences suggest that the actual LC director configuration in a 
PVG may not be planar; instead, it possesses slanted structure [13]. Different LC 
configurations lead to different optical performance. Thus, to build an accurate simulation 
model for understanding the LC director distribution in a PVG and analyzing its electro-optic 
effect is in urgent need. 

Although the optical performances of HWPG and PVG are different, their fabrication 
processes are rather similar: begin with a patterned alignment layer and then overcoat a LC 
layer with different thickness and chiral concentration. Therefore, the basic simulation model 
for both structures is the same. The equilibrium of the LC directors corresponds to the 
minimal free energy described by Frank-Oseen model [18]. Several numerical methods have 
been proposed to find the free energy minima, including directly solving Euler-Lagrange 
equations [15–20], Monte-Carlo method [21–24], and relaxation method [17,24,25]. Directly 
solving Euler-Lagrange equations provides detailed physical insights. It is suitable for 
systems with one spatial variable [17–20] or separable using a proper approximation [16]. 
However, in a LCPG with high chiral concentration, the director field is dependent on two 
highly coupled spatial variables, which makes analytically solving the Euler-Lagrange 
equations difficult. In Monte-Carlo method, the simulated annealing algorithm is usually 
applied to allow the acceptance of higher energy state in order to jump out of the local 
minima. If the annealing temperature decreases slowly and the number of iterations is 
sufficient, then finding global minima is feasible. However, the required number of iterations 
could be very large, making the simulation too time-consuming for studying different 
configurations of the system. Relaxation method adopts the principle of LC dynamics and 
uses the restoring force for the change of director in each iteration. However, when the 
concentration of chiral dopants is high, the relaxation method could be trapped in local 
minima and the final state is strongly dependent on the choice of initial state [24]. 

In this paper, we improve the relaxation method in two ways. First, we apply a weak 
balance condition technique to correct the algorithm that would otherwise give inaccurate and 
unstable results. Second, we accelerate the algorithm by seven times with momentum gradient 
descent method [26]. Using this improved relaxation method, we explore the LC director field 
in PVG with various scenarios and confirm our simulation results with experiment. Next, we 
apply our model to analyze the performance of HWPG. To maintain planar structure, for a 
large deflection angle multi-layer HWPG with chiral dopants, the maximum thickness of each 
layer should not exceed ~20 nm, while for a small deflection angle HWPG the maximum 
thickness of each layer is about 600 nm. 

2. Simulation method 

With an external electric field, the Frank-Oseen free energy density has following expression: 

      2
2 2 2

1 2 3 0

1 1 2 1 1
( ) ( ) ( ) ,

2 2 2 2vf K n K n n K n n E n
P

π ε ε= ∇ ⋅ + ⋅∇× + + ×∇× − Δ ⋅

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where  (cos cos ,cos sin ,sin ) ( , , )x y zn n n nθ φ θ φ θ= =  represents the LC director field, K1, K2, 

and K3 are the corresponding splay, twist, and bend elastic constants, and P is the helical pitch 
of the CLC. It should be pointed out that here we use pitch to represent the LC director 
rotating from 0 to 2π , which is twice the optical pitch because the LC director repeats after 
rotating 180°. The total free energy is obtained by integrating the free energy density over the 
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volume: v vF f dV=  . The minimization of total free energy is a constrained variational 

problem, which needs to include a Lagrange multiplier ( , , )x y zλ . The corresponding Euler-

Lagrange equations are expressed as 

 ( ) , 1, 2,3,v v
i j i

ji j i
n

f f
H n i

n
λ

 ∂ ∂ ≡ − + ∂ = − =
 ∂ ∂ ∂ 

  (2) 

where /
j j

x∂ ≡ ∂ ∂ and j = 1, 2, and 3. The left-hand side of Eq. (2) is often noted as molecular 

field. The equilibrium condition is achieved when the molecular field is parallel to the LC 
director. The relaxation method updates the LC director towards the molecular field in each 
iteration 

 ,i in hωΔ =  (3) 

 
,( )i i ih H H n n= − ⋅


 (4) 

where ih  is the molecular field projected perpendicular to the director, ω is the relaxation 

constant that can be adjusted to get faster convergence speed. The relaxation method is in its 
nature a first-order gradient descent method because the molecular field comes from the first-
order variation of the free energy. Momentum gradient descent (MGD) algorithm [26] is used 
to accelerate the update 

  
,1t t tn h nω β −Δ = + Δ


 (5) 

where the subscript t means current iteration and (t-1) is the last iteration, and β is a value 

typically set between 0.8 and 0.9. It should be noted that 
1tn −Δ  contains the values of all 

previous updates, with exponentially decreasing weight. Hence, MGD accumulates 
momentum when going downhill, which accelerates the update, but it slows down the update 
when the system hits the plateau. Using MGD, our simulation speed is improved by ~7x on 
average. 

The handling of boundaries is extremely important in the simulation. The LCPG is 
uniform in the y direction, so only x and z directions are considered. The length of the 
simulation region in x direction is the same as the x period, with director rotating from 0 to 
2π . So periodic condition is applied on x boundaries. Note that in practical fabrications of 
HWPG and PVG, either reactive mesogen (RM) is spin-coated onto the patterned photo-
alignment film, or the LC material is infiltrated into a cell with one patterned alignment 
surface. In both cases, only one surface is patterned, while the other side is in contact with air 
or glass, to form homeotropic anchoring (or planar anchoring if surfactant is added). The 
bottom surface is usually coated with photo-alignment material patterned by interferometer 
exposure. The anchoring strength of photo-alignment surface can range from 10−6 J/m2 to 10−4 
J/m2 [27], depending on the material and exposure dosage. Therefore, the general form of 
weak anchoring is adopted for both surfaces. The top interfacial energy density is 

  2 2
,

1 1
( ) sin ,

2 2s t t tf W n z W θ= − ⋅ = −  (6) 

where Wt is the anchoring strength; Wt <0 means planar anchoring while Wt >0 means 
homeotropic anchoring. The bottom surface energy density is 
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where Px is the pattern period (Fig. 1(a)). The general form of the torque balance equation for 
a weak anchoring boundary is [20] 

 0,
( )

v s

z

f f

θ θ
∂ ∂

+ =
∂ ∂ ∂

 (8) 

 0,
( )

v s

z

f f

φ φ
∂ ∂

+ =
∂ ∂ ∂
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where fs is the surface energy density. 
The physical meaning of the first terms of Eqs. (8) and (9) is the change of bulk elastic 

free energy due to the change of z derivatives of θ and φ , while the second terms mean the 

change of surface interfacial energy. 

 

Fig. 2. Schematic drawing of simulation grid. The Nth layer is the top layer of the simulation 
region and h is the grid size. 

In the simulation, finite difference method is used for discretization of the simulation 
region, as shown in Fig. 2. The top N-th layer only has surface energy while the layers 
beneath have bulk free energy. The change of the (N, j) grid point in the top layer only 
influences the bulk free energy of the (N-1, j) point through the change of the z derivatives of 
(N-1, j) point, while the calculation of x derivatives of the (N-1)-th layer is irrelevant of the 
N-th layer. Therefore, the numerical calculation of / ( )v zf θ∂ ∂ ∂  and / ( )v zf φ∂ ∂ ∂  of (N-1, j) 

point only uses the N-th layer through the calculation of zθ∂  and zφ∂ . Considering that the 

free energy is the quadratic function of first derivatives of θ and φ, the / ( )v zf θ∂ ∂ ∂  and 

/ ( )v zf φ∂ ∂ ∂  terms only contain the linear forms of Nθ  and Nφ . The second terms in Eqs. (8) 

and (9), /sf θ∂ ∂ and /sf φ∂ ∂ , also use Nθ  and Nφ  for calculation. As a result, the general 

forms of Eqs. (8) and (9) are transcendental. Therefore, Newton’s iteration is adopted to solve 
the equations. 

Without losing generality, the bottom (1st) layer is used for illustration. Here  ,θ φ  and in

are used to denote the values of second layer. Then Eqs. (8) and (9) can be expanded as: 
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All symbols with  are calculated using the second layer and therefore can be treated as 
constants. After some algebra, we derive the Jacobian for (f1, f2) as: 
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In each Newton’s iteration, (θ, φ) is updated according to 
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For each calculation of the bottom director field, we start the Newton’s iteration using result 
from the last calculation. The ending condition of the iterations is set as when 1f  and 2f  are 

less than 10−4 µN/m. Typically, it takes only 3 iterations to reach the ending condition, so the 
computational burden of the bottom field is negligible. 

Here the solutions are noted as s
Nθ  and s

Nφ . It is straightforward to use s
Nθ  and s

Nφ  for the 

top layer for each iteration. It is found, however, that the system tends to form local defects 
and does not reach the lowest energy state if we do so. For illustration, a PVG with mono-
elastic-constant of 10 pN is simulated. The grating period is 800 nm, the thickness is 2 µm, 
and CLC pitch is 400 nm. The anchoring strength is Wt = 3 µN/m and Wb = 100 µN/m. The 
result of the director field is plotted in Fig. 3(a), and the free energy density is in Fig. 3(b). It 
can be seen that many high-energy defects are formed, which contradicts with the 
experimental observation on the formation of a good performance PVG. Furthermore, the 
final state is strongly dependent on the initial state, which makes the simulation results 
unpredictable if the initial state is random. To overcome these issues, we add a modification 
to the updating method of the top and bottom layers, denoted as weak balance condition. 

This method takes into account that the bulk distribution is iteratively evolving toward the 
equilibrium state instead of getting to it at once. It is therefore appropriate to keep surface and 
bulk updating at a relatively similar pace. For each update, instead of getting to the balance at 
once, we loosen the condition as 

 1 1(1 ) , (1 ) ,s s
N N N N N Nθ αθ α θ φ αφ α φ− −= + − = + −  (19) 

where α is a value to be adjusted in the iteration, the closer it is to 1, the better the balance is. 
In the simulation, we let α start from 0.7 to 0.8 and gradually increase it to 1. Using this 
technique, the local defects are able to rise to the top or bottom and then vanish, leading the 
system to the lowest energy state. As shown in Figs. 3(a) and 3(b), the final state is aligned 
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well without defects and the volume energy is close to zero, except for the region near the top 
surface where the weak homeotropic anchoring slightly deforms the CLC structure. 

 

Fig. 3. Comparison of simulation results with and without weak balance condition (WBC). 
Simulated (a) director field and (b) free energy density without WBC. Simulated (c) director 
field and (d) free energy density with WBC. The unit of the scale bar is J/m3. 

3. Results and discussion 

3.1 PVG cell with an electric field 

To validate our simulation model with experiment, we fabricated a PVG cell and measured its 
optical performance. First, we prepared a clean ITO (indium tin oxide) glass substrate treated 
with UV ozone (10 min.) and spin-coated on top a layer of photo-alignment material 
(Brilliant yellow 0.4% wt, 3000 rpm for 30s). Then we exposed the substrate with the 
interference pattern formed by a 488-nm laser for 8 minutes. The detailed setup of the 
exposure system has been described in [1]. The period of the alignment pattern xP  is 850 nm. 

Then another cleaned ITO glass was placed on top to form a cell with 2-µm gap. Then we 
infiltrated the LC into the cell, followed by heating the cell to clear point (120°C) and 
gradually cooling it down to the room temperature. The LC material used is MLC-2048 with 
1.56wt.% chiral dopants S-5011(HTP = 107 µm−1). The pitch of the CLC is calculated to be 
Pclc = 599 nm. The elastic constants of MLC-2048 were measured as K1 = 15.7 pN, K2 = 12.6 
pN, and K3 = 36.4 pN. To see the voltage-dependent optical behavior, we applied an ac 
voltage of 8 kHz with different amplitude. The dielectric anisotropy of MLC-2048 at 8 kHz is 
Δε = 1.0. During simulation, the anchoring strength is set as Wt = 3 µN/m and Wb = 100 
µN/m. At V = 0, we start from a random initial state and let it evolve to imitate the cooling-
down process. In the voltage-on state, we set the initial state at V = 0. After acquiring the 
director field, we use finite element analysis to simulate the transmission spectra. To improve 
precision, we also measured the wavelength-dependent refractive indices of MLC-2048, and 
fitted the experimental data with extended Cauchy equation [28] 

 , ,
, , 2 4

.e o e o
e o e o

B C
n A

λ λ
= + +  (20) 

The fitting parameters for ne are Ae = 1.6950, Be = −0.0015µm2, and Ce = 0.0035µm4, while 
the fitting parameters for no are Ao = 1.5200, Bo = −0.0212µm2, and Co = 0.0044µm4. 

The measured transmission spectra and simulated spectra are plotted in Figs. 4(a), 4(c), 
and 4(e), while the simulated director fields are plotted in Figs. 4(b), 4(d), and 4(f), 
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respectively. Considering such a complex system, the overall agreement between experiment 
and simulation is reasonably good. 

 

Fig. 4. Experimental and simulation results of zeroth order transmission spectrum of the PVG 
cell under different voltages. (a) Transmission spectrum and (b) simulated director field at V = 
0. (c) Transmission spectrum and (d) simulated director field at V = 20Vrms. (e) Transmission 
spectrum and (f) simulated director field at V = 24Vrms. 

At V = 0, the director field (Fig. 4(b)) is like a slanted CLC to ensure the lowest volume 
free energy. From Fig. 4(b), we find the periodicity of the simulated director in z-direction is 
Pz = 847 nm. Once Pz is obtained, we can calculate the total Bragg grating period PB using 
following relation: 
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2 2 2

1 1 1
.

x z BP P P
+ =  (21) 

From Eq. (21), we find PB = 600 nm, which is nearly the same as Pclc (≈599 nm). This means 
in the completely relaxed state, the CLC pitch is equal to the Bragg pitch. Recently, Lee et al. 
[13] compared the optical performances of planar and slanted PVG configurations. They 
found that if the slant angle is ≈25°, then the agreement between experiment and simulation is 
very good. However, no detailed explanation was given. In our present analysis, the slant 
angle can be calculated through 1 1sin ( / ) sin ( / )B x clc xP P P Pφ − −= =  and the result is 25.9°, 

which agrees with the reported experimental result well. This data provides an important 
validation to our model. 

From Fig. 4(c), at V = 20Vrms, besides the peak located at 670 nm, another peak located at 
around 625 nm appears. This is because Px≈Pz at V = 0, which means the grating lies at the 
boundary of transmissive and reflective ones. As the voltage increases, the director field is 
deformed, making Pz larger than Px, so that the grating turns into transmission type [Fig. 
4(d)]. The peak located at ~625 nm is the corresponding transmission peak. 

As the voltage increases to 24 Vrms, the transmission peak in the spectrum vanishes, 
leaving only one small peak at ~670 nm [Fig. 4(e)]. This is because the whole structure is 
deformed to be like a uniform lying helix (ULH) [19,29], as Fig. 4(f) depicts. Under such a 
circumstance, the center of the transmission peak blue shifts to zero and the peak at ~670 nm 
corresponds to the period of ULH, which is the same as Px. 

3.2 Alignment of thin LCPGs 

To fabricate a HWPG with chiral dopants, multiple spin-coatings are adopted [7–9]. The 
purpose is to obtain thin layers of planar structure to control the twist angle of each layer and 
therefore manipulate the optical performance. Because in practical fabrication the formation 
of first passivation layer of RM can be adopted to improve the anchoring [9,30]. Considering 
the similarity of the molecular structure to the contacting layers, the anchoring strength is set 
as Wb = 10−3 N/m, which falls into the strong anchoring category. For convenience, we define 
three unified dimensionless parameters 

 / ,xd D P=  (22) 

 / ,xp P P=  (23) 

 / ,t t xw W P K= −  (24) 

where K  is the average of the three elastic constants. With these parameters, the obtained 
simulation results can be extended to cases with different scales. The minus sign in (23) is 
because in the following discussion we will consider planar anchoring, which can be achieved 
by surfactant and adjusted by varying the concentration. To quantify the director deviation 
from the planar structure we also define the following parameter 

   2( ) ,pn nσ = −  (25) 

where  pn is the planar director field defined as 

  2 2 2 2
cos( ),sin( ),0 .p

x x

n x z x z
P P P P

π π π π 
= + + 
 

 (26) 

We study two cases with p = ∞ for nematic LC and p = 0.5 for CLC. In each case, we vary 
the thickness and top anchoring strength to see the change of deviation. Figure 5 depicts the 
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simulated results. For the cases without chiral dopant, as wt increases the deformation is 
suppressed significantly. From Eq. (13), in order to increase wt, we can either increase the 
surfactant concentration to increase anchoring strength, or increase the periodicity in x 
direction. It should be noted that in the limit of wt→∞, the system degenerates into the case 
with two sides of strong anchoring. The director will still deform when d>0.5 [17]. Figure 5 
offers a good guidance to optimize the parameters when fabricating a HWPG. For example, 

with Wt = −10−5 N/m, K  = 10 pN, and thickness is 1.5 µm to meet the half-wave condition, 
we can determine the minimum periodicity is Px = 10 µm so that wt = 10 and d = 0.15 to 
allow the deviation σ = 0.1. 

 

Fig. 5. LC director deformation with varying unified depth and top anchoring strength. (a) 
nematic LC without chiral dopant, and (b) CLC with 0.5p = . 

For the CLC case (Fig. 5(b)), as wt increases the deformation at small d values is 
suppressed to some degree and then saturates. The deformation at a relatively large d value is 
not effectively suppressed no matter how large wt is. This means no matter how strong the 
anchoring at the top surface is, the LC directors will still quickly deform from the bottom 
planar structure to the slanted CLC shape. For the fabrication of multi-layer LCPGs, the 
requirement of deformation should be stricter because the deformation directly influences the 
alignment of next layer. If we allow the maximum deviation to be σ = 0.05, then, for example, 

in a system with Wt = −10−4 N/m, K  = 10 pN, and Px = 1 µm, we need to keep d < 0.02Px, 
which is 20 nm. If Px = 10 µm, then the condition is relaxed to d < 0.06Px, which is 600 nm. 
In [31], the polarization grating with high chiral concentration is fabricated to achieve high 
deflection angle. The thickness of each layer in the multiple spin-coating is reported to be 55 
nm in order to form a good pattern. This is in the same order of our analyzed result. The 
disparity of the exact values may come from the different choice of error tolerance of σ. 
Therefore, our analysis on the alignment condition is also validated. 

4. Conclusion 

A simulation model for the LC director field in chiral LCPGs is developed. The model is 
confirmed by explaining slanted angle of PVG in the previous work and comparing the 
experimental results with numerical prediction in a PVG cell with applied voltage. Then we 
discussed the alignment condition in the fabrication of LCPGs and offered a guidance of 
parameter selection. 
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