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The spectral shape of a source is of prime importance in optical coherence imaging because it determines
several aspects of image quality, especially longitudinal resolution. Wide spectral bandwidth, which
provides short coherence length, is sought to obtain high-resolution imaging. To estimate longitudinal
resolution, the spectral shape of a source is usually assumed to be Gaussian, although the spectra of real
sources are typically non-Gaussian. We discuss the limit of this assumption regarding the estimation
of longitudinal resolution. To this end, we also investigate how coherence length is related to longitu-
dinal resolution through the evaluation of different definitions of the coherence length. To demonstrate
our purpose, the coherence length for several theoretical and real spectral shapes of sources having the
same spectral bandwidth and central wavelength is computed. The reliability of coherence length
computations toward the estimation of longitudinal resolution is discussed. © 2002 Optical Society of
America

OCIS codes: 030.1640, 110.4500, 350.5730.
1. Introduction

Optical coherence imaging is a biomedical imaging
technique based on low-coherence interferometry,
which operates on the basic principle that two broad-
band fields interfere only if the optical path difference
of the interferometer arms is within the coherence
length of the source.1–5 Thus the coherence length
sets the temporal width of the interferometric signal
formed by the low-coherence interferometer and con-
sequently sets an upper bound on the longitudinal
resolution of the imaging system. The impact of
noise in optical coherence imaging is voluntarily dis-
regarded in the present investigation, given that
noise will decrease longitudinal resolution. We fo-
cus here on the choice of the source to estimate an
upper bound on resolution.

The power spectral density �PSD� of the source,
which is fully characterized by its shape, its spectral
bandwidth, and its center wavelength, is at the base
of coherence length computing and has a critical im-
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portance for the ability to resolve small structures in
optical coherence imaging such as optical coherence
tomography1 and optical coherence microscopy.4 In
this paper we investigate optical coherence imaging
cases in which the self-coherence function is the de-
termining factor of longitudinal resolution. The im-
pact on longitudinal resolution of high-numerical-
aperture focusing of light in the sample, when it has
to be taken into account, is discussed in detail in the
literature.3

In coherence imaging, the coherence length ap-
pears in the detected signal through the self-
coherence function, which can be regarded as the
point-spread function �PSF� of the imaging system.6
There are various metrics for the measurement of
coherence length from the self-coherence function:
full width at half-maximum �FWHM�, the width at
e�1 of the maximum, and the equivalent width.7
The coherence length has also been defined as the
product of the speed of light c with the coherence time
�c computed from the normalized self-coherence func-
tion as reviewed in Subsection 2.A.

In this paper we first review two common metrics
for computing the coherence length. We then define
the longitudinal resolution and its relation to the
coherence length of a source in optical coherence im-
aging. Theoretical results of computed coherence
lengths for two theoretical PSDs, the Gaussian and
the Lorentzian, and a real PSD of a superluminescent
diode �SLD�, all centered at 950 nm and having a
62-nm bandwidth, are then presented. Importantly



for practical trends in coherence imaging, we finally
present a theoretical estimation of coherence length
for sources of extended spectral bandwidths, yet with
bumpy spectral profiles, and discuss the validity of
the relationship between coherence length and longi-
tudinal resolution.

2. Computing Coherence Length and Defining
Resolution in Coherence Imaging

After reviewing two common definitions of coherence
length, we model the detected signal issued from two
layers and evaluate whether either one of these for-
mulas can be used consistently to predict resolution.

A. Computing Coherence Length

The coherence length defined as the FWHM of the
self-coherence function has been used most extensively
to predict the longitudinal resolution in optical coher-
ence imaging. Several groups have carried out exper-
imental assessments showing a good agreement
between the self-coherence width predicted from the
source spectrum and the measured PSF.8–10 The two
last examples �Refs. 9 and 10�, which employ, respec-
tively, a SLD and a Ti:Al2O3 laser, underline the need
to take into account the fact that their sources were not
Gaussian to evaluate the coherence length.

An interferometric signal is the correlation between
the fields issued from the reference arm ER�r, zR� and
the sample arm ES�r, zS� of the interferometer, where
r is the transverse position at the detector, and zR and
zS are the optical path length in the reference and
sample arms, respectively. The optical path-length
difference �z � �zS � zR� between both of the arms can
be translated into a temporal term � � 2 �z�c. The
interferometric signal I��� given by

I��� � Re��
A

ER�r, t � �� ES*�r, t�dr� , (1)

where the spatial integration is over the detector area
A and the angle brackets correspond to the temporal
integration over the detection time that is greater
than the coherence time of the source. When the
fields in both arms are the same, the right-hand term
in relation 1 simply represents the autocorrelation of
the fields.

The PSD of a signal is the Fourier transform of its
autocorrelation function, also called the self-coherence
function, as stated by the Wiener–Khintchine theo-
rem.11 The inverse Fourier transform of a PSD S�	�,
where 	 is the wavelength, is the self-coherence func-
tion 
��� �i.e., 
��� � ��1�S�	�
�, where � denotes the
time delay. The complex temporal coherence func-
tion �or complex degree of temporal coherence func-
tion� ���� is defined as the normalized self-coherence
function and given by 
����
�0�.

A first, most commonly employed metric for the
coherence length is the FWHM of the modulus of the
complex temporal coherence function ������:

lcFWHM
� c��� � ��� � c�FWHM, (2)

where ������� � ������� � ���0���2.
Another metric for the coherence length is that

defined as the product of the speed of light c and the
coherence time �c given by6,12

lc � c �
��

�

������2d�. (3)

B. Coherence Length and Resolution

A general definition of longitudinal resolution ac-
cepted in optical coherence imaging is half of the
coherence length of the source �i.e., lcFWHM

�2 or lc�
2�.3,13 The choice of the FWHM of ������ for coherence
length, most commonly chosen as mentioned above, is
historical in nature and derived from the Rayleigh
resolution criterion, which states that two equally
bright point sources are barely resolved when the
first zero of the Airy disk of the image of one point
�which is the PSF of the imaging system for a circular
aperture� is at the center of the Airy disk of the image
of the other point. In this configuration, the result-
ing image intensity at the center corresponds to
73.5% of the intensity at the peaks.6 It is important
to note that the shape of the PSF is critical to the
value of the composed image intensity at the center,
as we show in this paper. Therefore a criterion for
Airy-disk-shaped PSFs may not necessarily apply
generally to other shaped functions.

If we return to fundamentals, the longitudinal res-
olution of an optical coherence imaging system is the
minimum longitudinal separation detectable in two
successive distinct locations �or layers� in the sample
with different optical characteristics, where backre-
flections occur. If we denote �z the minimal dis-
tance between two layers that can be detected, E1 the
field reflected from the first layer at position zS, E2
the field reflected from the second layer at position
zS � �z, and n the average index of refraction sepa-
rating the layers as shown in Fig. 1, the interfero-
metric signal becomes

I��� � Re��
A

ER�r, t � �� E1*�r, t�dr�
� Re��

A

ER�r, t � �� E2*�r, t �
2n�z

c �dr� . (4)

Fig. 1. Two-layer model to determine the longitudinal resolution.
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Thus

I��� � Re�����
 � � Re���� �
2n�z

c �� . (5)

In establishing an upper bound for longitudinal
resolution, we assume that the displacement between
two layers �z is an integer multiple of the center
wavelength of the source in the material of propaga-
tion. Hence the temporal coherence functions are
assumed to be in phase. In this case, the envelope of
the detected signal is proportional to the summation
of the modulus of the two temporal coherence func-
tions with a time delay in between them. If a phase
mismatch exists, the resulting signal will also depend
on the phase of the complex temporal coherence func-
tions. The assumption of phase matching leads to
the worst result in terms of resolution. However, we
use this assumption to be able to compare the met-
rics. Experimental assessments may reveal en-
hanced resolution that could be predicted on the basis
of the subsampling of �z.

3. Simulation Results

The different light sources are defined in Subsections
3.A and 3.B where we present computational results
of coherence length for the PSD of a real source and
equivalent �i.e., same bandwidth and central wave-
length� Gaussian and Lorentzian PSDs. We further
investigate how spectral dips in a Gaussian PSD af-
fect coherence length. To obtain further insight into
the relationship between resolution and coherence
length, in Subsection 3.C we present simulations
demonstrating the ability of different light sources
with the specified PSDs of Subsections 3.A and 3.B to
resolve the location of two layers.

A. Coherence Length Computation of a Real Source and
Equivalent Power Spectral Densities

Light sources employed in optical coherence imaging
systems usually have PSDs S�	� approximated to a
Gaussian function to estimate resolution.3,4,9,10,14 A
general expression for a normalized Gaussian PSD
�i.e., � S�	�d	 � 1
 and its inverse Fourier transform

��� is given by

S�	� �
2	ln 2 	0

2

	�c�	
exp
��2	ln 2

�1
	

�
1
	0
�

��	

	0
2� �

2


 , (6)


��� � exp��� �c�	�

	0
2 2	ln 2�

2�exp��j�2�c�

	0
�� , (7)

where 	0 is the center wavelength and �	 is the
�3-dB spectral bandwidth. 
��� is by definition nor-
malized to one. For the normalized Gaussian PSD,

the coherence lengths computed with the two metrics
given by Eqs. �2� and �3�, respectively, are

lcFWHM
�

4 ln 2
�

	0
2

�	
, (8)

lc � 	2 ln 2
�

	0
2

�	
. (9)

If the PSD of the source is Lorentzian instead of
Gaussian, S�	� and 
��� are given by

Slzn�	� � 2���c
�	

	0
2�
1 � �2

�1
	

�
1
	0
�

�	

	0
2

�
2


�
�1

, (10)


lzn��� � exp��
�c�	

	0
2 ����exp��j�2�c�

	0
�� . (11)

The coherence lengths of the source become

lcFWHM
�

2 ln�2�

�

	0
2

�	
. (12)

lc �
	0

2

��	
. (13)

The real light source we considered is a SLD �Su-
perlum SLD-471�. It is a broadband, low-coherence
source centered at 950 nm with a �3-dB spectral
bandwidth of 62 nm. In Fig. 2�a� we present the
PSD of the real source, as well as the normalized
Gaussian and Lorentzian PSDs given by Eqs. �6� and
�10�, where the center wavelength and bandwidth
were set to match that of the SLD-471. The pre-
sented PSDs are normalized to unity for comparison.
Figure 2�b� shows the computed modulus of the com-
plex temporal coherence functions ������ associated to
each PSD in Fig. 2�a�.

The spectrum analyzer, which is employed to mea-
sure the PSD of the SLD, provides a discrete data set
of 1001 samples �N� with 0.4-nm resolution ��	�.
The domain of the time delay � depends on the center
wavelength 	0 and �	 as ��	0

2��2c�	�, 	0
2��2c�	�
,

such that the time-delay resolution �� will be 	0
2�

��N � 1�c�	
, which equals 7.513 fs. The complex
temporal coherence function is estimated with an in-
verse fast Fourier transform.

Table 1 presents the computed coherence lengths of
the SLD-471 and the two theoretical sources. As
shown in Table 1, different spectral shapes present
different coherence lengths, thus longitudinal resolu-
tions for an optical coherence image, although they
have the same bandwidth and center wavelength.
Approximating the PSD of the SLD to a Gaussian
function results in an error of approximately 10% for
coherence lengths evaluated through both of the met-
rics. The results show that the coherence lengths
computed from the Lorentzian PSD are approxi-
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mately half of that of the coherence lengths of the
Gaussian PSD and the SLD.

B. Computation of Coherence Lengths of Sources with
Extended Power Spectral Densities

PSDs of real sources usually include spectral bumps
and dips in their shapes, which lead to sidelobes in
the interferometric signal. The sidelobes may sig-
nificantly affect the resolution of the system. How-
ever, longitudinal resolution can always be estimated

from the measured PSD of the light source following
the same metrics presented here.

The deformation �i.e., dips� of spectral shape of
sources employed in optical coherence imaging is
usually observed for high-power ��101 to �102 mW�
broadband sources ��102 nm�, such as the Superlum
SLD-47-HP with a Gaussian dip in its spectrum as
shown in the specification sheet of the product, mode-
locked Ti:Al2O3 laser source with multiple dips and
bumps in its spectrum10,15 and the SLD-370 as pre-
sented in a partial coherence interferometry experi-
ment.9

We investigated the effect of a dip in the PSD of
virtual sources on coherence lengths and associated
longitudinal resolution. A Gaussian PSD with
100-nm �3-dB bandwidth centered at 940 nm was
generated. We introduced spectral dips into the
Gaussian PSD by subtracting Gaussian functions of a
�3-dB 45-nm bandwidth centered at 940 nm of dif-
ferent magnitudes. Each resulting normalized PSD
has a �3-dB 100-nm bandwidth with different levels
of spectral dip. Figure 3 shows the Gaussian PSD
�dashed curve� and the generated PSDs with spectral
dips.

Power spectral analyses of these PSDs were per-
formed. Figure 4 presents the plot of the numerical
results for the coherence length of each PSD as a
function of the percentage of the level difference be-
tween the dip minimum and the peaks of the PSD,
where a zero percentage of the spectral dip refers to
the Gaussian PSD. In Fig. 5 the simulated modulus
of the temporal coherence functions of the PSDs with
49.13%, 5.1%, and no spectral dips is presented as
examples. For all the Gaussian with dips, we esti-
mated the coherence length using Eqs. �2� and �3�.
To validate the accuracy of these computations, we
compared the values for the coherence length of the
Gaussian with no dips obtained from Eqs. �2� and �3�
with those obtained using Eqs. �8� and �9�. Numer-
ical computational errors of 0.3% and 0.8% were
computed for the FWHM metric and the other met-
ric, respectively. These numerical errors, which
occur because of the discrete form of the PSD and

Fig. 2. �a� Measured PSD of the SLD: the normalized Gaussian
PSD and the normalized Lorentzian PSD �	0 � 950 nm, �	 � 62
nm for each�. �b� Modulus of the corresponding complex degree of
temporal coherence functions.

Fig. 3. Gaussian PSD with a 100-nm �3-dB bandwidth centered
at 940 nm �dashed curve� and PSDs of the same bandwidth and
center wavelength with different spectral dip amplitudes.

Table 1. Coherence Length of Sources with Different-Shaped PSDsa

Source lcFWHM
��m� lc ��m�

SLD-471 14.14 10.78
Normalized Gaussian PSD 12.83 9.65
Normalized Lorentzian PSD 6.42 4.64

aAs presented in Fig. 2�a�, computed according to two metrics.
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the temporal coherence functions, are small enough
to neglect.

C. Ability to Resolve Two Layers

We predict here the ability to resolve two layers sep-
arated by �z for selected sources presented in this
paper. Referring to Fig. 1, we assume as detailed
above that the phases of the complex temporal coher-
ence functions are the same, and the index of refrac-
tion n� is chosen such that �, given by relation �5�,
equals one. We set the separation of these layers �z
to half of lcFWHM

given by Eq. �2� and half of lc given by
Eq. �3�, both presented in Table 1 and Fig. 4. We
first considered the normalized Gaussian, Lorent-
zian, and SLD-471 PSDs, which were described in
Subsection 3.A. The ability to resolve two layers is
presented in Figs. 6�a�–6�c�, respectively. Then we

employed two of the PSDs, specifically with the 8.04%
and the 49.13% spectral dips, presented in Subsec-
tion 3.B. The results are presented in Figs. 6�d� and
6�e�.

4. Discussion

Significant differences in computed longitudinal res-
olution and coherence length for real and theoretical
sources with the same bandwidth and center wave-
length but with different spectral functions were pre-
sented. Such results demonstrate that it is
important to take into account the shape of the source
PSD in predicting resolution. A source with a
slightly narrower spectral bandwidth than another
source could possibly lead to higher resolution than
the latter, simply based on its superior shape. Such
findings are further strengthened by the analysis of
coherence lengths from PSDs of the same spectral
width, yet having varying amplitudes of spectral
dips. Results show that, when a PSD with a spectral
dip is approximated to a Gaussian PSD of the same
center wavelength and bandwidth, it leads to incor-
rect values of coherence length obtained with either
of the metrics considered.

A spectral dip in a PSD introduces sidelobes in the
temporal coherence function. When computing the
coherence length through the first metric, we mea-
sure the FWHM of the mainlobe disregarding the
sidelobes. If the sidelobes are located close to the
mainlobe, the overall FWHM of the temporal coher-
ence function could be larger than the FWHM of the
mainlobe. When we use the second metric to com-
pute the coherence length, the integration process
extends through the mainlobe and the sidelobes
�e.g., Fig. 5�. Integrating the sidelobes will result
in a larger value of the coherence length and thus
worse longitudinal resolution. However, if the side-
lobes are far from the mainlobe, the effect on image
quality will be ghost images, rather than a decrease
in resolution.

In the simulations conducted on the basis of the
separation of two layers and various PSDs, results
show that two layers, with a separation of half of the
FWHM of the modulus of the temporal coherence
function, cannot always be resolved depending on the
shape of the PSD of the source, as shown in Fig. 6�d�.
Also, the half of the coherence length derived through
the integration does not provide a detectable separa-
tion of the layers except in the case of a source with
Lorentzian PSD. Moreover, the plots in Fig. 6 indi-
cate that the center of the resulting signal is not as
low as 73.5% of the amplitude of the peak, which is
required by the Rayleigh criterion for resolution.
For the simulations that we carried out, it may be
worthwhile to change the distance between the layers
to the point where the signals can be separated ac-
cording to the Rayleigh criterion.

The simulations presented in this paper will be
limited in their ability to precisely predict experimen-
tal results. The first one is the phase mismatch dis-
cussed in Subsection 2.B, which could lead to a higher
resolution than predicted. The second is the refrac-

Fig. 4. Computed coherence length is presented as a function of
the amplitude percentage of the spectral dip with metric 1 �FWHM
criterion� and metric 2 �from integration�. The circle and the
triangle on the vertical axis represent, respectively, the coherence
length of the Gaussian PSD, where Gaussian 1 corresponds to the
FWHM and Gaussian 2 corresponds to the integration.

Fig. 5. ������ of the PSDs of the 100-nm bandwidth centered at a
940-nm source with a selected percentage of spectral dip.
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Fig. 6. Envelopes of the interferometric signals I1 and I2 that are due to backreflections from two successive layers �left column, �z �
lcFWHM

�2; right column, �z � lc�2� and the resulting signal I for a source with �a� Gaussian PSD, �b� Lorentzian PSD, �c� SLD-471 presented
in Fig. 2�a�, �d� PSD with 8.04% spectral dip amplitude, �e� PSD with 49.13% spectral dip amplitude presented in Fig. 3.
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tive index n, which has to be taken into account in the
resolution prediction, given that the media could af-
fect significantly the resolution by dispersive and
multiscattering effects. Finally, the setup, includ-
ing the detection scheme, is also a source of decrease
in resolution, given the group-velocity dispersion in
the fiber, polarization mismatch between the two
arms, unsuitable coating for the optical elements
across the entire spectrum of the source, and noise.
However, because an optimized setup can show good
agreement between the self-coherence function de-
rived from the PSD and the PSF measurement,8–10

researchers can hope to overcome these experimental
constraints.

Two additional remarks are necessary to end the
discussion. The first one concerns the other aspects
of the sources that are also important for the quality
of optical coherence imaging, such as the dynamic
range16 and the temporal fluctuations.15 The second
one underscores the fact that the longitudinal reso-
lution we have set is not the last limit we could
achieve if we take into account image processing.
Indeed, knowing the self-coherence function, the
noise, and some optical properties of the media, an
appropriate deconvolution operation may lead to im-
proved longitudinal resolution.17,18 Future re-
searches will investigate such aspects.

5. Conclusion

A main purpose of this paper was to show that the
shape of the spectrum of a source has a tremendous
impact on the longitudinal resolution in optical co-
herence imaging and that the commonly made as-
sumption of Gaussian-shaped PSDs may not provide
an accurate prediction. A second purpose was to
find a most appropriate metric to predict resolution
from coherence length. Results show that neither of
the metrics used in this paper is reliable to predict
resolution as defined in Subsection 2.B for all cases of
spectrum shapes. An upper bound on resolution,
however, is best computed by means of finding the
temporal separation between two delayed complex
temporal coherence functions that leads to a fixed
value in the center of the composed function, e.g., as
defined in Rayleigh resolution criterion, obtained by a
sum of the two delayed functions.
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